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Abstract

We study the self-organization of the con-
sonant inventories through a complex net-
work approach. We observe that the dis-
tribution of occurrence as well as co-
occurrence of the consonants across lan-
guages follow a power-law behavior. The
co-occurrence network of consonants ex-
hibits a high clustering coefficient. We
propose four novel synthesis models for
these networks (each of which is a refine-
ment of the earlier) so as to successively
match with higher accuracy (a) the above
mentioned topological properties as well
as (b) the linguistic property offeature
economyexhibited by the consonant inven-
tories. We conclude by arguing that a pos-
sible interpretation of this mechanism of
network growth is the process of child lan-
guage acquisition. Such models essentially
increase our understanding of the struc-
ture of languages that is influenced by their
evolutionary dynamics and this, in turn,
can be extremely useful for building future
NLP applications.

1 Introduction

A large number of regular patterns are observed
across the sound inventories of human languages.
These regularities are arguably a consequence of
the self-organization that is instrumental in the
emergence of these inventories (de Boer, 2000).
Many attempts have been made by functional pho-
nologists for explaining this self-organizing behav-
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ior through certain general principles such asmax-
imal perceptual contrast(Liljencrants and Lind-
blom, 1972),ease of articulation(Lindblom and
Maddieson, 1988; de Boer, 2000), andease of
learnability (de Boer, 2000). In fact, there are a
lot of studies that attempt to explain the emergence
of the vowel inventories through the application of
one or more of the above principles (Liljencrants
and Lindblom, 1972; de Boer, 2000). Some studies
have also been carried out in the area of linguistics
that seek to reason the observed patterns in the con-
sonant inventories (Trubetzkoy, 1939; Lindblom
and Maddieson, 1988; Boersma, 1998; Clements,
2008). Nevertheless, most of these works are con-
fined to certain individual principles rather than
formulating a general theory describing the emer-
gence of these regular patterns across the conso-
nant inventories.

The self-organization of the consonant inven-
tories emerges due to an interaction of different
forces acting upon them. In order to identify the
nature of these interactions one has to understand
the growth dynamics of these inventories. The the-
ories of complex networksprovide a number of
growth models that have proved to be extremely
successful in explaining the evolutionary dynam-
ics of various social (Newman, 2001; Ramasco et
al., 2004), biological (Jeong et al., 2000) and other
natural systems. The basic framework for the cur-
rent study develops around two such complex net-
works namely, thePhoneme-LanguageNetwork
or PlaNet (Choudhury et al., 2006) and its one-
mode projection, thePhoneme-PhonemeNetwork
or PhoNet (Mukherjee et al.2007a). We begin by
analyzing some of the structural properties (Sec. 2)
of the networks and observe that the consonant
nodes in both PlaNet and PhoNet follow a power-
law-like degree distribution. Moreover, PhoNet
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is characterized by a high clustering coefficient,
a property that has been found to be prevalent in
many other social networks (Newman, 2001; Ra-
masco et al., 2004).

We propose four synthesis models for PlaNet
(Sec. 3), each of which employ a variant of apref-
erential attachment(Barab́asi and Albert, 1999)
based growth kernel1. While the first two mod-
els are independent of the characteristic proper-
ties of the (consonant) nodes, the following two
use them. These models are successively refined
not only to reproduce the topological properties of
PlaNet and PhoNet, but also to match the linguis-
tic property offeature economy(Boersma, 1998;
Clements, 2008) that is observed across the conso-
nant inventories. The underlying growth rules for
each of these individual models helps us to inter-
pret the cause of the emergence of at least one (or
more) of the aforementioned properties. We con-
clude (Sec. 4) by providing a possible interpreta-
tion of the proposed mathematical model that we
finally develop in terms of child language acquisi-
tion.

There are three major contributions of this work.
Firstly, it provides a fascinating account of the
structure and the evolution of the human speech
sound systems. Furthermore, the introduction of
the node property based synthesis model is a sig-
nificant contribution to the field of complex net-
works. On a broader perspective, this work shows
how statistical mechanics can be applied in under-
standing the structure of a linguistic system, which
in turn can be extremely useful in developing fu-
ture NLP applications.

2 Properties of the Consonant
Inventories

In this section, we briefly recapitulate the defi-
nitions of PlaNet and PhoNet, the data source,
construction procedure for the networks and some
of their important structural properties. We also
revisit the concept of feature economy and the
method used for its quantification.

2.1 Structural Properties of the Consonant
Networks

PlaNet is a bipartite graphG = 〈 VL, VC , Epl 〉 con-
sisting of two sets of nodes namely,VL (labeled by
the languages) andVC (labeled by the consonants);

1The word kernel here refers to the function or mathemat-
ical formula that drives the growth of the network.

Figure 1: Illustration of the nodes and edges of
PlaNet and PhoNet.

Epl is the set of edges running betweenVL andVC .
There is an edgee ∈ Epl from a nodevl ∈ VL to a
nodevc ∈ VC iff the consonantc is present in the
inventory of languagel.

PhoNet is the one-mode projection of PlaNet
onto the consonant nodes i.e., a network of con-
sonants in which two nodes are linked by an edge
with weight as many times as they co-occur across
languages. Hence, it can be represented by a graph
G = 〈 VC , Eph 〉, whereVC is the set of conso-
nant nodes andEph is the set of edges connecting
these nodes inG. There is an edgee ∈ Eph if the
two nodes (read consonants) that are connected by
e co-occur in at least one language and the number
of languages they co-occur in defines the weight of
the edgee. Figure 1 shows the nodes and the edges
of PlaNet and PhoNet.

Data Source and Network Construction:Like
many other earlier studies (Liljencrants and Lind-
blom, 1972; Lindblom and Maddieson, 1988; de
Boer, 2000; Hinskens and Weijer, 2003), we use
the UCLA Phonological Segment Inventory Data-
base (UPSID) (Maddieson, 1984) as the source of
our data. There are 317 languages in the data-
base with a total of 541 consonants found across
them. Each consonant is characterized by a set of
phonological features (Trubetzkoy, 1931), which
distinguishes it from others. UPSID uses articula-
tory features to describe the consonants, which can
be broadly categorized into three different types
namely themanner of articulation, the place of
articulation and phonation. Manner of articu-
lation specifies how the flow of air takes place
in the vocal tract during articulation of a conso-
nant, whereas place of articulation specifies the
active speech organ and also the place where it
acts. Phonation describes the vibration of the vo-
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Manner of Articulation Place of Articulation Phonation

tap velar voiced
flap uvular voiceless
trill dental
click palatal
nasal glottal

plosive bilabial
r-sound alveolar
fricative retroflex
affricate pharyngeal

implosive labial-velar
approximant labio-dental
ejective stop labial-palatal

affricated click dental-palatal
ejective affricate dental-alveolar
ejective fricative palato-alveolar

lateral approximant

Table 1: The table shows some of the important
features listed in UPSID. Over 99% of the UPSID
languages have bilabial, dental-alveolar and velar
plosives. Furthermore, voiceless plosives outnum-
ber the voiced ones (92% vs. 67%). 93% of the
languages have at least one fricative, 97% have at
least one nasal and 96% have at least one liquid.
Approximants occur in fewer than 95% of the lan-
guages.

cal cords during the articulation of a consonant.
Apart from these three major classes there are also
some secondary articulatory features found in cer-
tain languages. There are around 52 features listed
in UPSID; the important ones are noted in Table 1.
Note that in UPSID the features are assumed to be
binary-valued and therefore, each consonant can
be represented by a binary vector.

We have used UPSID in order to construct
PlaNet and PhoNet. Consequently,|VL| = 317 (in
PlaNet) and|VC | = 541. The number of edges in
PlaNet and PhoNet are 7022 and 30412 respec-
tively.

Degree Distributions of PlaNet and PhoNet:
The degree distribution is the fraction of nodes, de-
noted byPk, which have a degree2 greater than or
equal tok (Newman, 2003). The degree distribu-
tion of the consonant nodes in PlaNet and PhoNet
are shown in Figure 2 in the log-log scale. Both the
plots show a power-law behavior (Pk ∝ k−α) with
exponential cut-offs towards the ends. The value
of α is 0.71 for PlaNet and 0.89 for PhoNet.

Clustering Coefficient of PhoNet: The clus-
tering coefficient for a nodei is the proportion of
links between the nodes that are the neighbors of
i divided by the number of links that could pos-
sibly exist between them (Newman, 2003). Since
PhoNet is a weighted graph the above definition is

2For a weighted graph like PhoNet, the degree of a nodei
is the sum of weights on the edges that are incident oni.

suitably modified by the one presented in (Barrat
et al., 2004). According to this definition, the clus-
tering coefficient for a nodei is,

ci =
1(∑

∀j wij

)
(ki − 1)

∑
∀j,l

(wij + wil)
2

aijailajl

(1)
wherej andl are neighbors ofi; ki represents the
plain degree of the nodei; wij , wjl and wil de-
note the weights of the edges connecting nodesi
and j, j and l, and i and l respectively;aij , ail,
ajl are boolean variables, which are true iff there
is an edge between the nodesi andj, i andl, andj
andl respectively. The clustering coefficient of the
network (cav) is equal to the average clustering co-
efficient of the nodes. The value ofcav for PhoNet
is 0.89, which is significantly higher than that of a
random graph with the same number of nodes and
edges (0.08).

2.2 Linguistic Properties: Feature Economy
and its Quantification

The principle of feature economy states that lan-
guages tend to use a small number ofdistinctive
features and maximize their combinatorial pos-
sibilities to generate a large number of conso-
nants (Boersma, 1998; Clements, 2008). Stated
differently, a given consonant will have a higher
than expected chance of occurrence in invento-
ries in which all of its features have already dis-
tinctively occurred in the other consonants. This
principle immediately implies that the consonants
chosen by a language should share a considerable
number of features among them. The quantifica-
tion process, which is a refinement of the idea pre-
sented in (Mukherjee et al.2007b), is as follows.

Feature Entropy: For an inventory of sizeN ,
let there bepf consonants for which a particular
featuref (recall that we assumef to be binary-
valued) is present andqf other consonants for
which the same is absent. Therefore, the proba-
bility that a consonant (chosen uniformly at ran-
dom from this inventory) contains the featuref is
pf

N and the probability that it does not contain the
feature isqf

N (=1–pf

N ). One can think off as an in-
dependent random variable, which can take values
1 and 0, andpf

N and qf

N define the probability dis-
tribution of f . Therefore, for any given inventory,
we can define the binary entropyHf (Shannon and
Weaver, 1949) for the featuref as

Hf = −pf

N
log2

pf

N
− qf

N
log2

qf

N
(2)
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Figure 2: Degree distribution (DD) of PlaNet along with that of PlaNetsyn obtained from Model I and II
respectively; (b) DD of PhoNet along with that of PhoNetsyn obtained from Model I and II respectively.
Both the plots are in log-log scale.

If F is the set of all features present in the conso-
nants forming the inventory, thenfeature entropy
FE is the sum of the binary entropies with respect
to all the features, that is

FE =
∑
f∈F

Hf =
∑
f∈F

(−pf

N
log2

pf

N
− qf

N
log2

qf

N
)

(3)
Since we have assumed thatf is an independent

random variable,FE is the joint entropy of the
system. In other words,FE provides an estimate
of the number of discriminative features present
in the consonants of an inventory that a speaker
(e.g., parent) has to communicate to a learner (e.g.,
child) during language transmission. The lower the
value ofFE the higher is the feature economy. The
curve marked as (R) in Figure 3 shows the average
feature entropy of the consonant inventories of a
particular size3 (y-axis) versus the inventory size
(x-axis).

3 Synthesis Models

In this section, we describe four synthesis mod-
els that incrementally attempt to explain the emer-
gence of the structural properties of PlaNet and
PhoNet as well as the feature entropy exhibited by
the consonant inventories. In all these models, we
assume that the distribution of the consonant in-
ventory size, i.e., the degrees of the language nodes
in PlaNet, are knowna priori.

3Let there ben inventories of a particular sizek. The
average feature entropy of the inventories of sizek is
1
n

∑n

i=1
FEi , whereFEi signifies the feature entropy of the

ith inventory of sizek.

3.1 Model I: Preferential Attachment Kernel

This model employs a modified version of the ker-
nel described in (Choudhury et al., 2006), which is
the only work in literature that attempts to explain
the emergence of the consonant inventories in the
framework of complex networks.

Let us assume that a language nodeLi ∈ VL

has a degreeki. The consonant nodes inVC are
assumed to be unlabeled, i.e, they are not marked
by the distinctive features that characterize them.
We first sort the nodesL1 throughL317 in the as-
cending order of their degrees. At each time step a
nodeLj , chosen in order, preferentially attaches it-
self withkj distinctnodes (call each such nodeCi)
of the setVC . The probabilityPr(Ci) with which
the nodeLj attaches itself to the nodeCi is given
by,

Pr(Ci) =
di

α + ε∑
i
′∈V

′
C
(di′

α + ε)
(4)

where, di is the current degree of the nodeCi,
V
′
C is the set of nodes inVC that are not already

connected toLj , ε is the smoothing parameter
that facilitates random attachments andα indi-
cates whether the attachment kernel is sub-linear
(α < 1), linear (α = 1) or super-linear (α > 1).
Note that the modification from the earlier ker-
nel (Choudhury et al., 2006) is brought about by
the introduction ofα. The above process is re-
peated until all the language nodesLj ∈ VL get
connected tokj consonant nodes (refer to Figure.
6 of (Choudhury et al., 2006) for an illustration of
the steps of the synthesis process). Thus, we have
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the synthesized version of PlaNet, which we shall
call PlaNetsyn henceforth.

The Simulation Results: We simulate the
above model to obtain PlaNetsyn for 100 differ-
ent runs and average the results over all of them.
We find that the degree distributions that emerge
fit the empirical data well forα ∈ [1.4,1.5] and
ε ∈ [0.4,0.6], the best being atα = 1.44 andε = 0.5
(shown in Figure 2). In fact, the mean error4 be-
tween the real and the synthesized distributions for
the best choice of parameters is as small as 0.01.
Note that this error in case of the model presented
in (Choudhury et al., 2006) was 0.03. Furthermore,
as we shall see shortly, a super-linear kernel can
explain various other topological properties more
accurately than a linear kernel.

In absence of preferential attachment i.e., when
all the connections to the consonant nodes are
equiprobable, the mean error rises to 0.35.

A possible reason behind the success of this
model is the fact that language is a constantly
changing system and preferential attachment plays
a significant role in this change. For instance, dur-
ing the change those consonants that belong to lan-
guages that are more prevalent among the speak-
ers of a generation have higher chances of being
transmitted to the speakers of the subsequent gen-
erations (Blevins, 2004). This heterogeneity in the
choice of the consonants manifests itself as pref-
erential attachment. We conjecture that the value
of α is a function of the societal structure and the
cognitive capabilities of human beings. The exact
nature of this function is currently not known and
a topic for future research. The parameterε in this
case may be thought of as modeling the random-
ness of the system.

Nevertheless, the degree distribution of
PhoNetsyn, which is the one-mode projection
of PlaNetsyn, does not match the real data well
(see Figure 2). The mean error between the two
distributions is 0.45. Furthermore, the clustering
coefficient of PhoNetsyn is 0.55 and differs largely
from that of PhoNet. The primary reason for this
deviation in the results is that PhoNet exhibits
strong patterns of co-occurrences (Mukherjee et
al.2007a) and this fact is not taken into account
by Model I. In order to circumvent the above

4Mean error is defined as the average difference between
the ordinate pairs (sayy andy

′
) where the abscissas are equal.

In other words, if there areN such ordinate pairs then the

mean error can be expressed as

∑
|y−y

′ |
N

.

problem, we introduce the concept oftriad (i.e.,
fully connected triplet) formation and thereby
refine the model in the following section.

3.2 Model II: Kernel based on Triad
Formation

The triad model (Peltom̈aki and Alava, 2006)
builds up on the concept ofneighborhoodforma-
tion. Two consonant nodesC1 and C2 become
neighbors if a language node at any step of the
synthesis process attaches itself to bothC1 and
C2. Let the probability of triad formation be de-
noted bypt. At each time step a language node
Lj (chosen from the set of language nodes sorted
in ascending order of their degrees) makes the first
connection preferentially to a consonant nodeCi

∈ VC to which Lj is not already connected fol-
lowing the distributionPr(Ci). For the rest of the
(kj-1) connectionsLj attaches itself preferentially
to only the neighbors ofCi to whichLj is not yet
connected with a probabilitypt. Consequently,Lj

connects itself preferentially to the non-neighbors
of Ci to whichLj is not yet connected with a prob-
ability (1 − pt). The neighbor set ofCi gets up-
dated accordingly. Note that every time the node
Ci and its neighbors are chosen they together im-
pose a clique on the one-mode projection. This
phenomenon leads to the formation of a large num-
ber of triangles in the one-mode projection thereby
increasing the clustering coefficient of the resultant
network.

The Simulation Results:We carry out 100 dif-
ferent simulation runs of the above model for a par-
ticular set of parameter values to obtain PlaNetsyn

and average the results over all of them. We ex-
plore several parameter settings in the range as fol-
lows: α ∈ [1,1.5] (in steps of 0.1),ε ∈ [0.2,0.4]
(in steps of 0.1) andpt ∈ [0.70,0.95] (in steps of
0.05). We also observe that if we traverse any fur-
ther along one or more of the dimensions of the pa-
rameter space then the results get worse. The best
result emerges forα = 1.3,ε = 0.3 andpt = 0.8.

Figure 2 shows the degree distribution of the
consonant nodes of PlaNetsyn and PlaNet. The
mean error between the two distributions is 0.04
approximately and is therefore worse than the re-
sult obtained from Model I. Nevertheless, the aver-
age clustering coefficient of PhoNetsyn in this case
is 0.85, which is within 4.5% of that of PhoNet.
Moreover, in this process the mean error between
the degree distribution of PhoNetsyn and PhoNet
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(as illustrated in Figure 2) has got reduced drasti-
cally from 0.45 to 0.03.

One can again find a possible association of this
model with the phenomena of language change. If
a group of consonants largely co-occur in the lan-
guages of a generation of speakers then it is very
likely that all of them get transmitted together in
the subsequent generations (Blevins, 2004). The
triad formation probability ensures that if a pair of
consonant nodes become neighbors of each other
in a particular step of the synthesis process then
the choice of such a pair should be highly pre-
ferred in the subsequent steps of the process. This
is coherent with the aforementioned phenomenon
of transmission of consonants in groups over lin-
guistic generations. Since the value ofpt that we
obtain is quite high, it may be argued that such
transmissions are largely prevalent in nature.

Although Model II reproduces the structural
properties of PlaNet and PhoNet quite accurately,
as we shall see shortly, it fails to generate inven-
tories that closely match the real ones in terms
of feature entropy. However, at this point, recall
that Model II assumes that the consonant nodes are
unlabeled; therefore, the inventories that are pro-
duced as a result of the synthesis are composed of
consonants, which unlike the real inventories, are
not marked by their distinctive features. In order
to label them we perform the following,
The Labeling Scheme:
1. Sort the consonants of UPSID in the decreasing
order of their frequency of occurrence and call this
list of consonantsListC[1 · · · 541],
2. Sort theVC nodes of PlaNetsyn in decreasing
order of their degree and call this list of nodes
ListN [1 · · · 541],
3. ∀1≤i≤541 ListN [i] ←− ListC[i]

The Figure 3 indicates that the curve for the real
inventories (R) and those obtained from Model II
(M2) are significantly different from each other.
This difference arises due to the fact that in Model
II, the choice of a consonant from the set of neigh-
bors is solely degree-dependent, where the rela-
tionships between the features are not taken into
consideration. Therefore, in order to eliminate this
problem, we introduce the model using the feature-
based kernel in the next section.

3.3 Model III: Feature-based Kernel

In this model, we assume that each of the conso-
nant nodes are labeled, that is each of them are

Figure 3: Average feature entropy of the invento-
ries of a particular size (y-axis) versus the inven-
tory size (x-axis).

marked by a set of distinctive features. The attach-
ment kernel in this case has two components one
of which is preferential while the other favors the
choice of those consonants that are at a low fea-
ture distance (the number of feature positions they
differ at) from the already chosen ones. Let us de-
note the feature distance between two consonants
Ci andC

′
i by D(Ci, C

′
i). We define theaffinity,

A(Ci, C
′
i), betweenCi andC

′
i as

A(Ci, C
′
i) =

1
D(Ci, C

′
i)

(5)

Therefore, the lower the feature distance between
Ci andC

′
i the higher is the affinity between them.

At each time step a language node estab-
lishes the first connection with a consonant node
(say Ci) preferentially following the distribution
Pr(Ci) like the previous models. The rest of
the connections to any arbitrary consonant node
C
′
i (not yet connected to the language node) are

made following the distribution(1−w)Pr(C
′
i) +

wPraff (Ci, C
′
i), where

Praff (Ci, C
′
i) =

A(Ci, C
′
i)∑

∀C′i A(Ci, C
′
i)

(6)

and0 < w < 1.
Simulation Results: We perform 100 different

simulation runs of the above model for a particular
set of parameter values to obtain PlaNetsyn and av-
erage the results over all of them. We explore dif-
ferent parameter settings in the range as follows:
α ∈ [1,2] (in steps of 0.1),ε ∈ [0.1,1] (in steps
of 0.1) andw ∈ [0.1,0.5] (in steps of 0.05). The
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best result in terms of the structural properties of
PlaNet and PhoNet emerges forα = 1.6, ε = 0.3
andw = 0.2.

In this case, the mean error between the de-
gree distribution curves for PlaNetsyn and PlaNet
is 0.05 and that between of PhoNetsyn and PhoNet
is 0.02. Furthermore, the clustering coefficient of
PhoNetsyn in this case is 0.84, which is within
5.6% of that of PhoNet. The above results show
that the structural properties of the synthesized
networks in this case are quite similar to those
obtained through the triad model. Nevertheless,
the average feature entropy of the inventories pro-
duced (see curve M3 in Figure 3) are more close to
that of the real ones now (for quantitative compar-
ison see Table 2).

Therefore, it turns out that the groups of con-
sonants that largely co-occur in the languages
of a linguistic generation are actually driven by
the principle of feature economy (see (Clements,
2008; Mukherjee et al.2007a) for details).

However, note that even for Model III the nodes
that are chosen for attachment in the initial stages
of the synthesis process are arbitrary and conse-
quently, the labels of the nodes of PlaNetsyn do
not have a one-to-one correspondence with that of
PlaNet, which is the main reason behind the differ-
ence in the result between them. In order to over-
come this problem we can make use of a small set
of real inventories to bootstrap the model.

3.4 Model IV: Feature-based Kernel and
Bootstrapping

In order to create a bias towards the labeling
scheme prevalent in PlaNet, we use 30 (around
10% of the) real languages as a seed (chosen ran-
domly) for Model III; i.e., they are used by the
model for bootstrapping. The idea is summarized
below.
1. Select 30 real inventories at random and con-
struct a PlaNet from them. Call this network the
initial PlaNetsyn.
2. The rest of the language nodes are incrementally
added to this initial PlaNetsyn using Model III.

Simulation Results: The best fit now emerges
atα = 1.35, ε = 0.3 andw = 0.15. The mean er-
ror between the degree distribution of PlaNet and
PlaNetsyn is 0.05 and that between PhoNet and
PhoNetsyn is 0.02. The clustering coefficient of
PhoNetsyn is 0.83 in this case (within 6.7% of that
of PhoNet).

Results Model I Model II Model III Model IV

ME: DD of PlaNet & PlaNetsyn 0.01 0.04 0.05 0.05
ME: DD of PhoNet & PhoNetsyn 0.45 0.03 0.02 0.02

% Err: Clustering Coefficient 38.2 04.5 05.6 06.7
ME: Avg. FE of Real & Synth. Inv. 3.40 3.00 2.10 0.93

α 1.44 1.30 1.60 1.35
ε 0.5 0.3 0.3 0.3
pt – 0.8 – –
w – – 0.20 0.15

Table 2: Important results obtained from each of
the models. ME: Mean Error, DD: Degree Distri-
bution.

The inventories that are produced as a result of
the bootstrapping have an average feature entropy
closer to the real inventories (see curve M4 in Fig-
ure 3) than the earlier models. Hence, we find
that this improved labeling strategy brings about
a global betterment in our results unlike in the pre-
vious cases. The larger the number of languages
used for the purpose of bootstrapping the better are
the results mainly in terms of the match in the fea-
ture entropy curves.

4 Conclusion

We dedicated the preceding sections of this article
to analyze and synthesize the consonant invento-
ries of the world’s languages in the framework of a
complex network. Table 2 summarizes the results
obtained from the four models so that the reader
can easily compare them. Some of our important
observations are
• The distribution of occurrence and co-occurrence
of consonants across languages roughly follow a
power law,
• The co-occurrence network of consonants has a
large clustering coefficient,
• Groups of consonants that largely co-occur
across languages are driven by feature economy
(which can be expressed through feature entropy),
• Each of the above properties emerges due to dif-
ferent reasons, which are successively unfurled by
our models.

So far, we have tried to explain the physical sig-
nificance of our models in terms of the process
of language change. Language change is a col-
lective phenomenon that functions at the level of
a population of speakers (Steels, 2000). Never-
theless, it is also possible to explain the signif-
icance of the models at the level of an individ-
ual, primarily in terms of the process of language
acquisition, which largely governs the course of
language change. In the initial years of language
development every child passes through a stage
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calledbabblingduring which he/she learns to pro-
duce non-meaningful sequences of consonants and
vowels, some of which are not even used in the
language to which they are exposed (Jakobson,
1968; Locke, 1983). Clear preferences can be
observed for learning certain sounds such as plo-
sives and nasals, whereas fricatives and liquids are
avoided. In fact, this hierarchy of preference dur-
ing the babbling stage follows the cross-linguistic
frequency distribution of the consonants. This in-
nate frequency dependent preference towards cer-
tain phonemes might be because of phonetic rea-
sons (i.e., for articulatory/perceptual benefits). In
all our models, this innate preference gets cap-
tured through the process of preferential attach-
ment. However, at the same time, in the context of
learning a particular inventory the ease of learning
the individual consonants also plays an important
role. The lower the number of new feature distinc-
tions to be learnt, the higher the ease of learning
the consonant. Therefore, there are two orthogonal
preferences: (a) the occurrence frequency depen-
dent preference (that is innate), and (b) the feature-
dependent preference (that increases the ease of
learning), which are instrumental in the acquisi-
tion of the inventories. The feature-based kernel is
essentially a linear combination of these two mu-
tually orthogonal factors.
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