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Abstract 

In this paper, we present a method for 
modeling joint information when gene-
rating n-best lists. We apply the method 
to a novel task of characterizing the simi-
larity of a group of terms where only a 
small set of many possible semantic 
properties may be displayed to a user. 
We demonstrate that considering the re-
sults jointly, by accounting for the infor-
mation overlap between results, generates 
better n-best lists than considering them 
independently. We propose an informa-
tion theoretic objective function for mod-
eling the joint information in an n-best 
list and show empirical evidence that 
humans prefer the result sets produced by 
our joint model. Our results show with 
95% confidence that the n-best lists gen-
erated by our joint ranking model are 
significantly different from a baseline in-
dependent model 50.0% ± 3.1% of the 
time, out of which they are preferred 
76.6% ± 5.2% of the time. 

1 Introduction 

Ranking result sets is a pervasive problem in the 
NLP and IR communities, exemplified by key-
word search engines such as Google (Brin and 
Page 1998), machine translation systems (Zhang 
et al. 2006), and recommender systems (Sharda-
nand and Maes 1995; Resnick and Varian 1997). 

Consider the lexical semantics task of explain-
ing why a set of terms are similar: given a set of 
terms and a large set of possible explanations for 
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their similarity, one must choose only the best n 
explanations to display to a user. There are many 
ways to explain why terms are similar2; one way 
is to list the semantic properties that are shared 
by the terms. For example, consider the follow-
ing set of terms corresponding to fruit names: 
 {apple, ume, pawpaw, quince} 

Example semantic properties that could be 
used to explain their similarity include: they are 
products, they can be eaten, they are solid (but 
not they are companies, for example). The list of 
such semantic properties can be very large and 
some are much more informative than others. For 
example, the property can-be-eaten is much 
more informative of the similarity of {apple, ume, 
pawpaw, quince} than the property is-solid. Us-
ing a simple measure of association between 
properties and queries, explained in detail later in 
this paper, one can rank each property and obtain 
the following three highest scoring properties for 
explaining the similarity of these terms: 
{they are products, they can be 
imported, they can be exported} 

Even though can be imported and can be ex-
ported are highly ranked explanations, taken 
jointly, once we know one the other does not of-
fer much more information since most things that 
can be imported can also be exported. In other 
words, there is a large overlap in information 
between the two properties. A more informative 
set of explanations could be obtained by replac-
ing one of these two properties with a property 
that scored lower but had less information over-
lap with the others, for example: 

                                                 
2 In (Vyas and Pantel 2008), we explore the task of 
explaining the similarity between terms in detail. In 
this paper, we focus on the task of choosing the best 
set of explanations given a set of candidates. 
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{they are products, they can be 
imported, they can be eaten} 

Even though, taken alone, the property can be 
eaten may not be as informative as can be ex-
ported, it does indeed add more information to 
the explanation set when considered jointly with 
the other explanations. 

In this paper, we propose an information theo-
retic objective function for modeling the joint 
information in an n-best list. Derived using con-
ditional self-information, we measure the amount 
of information that each property contributes to a 
query. Intuitively, when adding a new property to 
a result set, we should prefer a property that con-
tributes the maximum amount of information to 
the existing set. In our experiments, we show 
empirical evidence that humans prefer our joint 
model’s result sets on the task of explaining why 
a set of terms are similar. 

The remainder of this paper is organized as 
follows. In the next section, we review related 
literature and position our contribution within 
that landscape. Section 3 presents the task of ex-
plaining the similarity of a set of terms and de-
scribes a method for generating candidate expla-
nations from which we will apply our ranking 
model.  In Section 4, we formally define our 
ranking task and present our Joint Information 
Ranking model. Experimental results are pre-
sented in Section 5 and finally, we conclude with 
a discussion and future work. 

2 Related Work 

There are a vast number of applications of 
ranking and its importance to the commercial 
success at companies such as Google and Yahoo 
have fueled a great deal of research in recent 
years. In this paper, we investigate one particular 
aspect of ranking, the importance of considering 
the results in an n-best list jointly because of the 
information overlap issues described in the 
introduction, and one particular application, 
namely explaining why a set of terms are similar. 

Considering results jointly is not a new idea 
and is very similar to the concept of diversity-
based ranking introduced in the IR community 
by Carbonell and Goldstein (1998). In short, se-
lecting an n-best list is a balancing act between 
maximizing the relevance of the list and the in-
formation novelty of its results. One commonly 
used approach is to define a measure of novel-
ty/semantic similarity between documents and to 
apply heuristics to reduce the relevance score of 
a result item (a hit) by a function of the similarity 

of this item to other results in the list (Carbonell 
and Goldstein 1998; Zhu et al. 2007). Another 
common approach is to cluster result documents 
according to their semantic similarity and present 
clusters to users instead of individual documents 
(Hearst and Pedersen 1996; Leuski 2001; Liu and 
Croft 2004). In this paper, we argue that the bal-
ance between relevance and novelty can be cap-
tured by a formal model that maximizes the joint 
information content of a result set. Instead of 
ranking documents in an IR setting, we focus in 
this paper on a new task of selecting the best se-
mantic properties that describe the similarity of a 
set of query terms. 

By no means an exhaustive list, the most 
commonly cited ranking and scoring algorithms 
are HITS (Kleinberg 1998) and PageRank (Page 
et al. 1998), which rank hyperlinked documents 
using the concepts of hubs and authorities. The 
most well-known keyword scoring methods 
within the IR community are the tf-idf (Salton 
and McGill 1983) and pointwise mutual informa-
tion (Church and Hanks 1989) measures, which 
put more importance on matching keywords that 
occur frequently in a document relative to the 
total number of documents that contain the key-
word (by normalizing term frequencies with in-
verse document frequencies). Various methods 
including tf-idf have been comparatively eva-
luated by Salton and Buckley (1987). Creating n-
best lists using the above algorithms produce 
result sets where each result is considered inde-
pendently. In this paper, we investigate the utility 
of considering the result sets jointly and compare 
our joint method to a pointwise mutual informa-
tion model. 

Within the NLP community, n-best list rank-
ing has been looked at carefully in parsing, ex-
tractive summarization (Barzilay et al. 1999; 
Hovy and Lin 1998), and machine translation 
(Zhang et al. 2006), to name a few. The problem 
of learning to rank a set of objects by combining 
a given collection of ranking functions using 
boosting techniques is investigated in (Freund et 
al. 2003). This rank boosting technique has been 
used in re-ranking parsers (Collins and Koo 
2000; Charniak and Johnson 2005). Such re-
ranking approaches usually improve the likelih-
ood of candidate results using extraneous fea-
tures and, for example in parsing, the properties 
of the trees. In this paper, we focus on a differ-
ence task: the lexical semantics task of selecting 
the best semantic properties that help explain 
why a set of query terms are similar. Unlike in 
parsing and machine translation, we are not ulti-
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mately looking for the best single result, but in-
stead the n-best. 

Looking at commercial applications, there are 
many examples showcasing the importance of 
ranking, for example Internet search engines like 
Google and Yahoo (Brin and Page 1998). Anoth-
er application is online recommendation systems 
where suggestions must be ranked before being 
presented to a user (Shardanand and Maes 1995). 
Also, in online social networks such as Facebook 
and LinkedIn, new connections or communities 
are suggested to users by leveraging their social 
connections (Spretus, et al. 2005). 

3 Explaining Similarity 

Several applications, such as IR engines, return 
the n-best ranked results to a query. Although we 
expect our joint information model, presented in 
Section 4.2, to generalize to many ranking tasks, 
our focus in this paper is on the task of choosing 
the n-best explanations that describe the similari-
ty of a set of terms. That is, given a set of terms, 
one must choose the best set of characterizations 
of why the terms are similar, chosen from a large 
set of possible explanations. 

Analyzing the different ways in which one can 
explain/characterize the similarity between terms 
is beyond the scope of this paper3. The types of 
explanations that we consider in this paper are 
semantic properties that are shared by the terms. 
For example, consider the query terms {apple, 
ume, pawpaw, quince} presented in Section 1. 
An example set of properties that explains the 
similarity of these words might include {they are 
products, they can be imported, they can be ex-
ported, they are tasty, they grow}. 

The range of possible semantic properties is 
large. For the above example, we may have of-
fered many other properties like {they are enti-
ties, they can be eaten, they have skin, they are 
words, they can be roasted, they can be shipped, 
etc.} Choosing a high quality concise set of 
properties is the goal of this paper. 

Our hypothesis is that considering items in a 
result set jointly for ranking produces better re-
sult sets than considering them independently. 
An important question then is: what is a utility 
function for measuring a better result? We pro-
pose that a result set is considered better than 
another if a person could more easily reconstruct 
the original query from it. Or, in other words, a 
result set is considered better than another if it 

                                                 
3 This topic is the focus of (Vyas and Pantel 2008).  

reduces more the uncertainty of what the original 
query was. Here, reducing the uncertainty means 
making it easier for a human to understand the 
original question (i.e., a good explanation should 
clarify the query).  

Formally, we define our ranking task as: 

Task Definition: Given a query Q = {q1, q2, …, 
qm} and a set of candidate properties R = {r1, 
r2, …, rk}, where q is a term and r is a property, 
find the set of properties R' = {r1, r2, …, rn} that 
most reduces the uncertainty of Q, where n << k. 

Recall from Section 1 the example Q = {apple, 
ume, pawpaw, quince}. The set of properties: 
{they are products, they can be 
imported, they can be eaten} 

is preferred over the set  
{they are products, they can be 
imported, they can be exported} 

since it reduces more the uncertainty of what the 
original query is. That is, if we hid the query 
{apple, ume, pawpaw, quince} from a person, 
the first set of properties would help more that 
person guess the query elements than the second 
properties. 

In Section 4, we describe two models for mea-
suring this uncertainty reduction and in Section 
5.1, we describe an evaluation methodology for 
quantifying this reduction in uncertainty using 
human judgments. 

3.1 Source of Properties 

What is the source of the semantic properties to 
be used as explanations? Following Lin (1998), 
we use syntactic dependencies between words to 
model their semantic properties. The assumption 
here is that some grammatical relations, such as 
subject and object can often yield semantic 
properties of terms. For example, given enough 
corpus occurrences of a phrase like “students eat 
many apples”, then we can infer the properties 
can-be-eaten for apples and can-eat for students. 
Unfortunately, many grammatical relations do 
not specify semantic properties, such as most 
conjunction relations for example. In this paper, 
we use a combination of corpus statistics and 
manual filters of grammatical relations (such as 
omitting conjunction relations) to uncover 
candidate semantic properties, as described in the 
next section. With this method, we unfortunately 
uncover some non-semantic properties and fail to 
uncover some correct semantic properties. 
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Improving the candidate lists of semantic 
properties is grounds for further investigation. 

3.2 Extracting Properties 

Given a set of similar terms, we look at the 
overlapping syntactic dependencies between the 
words in the set to form candidate semantic 
properties. Example properties extracted by our 
system (described below) for a random sample of 
two instances from a cluster of food, {apple, 
beef}, include4: 
shredded, sliced, lean, sour, de-
licious, cooked, import, export, 
eat, cook, dice, taste, market, 
consume, slice, ... 

We obtain candidate properties by parsing a 
large textual corpus with the Minipar parser (Lin 
1993)5. For each word in the corpus, we extract 
all of its dependency links, forming a feature 
vector of syntactic dependencies. For example, 
below is a sample of the feature vector for the 
word apple: 
adj-mod:gala, adj-mod:shredded,  
object-of:caramelize, object-of:eat, 
object-of:import, ... 

Intersecting apple’s feature vector with beef’s, 
we are left with the following candidate 
properties: 
adj-mod:shredded, object-of:eat,  
object-of:import, ... 

In this paper, we omit the relation name of the 
syntactic dependencies, and instead write: 
 shredded, eat, import, ... 

This list of syntactic dependencies forms the 
candidate properties for our ranking task defined 
in Section 3.  

In Section 4, we use corpus statistics over 
these syntactic dependencies to find the most 
informative properties that explain the similarity 
of a set of terms. Some syntactic dependencies 
are not reliably descriptive of the similarity of 
words such as conjunctions and determiners. We 
omit these dependency links from our model. 

4 Ranking Models 

In this section, we present our ranking models for 
choosing the n-best results to a query according 
to our task definition from Section 3. The models 

                                                 
4 We omit the syntactic relations for readability. 
5 Section 5.1 describes the specific corpus and method 
that was used to obtain our reported results. 

are expected to generalize to many ranking tasks, 
however in this paper we focus solely on the 
problem of choosing the best semantic properties 
that describe the similarity of a set of terms. 

In the next section, we outline our baseline in-
dependent model, which is based on a commonly 
used ranking metric in lexical semantics for se-
lecting the most informative properties of a term. 
Then in Section 4.2, we propose our new model 
for considering the properties jointly. 

4.1 EIIR: Expected Independent Informa-
tion Ranking Model (Baseline Model) 

Recall the task definition from Section 3. Finding 
a property r that most reduces the uncertainty in 
a query set Q can be modeled by measuring the 
strength of association between r and Q. 
Following Pantel and Lin (2002), we use 
pointwise mutual information (pmi) to measure 
the association strength between two events q 
and r, where q is a term in Q and r is syntactic 
dependency, as follows (Church and Hanks 
1989): 

 ( )
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where c(q,r) is the frequency of r in the feature 
vector of q (as defined in Section 3.2), W is the 
set of all words in our corpus, F is the set of all 
syntactic dependencies in our corpus, and  

N = ( )∑ ∑
∈ ∈Ww Ff

fwc , is the total frequency count of 

all features of all words. 
We estimate the association strength between 

a property r and a set of terms Q by taking the 
expected pmi between r and each term in Q as: 

 ( ) ( ) ( )∑
∈

=
Qq

rqpmiqPrQpmi ,,  (4.2) 

where P(q) is the probability of q in the corpus. 
Finally, the EIIR model chooses an n-best list 

by selecting the n properties from R that have 
highest pmi(Q, r). 

4.2 JIR: Joint Information Ranking Model 

The hypothesis of this paper is that considering 
items in an n-best result set jointly for ranking 
produces better result sets than considering them 
independently, an example of which is shown in 
Section 1. 

Recall our task definition from Section 3: to 
select an n-best list R' from R such that it most 
reduces the uncertainty of Q. Recall that for ex-
plaining the similarity of terms, Q is the set of 

684



query words to be explained and R is the set of 
all properties shared by words in Q. The above 
task of finding R' can be captured by the follow-
ing objective function: 

 ( )RQIR
RR

′=′
⊂′
minarg  (4.3) 

where I(Q|R') is the amount of information in Q 
given R':6 

 ( ) ( ) ( )∑
∈

′×=′
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where P(q) is the probability of term q in our 
corpus (defined in the Section 4.1) and I(q|R') is 
the amount of information in q given R', which is 
defined as the conditional self-information 
between q and R' (Merhav and Feder 1998): 
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where c(q,R') is the frequency of all properties in 
R' occurring with word q and * represents all 
possible terms in the corpus7. We have: 

 ( ) ( )∑
′∈

=′
Rr

rqcRqc ,,  and ( ) ( )∑∑
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=′
Rr Qq

rqcRc ,*,  

where c(q,r) is defined as in Section 4.1 and Q' is 
the set of all words that have all the properties in 
R'. Computing c(*,R') efficiently can be done 
using a reverse index from properties to terms. 

The Joint Information Ranking model (JIR) is 
the objective function in Eq. 4.3. We find a sub-
optimal solution to Eq. 4.3 using a greedy algo-
rithm by starting with an empty set R' and itera-
tively adding one property r at a time into R' such 
that: 

 ( ) ( )∑
∈′−∈

∪′×=
QqRRr

rRqIqPr minarg  (4.6) 

The intuition behind this algorithm is as fol-
lows: when choosing a property r to add to a par-
tial result set, we should choose the r that contri-
butes the maximum amount of information to the 
existing set (where all properties are considered 
jointly). 

                                                 
6 Note that finding the set R' that minimizes the 
amount of information in Q given R' equates to find-
ing the R' that reduces most the uncertainty in Q. 
7 Note that each property in R' is shared by q because 
of the way the candidate properties in R were con-
structed (see Section 3.2). 

A brute force optimal solution to Eq. 4.3 in-
volves computing I(Q|R') for all subsets R' of size 
n of R. In future work, we will investigate heuris-
tic search algorithms for finding better solutions 
to Eq. 4.3, but our experimental results discussed 
in Section 5 show that our greedy solution to Eq. 
4.3 already yields significantly better n-best lists 
than the baseline EIIR model. 

5 Experimental Results 

In this section, we show empirical evidence that 
considering items in an n-best result set jointly 
for ranking produces better result sets than con-
sidering them independently. We validate this 
claim by testing whether or not human judges 
prefer the set of explanations generated by our 
joint model (JIR) over the independent model 
(EIIR). 

5.1 Experimental Setup 

We trained the probabilities described in Section 
4 using corpus statistics extracted from the 
TREC-9 and TREC-2002 Aquaint collections 
consisting of approximately 600 million words. 
We used the Minipar parser (Lin 1993) to ana-
lyze each sentence and we collected the frequen-
cy counts of the grammatical contexts output by 
Minipar and used them to compute the probabili-
ty and pointwise mutual information values from 
Sections 4.1 and 4.2. Given any set of words Q 
from the corpus, our joint and independent mod-
els generate a ranked list of n-best explanations 
(i.e., properties) for the similarity of the words. 

Recall the example set Q = {apple, beef} from 
Section 3.2. Following Section 3.2, all grammat-
ical contexts output by Minipar that both words 
share form a candidate explanation set R for their 
similarity. For {apple, beef}, our systems found 
312 candidate explanations. Applying the inde-
pendent ranking model, EIIR, we obtain the fol-
lowing top-5 best explanations, R': 

product, import of, export, ban 
on, industry 

Using the joint model, JIR, we obtain: 
export, product, eat, ban on, 
from menu 

5.2 Comparing Ranking Models 

In order to obtain a representative set of similar 
terms as queries to our systems, we randomly 
chose 100 concepts from the CBC collection 
(Pantel and Lin 2002) consisting of 1628 clusters 
of nouns. For each of these concepts, we ran-
domly chose a set of cluster instances (nouns), 
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where the size of each set was randomly chosen 
to consist of two or three noun (chosen to reduce 
the runtime of our algorithm). For example, three 
of our randomly sampled concepts were Music, 
Flowers, and Alcohol and below are the random 
instances selected from these concepts: 

• {concerto, quartet, Fifth Symphony} 
• {daffodil, lily} 
• {gin, alcohol, rum} 

Each of these three samples forms a query. 
Applying both our EIIR and JIR models, we gen-
erated the top-5 explanations for each of the 100 
samples. For example, below are the explana-
tions returned for {daffodil, lily}:  

• EIIR: bulb, bouquet of, yellow, pink, hybr-
id 

• JIR: flowering, bulb, bouquet of, hybrid, 
yellow 

Two judges then independently annotated 500 
test cases using the following scheme. For each 
of the 100 samples, a judge is presented with the 
sample along with the top-1 explanation of both 
systems, randomly ordered for each sample such 
that the judge can never know which system 
generated which explanation. The judge then 
must make one of the following three choices: 

• Explanation 1: The judge prefers the first 
explanation to the second. 

• Explanation 2: The judge prefers the 
second explanation to the first. 

• Equal: The judge cannot determine that 
one explanation is better than the other. 

The judge is then presented with the top-2 ex-
planations from each system, then the top-3, top-
4, and finally the top-5 explanations, making the 
above annotation decision each time. Once the 
judge has seen the top-5 explanations for the 
sample, the judge moves on to the next sample 
and repeats this process until all 100 samples are 
annotated. Allowing the judges to see the top-1, 
top-2, up to top-5 explanations allows us to later 

inspect how our ranking algorithms perform on 
different sizes of explanation sets. 

The above annotation task was performed in-
dependently by two judges and the resulting 
agreement between the judges, using the Kappa 
statistic (Siegel and Castellan Jr. 1988), was κ = 
0.60. Table 1 lists the full confusion matrix on 
the annotation task. On just the annotations of the 
top-5 explanations, the agreement was κ = 0.73. 
Table 2 lists the Kappas for the different sizes of 
explanation sets. It is more difficult for judges to 
determine the quality of smaller explanation sets. 

For the above top-5 explanations for the query 
{daffodil, lily}, both judges preferred the JIR 
properties since flowering was deemed more in-
formative than pink given that we also know the 
property yellow. 

5.2.1 Evaluation Results 

Table 3 shows sample n-best lists generated by 
our system and Table 4 presents the results of the 
experiment described in the previous section. 
Table 4 lists the preferences of the judges for the 
n-best lists generated by the independent and 
joint models, in terms of the percentage of sam-
ples preferred by each judge on each model. We 
report our results on both all 500 annotations and 
on the 100 annotations for the explanation sets of 
size n = 5. Instead of using an adjudicator for 
resolving the two judges’ disagreements, we 
weighted each judge’s decision by 0.5. We used 
bootstrap resampling to obtain the 95% confi-
dence intervals. 

The judges significantly preferred the joint 
model over the independent model. Looking at 
all annotated explanation sets (varying n from 1 
to 5), the n-best lists from JIR were preferred 
39.7% of the time. On the 50.0% ± 3.1% test 
cases where one list was preferred over another, 
the JIR lists were preferred overall 76.6% ± 5.2% 
of the time, with 95% confidence. Caution 
should be taken when interpreting the results for 
n < 3 since the annotator agreement for these was 
very low. However, as shown in Figure 1, human 
preference for the JIR model was higher at n ≥ 3. 

Table 2. Inter-annotator agreement statistics over 
varying explanation set sizes n. 

n AGREEMENT (%) KAPPA (κ) 
1 75.0 0.47 
2 70.0 0.50 
3 77.0 0.62 
4 78.0 0.63 
5 84.0 0.73 

 

Table 1. Confusion matrix between the two judges on 
the annotation task over all explanation set sizes 
(n = 1 … 5). 

 JIR EIIR EQUAL 

JIR 153 2 48 
EIIR 11 33 19 
EQUAL 29 7 198 
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5.2.2 Discussion and Error Analysis 

Figure 1 illustrates the annotated preferences 
over varying sizes of explanation sets, for n ∈ 
[1 .. 5]. Except in the case where only one expla-
nation is returned, we see consistent preferences 
between the judges. Manual inspection of the 
size 1 explanation sets showed that often one 
property is not enough to understand the similari-
ty of the query words. For example, consider the 
following two explanation sets: {sell} and 
{drink}. If you did not know the original query Q, 
one list would not be much better than the other 
in determining what the query was. But, by add-
ing one more property, we get: {sell, drink} and 
{drink, spike with}. The second explanation list 
reduces much more the uncertainty that the query 
consists of alcoholic beverages, as you probably 
guessed (the first list also reduces the uncertainty, 
but not as much as the second). The above ex-
ample is taken from our random sample list for 
the query words {gin, alcohol, rum} – the expla-
nation {drink, spike with} was generated using 
the JIR model. 

We manually inspected some of the sample 
queries where both judges preferred the EIIR n-
best list. One such sample query was: {Jerry 
Falwell, Jim Bakker, Pat Robertson}. The n-best 
lists returned by the JIR and EIIR models respec-
tively were {televangelist, evangelist, Rev., tele-
vision, founder} and {evangelist, television, Rev., 
founder, religious}. Both judges preferred the 

EIIR list because of the overlap in information 
between televangelist and evangelist. The prob-
lem here in JIR was that the word televangelist 
was very rare in the corpus and thus few terms 
had both the feature televangelist and evangelist. 
We would expect in a larger corpus to see a larg-
er overlap with the two features, in which case 
evangelist would not be chosen by the JIR model. 

As discussed in Section 2, considering results 
jointly is not a new idea and is very similar to the 
concept of diversity-based ranking introduced in 
the IR community by Carbonell and Goldstein 
(1998). Their proposed technique, called maxim-
al marginal relevance (MMR), forms the basis of 
most schemes used today and works as follows. 
Initially, each result item is scored independently 
of the others. Then, the n-best list is selected by 
iteratively choosing the highest scoring result 
and then discounting each remaining candidate’s 
score by some function of the similarity (or in-
formation gain) between that candidate and the 
currently selected members of the n-best list. In 
practice, these heuristic-based algorithms are fast 
to compute and are used heavily by commercial 
IR engines. The purpose of this paper is to inves-
tigate a principled definition of diversity using 
the concept of maximal joint information. The 
objective function proposed in Eq. 4.3 provides a 
basis for understanding diversity through the lens 
of information theory. Although this paper fo-

Table 3. Five example n-best lists, drawn from our random sample described in Section 5.1, using the joint JIR
model and the independent EIIR model (for n=5). 

Query (Q) JIR n-best (R') EIIR n-best (R') 
{gin, alcohol, rum} drink, spike with, sell, use, consume sell, drink, use, consume, buy 

{Temple University, Michigan State} political science at, professor at, 
director at, student at, attend 

professor at, professor, director at, 
student at, student 

{concerto, quartet, Fifth Symphony} Beethoven, his, play, write, performance his, play, write, performance, perform 

{ranch house, loft} offer, brick, sprawling, rambling, 
turn-of-the-century his, live, her, buy, small 

{dysentery, tuberculosis} morbidity, die of, case, patient, suffer from die of, case, patient, case of, have 
 

Table 4. Percentage of test cases where the judges 
preferred JIR vs. EIIR vs. they had no preference, 
computed over all explanation set sizes (n = 1 … 5) 
vs. only the explanation sets of size n = 5. 

SYSTEM ALL (95% CONF†) N=5 (95% CONF†) 

JIR 39.7% ± 3.0% 43.7% ± 6.9% 
EIIR 10.4% ± 1.3% 10.1% ± 4.2% 
Equal 50.0% ± 3.1% 45.2% ± 6.9% 
†95% confidence intervals estimated using bootstrap resampling. 

Figure 1. Percentage of human preference for each 
model with varying sizes of explanation sets (n). 
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cuses on the task of explaining the similarity of 
terms, we plan in future work to apply our me-
thod to an IR task in order to compare and con-
trast our method with MMR. 

6 Conclusion 

This paper investigates the problem of n-best 
ranking on the lexical semantics task of explain-
ing/characterizing the similarity of a group of 
terms where only a small set of many possible 
semantic properties may be displayed to a user. 
We propose that considering the results jointly, 
by accounting for the information overlap be-
tween results, helps generate better n-best lists. 
We presented an information theoretic objective 
function, called Joint Information Ranking, for 
modeling the joint information in an n-best list. 
On our lexical semantics task, empirical evidence 
shows that humans significantly prefer JIR n-best 
lists over a baseline model that considers the ex-
planations independently. Our results show that 
the n-best lists generated by the joint model are 
judged to be significantly different from those 
generated by the independent model 50.0% ± 
3.1% of the time, out of which they are preferred 
76.6% ± 5.2% of the time, with 95% confidence. 

In future work, we plan to investigate other 
joint models using latent semantic analysis tech-
niques, and to investigate heuristic algorithms to 
both optimize search efficiency and to better ap-
proximate our JIR objective function. Although 
applied only to the task of characterizing the si-
milarity of terms, it is our hope that the JIR mod-
el will generalize well to many ranking tasks, 
from keyword search ranking, to recommenda-
tion systems, to advertisement placements. 
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