
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 545–552
Manchester, August 2008

Comparative Parser Performance Analysis across Grammar Frameworks
through Automatic Tree Conversion using Synchronous Grammars

Takuya Matsuzaki 1 Jun’ichi Tsujii 1,2,3

1. Department of Computer Science, University of Tokyo, Japan
2. School of Computer Science, University of Manchester, UK

3. National Center for Text Mining, UK
{matuzaki, tsujii}@is.s.u-tokyo.ac.jp

Abstract

This paper presents a methodology for the
comparative performance analysis of the
parsers developed for different grammar
frameworks. For such a comparison, we
need a common representation format of
the parsing results since the representation
of the parsing results depends on the gram-
mar frameworks; hence they are not di-
rectly comparable to each other. We first
convert the parsing result to a shallow CFG
analysis by using an automatic tree con-
verter based on synchronous grammars.
The use of such a shallow representation as
a common format has the advantage of re-
duced noise introduced by the conversion
in comparison with the noise produced by
the conversion to deeper representations.
We compared an HPSG parser with sev-
eral CFG parsers in our experiment and
found that meaningful differences among
the parsers’ performance can still be ob-
served by such a shallow representation.

1 Introduction

Recently, there have been advancement made in
the parsing techniques for large-scale lexicalized
grammars (Clark and Curran, 2004; Ninomiya et
al., 2005; Ninomiya et al., 2007), and it have
presumably been accelerated by the development
of the semi-automatic acquisition techniques of
large-scale lexicalized grammars from parsed cor-
pora (Hockenmaier and Steedman, 2007; Miyao

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

et al., 2005). In many of the studies on lexical-
ized grammar parsing, the accuracy of the pars-
ing results is evaluated in terms of the accuracy of
the semantic representations output by the parsers.
Since the formalisms for the semantic representa-
tion are different across the grammar frameworks,
it has been difficult to directly compare the perfor-
mance of the parsers developed for different gram-
mar frameworks.

Several researchers in the field of lexicalized
grammar parsing have recently started to seek a
common representation of parsing results across
different grammar frameworks (Clark and Curran,
2007; Miyao et al., 2007). For example, Clark
and Curran (2007) developed a set of mapping
rules from the output of a Combinatorial Catego-
rial grammar parser to the Grammatical Relations
(GR) (Carroll et al., 1998). They found that the
manual development of such mapping rules is not a
trivial task; their mapping rules covered only 85%
of the GRs in a GR-annotated corpus; i.e., 15% of
the GRs in the corpus could not be covered by the
mapping from the gold-standard CCG analyses of
those sentences.

We propose another method for the cross-
framework performance analysis of the parsers
wherein the output of parsers are first converted
to a CFG tree. Specifically, we use CFG trees of
the style used in the Penn Treebank (PTB) (Mar-
cus et al., 1994), in which the non-terminal labels
are simple phrasal categories (i.e., we do not use
function-tags, empty nodes, and co-indexing). We
hereafter name such CFG trees, ‘PTB-CFG trees.’
We use an automatic tree converter based on a
stochastic synchronous grammar in order to make
the PTB-CFG trees from the analyses based on a
lexicalized grammar.

In such a shallow representation, some infor-

545

mation given by the lexicalized parsers is lost.
For instance, long-distance dependency and con-
trol/raising distinction cannot be directly repre-
sented in the PTB-CFG tree. From the viewpoint
of NLP-application developer, the parser evalua-
tion based on such a shallow representation may
be not very informative because performance met-
rics based on the shallow representation, e.g., la-
beled bracketing accuracy, do not serve as a direct
indicator of the usefulness of the parser in their
applications. Nevertheless, we consider the parser
performance analysis based on the shallow repre-
sentation is still very useful from the viewpoint
of parser developers because the accuracy of the
structure of the CFG-trees is, though not an ideal
one, a good indicator of the parsers’ structural dis-
ambiguation performance.

In addition, there are at least two advantages in
using the CFG-trees as the common representation
for the evaluation. The first advantage is that the
conversion from the parser’s output to the CFG-
trees can be achieved with much higher accuracy
than to deeper representations like GRs; we ob-
tained a conversion accuracy of around 98% in our
experiments using an HPSG grammar. The accu-
racy of the conversion is critical in the quantita-
tive comparison of parsers that have similar per-
formances because the difference in the parsers’
ability would soon be masked by the errors intro-
duced in the conversion process. The second ad-
vantage is that we can compare the converted out-
put directly against the outputs of the well-studied
CFG-parsers derived from PTB.

In the experiments, we applied the conversion to
an HPSG parser, and compared the results against
several CFG parsers. We found that the parsing
accuracy of the HPSG parser is a few points lower
than state-of-the-art CFG parsers in terms of the
labeled bracketing accuracy. By further investi-
gating the parsing results, we have identified a
portion of the reason for the discrepancy, which
comes from the difference in the architecture of the
parsers.

2 Background

In this section, we first give a brief overview of
the semi-automatic acquisition framework of lex-
icalized grammars. Although our methodology is
also applicable to manually developed grammars,
in this paper, we concentrate on the evaluation of
the parsers developed for lexicalized grammars de-

rived from a CFG treebank. Next, we introduce
a specific instance of the treebank-derived lexical-
ized grammars used in our experiment: the Enju
English HPSG grammar. Using the Enju grammar
as a concrete example, we present the motivations
for our tree conversion method based on a stochas-
tic synchronous grammar. We also provide a sum-
mary of the basic concepts and terminologies of
the stochastic synchronous grammar.

2.1 Semi-automatic Acquisition of
Lexicalized Grammars

A lexicalized grammar generally has two compo-
nents: a small set of grammar rules and a large
set of lexical items. The grammar rules represent
generic grammatical constraints while the lexical
items represent word-specific characteristics. An
analysis of a sentence is created by iteratively com-
bining lexical items assigned to to the words in the
sentence by applying the grammar rules.

Several researchers have suggested to extract the
lexicon; i.e., the set of lexical items, from a tree-
bank such as PTB. Most of the lexicon acquisition
methods proceed as follows:

1. Fix the the grammar rules and the basic de-
sign of the lexical items.

2. Re-analyse the sentences in terms of the tar-
get grammar framework, exploiting the anal-
ysis given in the source treebank. A re-
analysis is generally represented as a deriva-
tion of the sentence; i.e., a history of rule ap-
plications.

3. Find a lexical item for each word in the sen-
tences so that it matches the re-analysis of the
sentence, and extract it.

We used the pairs of the original trees and the re-
analyses of the same sentence as a parallel tree-
bank, from which we extract a synchronous gram-
mar.

2.2 The Enju HPSG Grammar
We used the Enju English HPSG grammar (Miyao
et al., 2005) 1 in the experiments. The design of
the grammar basically follows the definition in the
text by Pollard and Sag (1994). A program called
Mayz is distributed with the grammar, which was

1Version 2.2., publicly available from http://www-
tsujii.is.s.u-tokyo.ac.jp/enju

546

used to make the HPSG treebank (i.e., a set of re-
analyses based on the HPSG grammar) from PTB;
the lexicon was extracted from the HPSG treebank.
We reproduced the HPSG treebank using the pro-
gram.

An analysis of a sentence in the HPSG for-
malism is represented by a phrasal tree, in which
each node is assigned a data structure called
typed feature structure (TFS). The TFS represents
syntactic/semantic structures of the corresponding
phrase. To convert an HPSG analysis to a corre-
sponding PTB-CFG trees, we first map the TFSs to
atomic symbols like PP, NP, NX, etc. (33 symbols
in total). We hereafter name such HPSG trees af-
ter the TFS-to-symbol mapping, ‘simplified HPSG
trees.’ Similarly to the PTB-CFG trees, the simpli-
fied HPSG trees do not include empty categories,
co-indexing, and function-tags. However, we can-
not attain a PTB-CFG tree by simply mapping
those atomic symbols to the corresponding PTB
non-terminal symbols, because the analyses by the
PTB-CFG and the HPSG yield different tree struc-
tures for the same sentence.

The conversion of the tree structure from HPSG
trees to PTB-CFG trees can be regarded as the
inverse-mapping of the transformation from PTB
trees to HPSG trees implemented in the Mayz pro-
gram. A most notable transformation is the bina-
rization of the PTB trees; all the branches in the
HPSG treebank are unary or binary. The binariza-
tion scheme used in Mayz is similar to the head-
centered binarization, which is often used for the
extraction of ‘Markovised’ PCFGs from the tree-
bank. Mayz identifies the head daughters by using
a modified version of Collins’ head finding rules
(Collins, 1999). It is also notable that the PTB-
to-HPSG transformation by Mayz often makes a
bracketing in the HPSG analyses that crosses with
the original bracketing in the PTB. Such a trans-
formation is used, for instance, to change the at-
tachment level of an article to a noun phrase with
a post-modifier (Figure 1).

The tree transformation by Mayz is achieved
by sequentially applying many tree transformation
rules to an input PTB tree. Although each of the
rules operates on a relatively small region of the
tree, the net result can be a very complex transfor-
mation. It is thus very difficult, if not impossible,
to invert the transformation programmatically.

NP

the NX

cat PP

on NP

the wall

NP

NP

the cat

PP

on NP

the wall

Figure 1: Different attachment level of the arti-
cles: HPSG analysis (left) and PTB-CFG analysis
(right).

�

� ���

�

� ���

�

� ���

�

� ���

�

���
	

�

	 ���

�

���
	

�

	 ���

��� ���

� ��� �

��� ���

� ��� �

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

Figure 2: An example of synchronous CFG

2.3 Stochastic Synchronous Tree-Substitution
Grammar for Tree Conversion

For the purpose of the inverted transformation
of simplified HPSG trees to PTB-CFG trees, we
use a statistical approach based on the stochastic
synchronous grammars. Stochastic synchronous
grammars are a family of probabilistic models that
generate a pair of trees by recursively applying
synchronous productions, starting with a pair of
initial symbols. See e.g., Eisner (2003) for a more
formal definition. Figure 2 shows an example of
synchronous CFG, which generates the pairs of
strings of the form (abmc, cbma). Each non-
terminal symbol on the yields of the synchronous
production is linked to a non-terminal symbol on
the other rule’s yield. In the figure, the links are
represented by subscripts. A linked pair of the non-
terminal symbols is simultaneously expanded by
another synchronous production.

The probability of a derivation D of a tree pair
〈S, T 〉 is defined as the product of the probability
of the pair of initial symbols (i.e., the root nodes of
S and T), and the probabilities of the synchronous
productions used in the derivation:

P (D) = P
(〈

R1, R2
〉) ∏

〈t1i ,t2i 〉∈D

P
(〈

t1i , t
2
i

〉)
,

where
〈
R1, R2

〉
is the pair of the symbols of the

root nodes of S and T , and
〈
t1i , t

2
i

〉
is a syn-

chronous production.

547

���

���������

����� �!�#"

���

�����

���

�����

�!�#"

���

���������

����� �!�#"

���

���������

����� �!�#"

���

�����

���

�����

�!�#"

���

�����

���

�����

�!�#"

���

$#%#&'$

���

$#%�&'$

���

$#%#&'$

���

$#%#&'$

���

$#%�&'$

���

$#%�&'$

���

(�) � (�����

�!�

(�) � (�����

���

(�) � (�����

���

(�) � (�����

�!�

(�) � (�����

�!�

(�) � (�����

*,+

-/./0 *�1

*�1�2 +�+�3

*�1

4�5�6�4

+�+

7�8 . 7 *9+�2

*�+

-/.#0

*�+

*�1�2

+�+�3

*�1

4/5�6�4

+�+

7�8 . 7 *9+!2

*,+

-/./0 *�1

*�1�2 +�+�3

*�1

4�5�6�4

*�1

4�5�6�4

+�+

7�8 . 7 *9+�2

+�+

7�8 . 7 *9+�2

*�+

-/.#0

*�+

*�1�2

+�+�3

*�1

4/5�6�4

*�1

4/5�6�4

+�+

7�8 . 7 *9+!2

+�+

7�8 . 7 *9+!2

Figure 3: An example of synchronous TSG: syn-
chronous productions (top) and a synchronous
derivation (bottom).

Stochastic synchronous grammars have been
used in several machine-translation systems to
serve as a model of tree-to-tree translation (e.g.,
(Eisner, 2003; Chiang, 2007)). Our objective
of automatic conversion between syntactic anal-
yses is similar to the tree-to-tree machine trans-
lation. An important difference is that, for our
purpose, the generated tree pair should have the
same yields since they are two analyses of the same
sentence. We also want the synchronous gram-
mar to be able to generate a pair of trees wherein
some constituents in one tree cross with the con-
stituents in the other tree; for example, such a tree-
transformation is necessary to change the article-
attachment levels.

We show below that, by means of a simple
algorithm, we can obtain a synchronous tree-
substitution grammar (STSG) that meets the above
two requirements. Synchronous productions in
STSGs may include a local tree of depth greater
than one. Figure 3 shows a tiny STSG that gener-
ates two different analyses for PP-modified NPs.
Furthermore, a part of the derivation of the two
analyses is presented; the dotted-lines indicate ap-
plications of the synchronous productions.

3 Tree Transformation Based on a
Stochastic Synchronous Grammar

3.1 Extraction of Synchronous Grammars
We created an STSG from a parallel treebank, in
which a sentence is assigned with a PTB-CFG tree
and a simplified HPSG tree. The synchronous pro-
ductions were obtained by splitting the tree pairs at
several pairs of non-terminal nodes. Specifically,
for a tree pair (T1, T2) for a sentence s,

1. we select a set of ‘common-span node pairs’
{(N1

i , N2
i)|N1

i ∈ T1, N
2
i ∈ T2, i = 1, . . . k},

which is a set of pairs of non-terminal nodes
that dominate the same span of s, and then

2. split (T1, T2) at each (N 1
i , N2

i) for i =
1, . . . , k.

For tree pairs that do not include unary produc-
tions, the above procedure uniquely determines
a collection of pairs of tree-fragments (t1i , t

2
i) by

splitting the tree pair at all the common-span node
pairs. For tree pairs including unary productions,
we chose the split points {(N 1

i , N2
i)} so that they

yield a pair of the longest unary chains as a tree-
fragment pair when both T1 and T2 include one
or more unary production dominating a common
span. When only T1 (or T2) includes one or more
unary productions on a common span, we selected
the upper-most node of the chain of the unary pro-
ductions in T1, and the corresponding node in T2

as the split points.
A node on the yields of the resulting tree-

fragments is either a terminal node or a node in
a common-span node pair that is selected as a split
node. We make the synchronous productions by
placing links between the common-span node pairs
on the yields of the tree-fragment pairs. We can
show that the grammar obtained as above only gen-
erates pairs of identical sentences by noting that
the terminal symbols on the yields of two local
trees in a synchronous production, if any, are al-
ways identical.

By regarding the division of tree-pairs into the
tree-fragment pairs as a synchronous derivation,
we get the maximum-likelihood estimates of the
probabilities of the synchronous productions:

P (〈t1, t2〉) =
Count(〈t1, t2〉)

Count(〈root of(t1), root of(t2)〉
,

where Count(·) represents the number of the syn-
chronous productions or the pair of their root sym-
bols observed in the derivations.

As is clear from the construction, certain types
of conversions can not be handled properly by the
STSG. For instance, the apparent conversion rule
between the right-branching analysis of the listing:
(rats, (cows, (tigers, ... (and pigs))...) and left-
branching analysis: (...((rats, cows,) tigers,) ... and
pigs) can not be represented in its full generality by
the STSG. We however expect that most of such
cases could be handled by combining the STSG-
based conversion with a programmatic conversion.

548

3.2 Tree Conversion Algorithm
We can define a conversion function f(S), which
takes a tree S and returns the converted tree T , as:

f(S) = argmax
T

P (T |S) = argmax
T

P (S, T),

where P (S, T) is the marginal probability of the
tree pair 〈S, T 〉. The marginal probability is the
sum of the probabilities of all the derivations that
generate the tree pair 〈S, T 〉. Since the syn-
chronous productions in a STSG may include a lo-
cal tree of any depth, there are exponentially many
derivations that generate the same tree pair. To
our knowledge, no polynomial time algorithm is
known for the above optimization problem.

We have instead searched the max-probability
synchronous derivation of the tree pair of the form
〈S, ·〉 and taken the opponent tree as the conversion
result of the input tree S:

f(S) = argmax
T

argmax
D:deriv.of〈S,T 〉

P (D).

We used Eisner’s decoding algorithm (Eisner,
2003), which is similar to the Viterbi algorithm for
HMMs, to obtain the max-probability derivation.

3.3 A Back-off Mechanism for the
Conversion

In our preliminary experiment, a certain number of
source trees were not covered by the synchronous
grammar. For the trees that are not covered by the
synchronous grammar, we used a set of “back-off
rules,” which are synchronous productions consist-
ing of two 1-level local trees:

{〈X → α, Y → β〉 | X ∈ N1, α ∈ (N1 ∪ Σ)∗,
Y ∈ N2, β ∈ (N2 ∪ Σ)∗},

where N1 and N2 are the sets of non-terminal sym-
bols used in the two treebanks, and Σ is the set of
terminal symbols. We assign small scores to the
back-off rules as:

score〈X→α,Y→β〉 = εP (X→α)
∏

P (Bi|Ai),

where ε is a small constant, P (X → α) is the
maximum-likelihood estimate of the PCFG rule
probability of X → α in the source treebank, and∏

P (Bi|Ai) is the product of ‘re-labeling proba-
bilities’ for the pairs of linked non-terminal sym-
bols in α and β, defined as:

P (B|A) =
Count(〈A,B〉)∑
B′ Count(〈A,B ′〉)

,

where Count(·) represents the number of common-
span node pairs used as the split points.

When a source tree is not covered by the origi-
nal synchronous productions, we add the back-off
rules to the synchronous productions, and search
for the highest-scored derivation. The score of a
derivation including the back-off rules is defined as
the product of the probabilities of the original syn-
chronous productions, and the scores of the back-
off rules. We set the value of ε to be sufficiently
small so that the highest-scored derivation includes
a minimum number of back-off rules.

4 Experiments
4.1 Experiment Setting
We compared the performance of an HPSG parser
with several CFG parsers. The HPSG parser is
the Enju parser (Ninomiya et al., 2007), which
has been developed for parsing with the Enju
HPSG grammar. A disambiguation module based
on a discriminative maximum-entropy model is
used in the Enju parser. We compared the Enju
parser with four CFG parsers: Stanford’s lexical-
ized parser (Klein and Manning, 2003), Collins’
parser (Collins, 1999), Charniak’s parser (Char-
niak, 2000), and Charniak and Johnson’s rerank-
ing parser (Charniak and Johnson, 2005). The first
three parsers are based on treebank PCFGs de-
rived from PTB. The last parser is a combination
of Charniak’s parser and a reranking module based
on a maximum-entropy model. The Enju parser
and Collins’ parser require POS-tagged sentences
as the input. A POS tagger distributed with the
Enju parser was used for the POS-tagging.

We used a standard split of PTB for the train-
ing/development/test data: sections 02-21 for the
extraction of the synchronous grammar, section 22
for the development, and section 23 for the evalu-
ation of the parsers. Some of the trees in PTB are
missing in the HPSG treebank because the Enju
grammar does not cover all sentences in PTB. Sec-
tion 23 of the HPSG treebank, which was used
as the gold-standard of the HPSG analyses in the
experiments, thus contains fewer sentences (2,278
sentences) than the original PTB section 23 (2,416
sentences). We use a notation, “section 23∗,” to
indicate the portion of PTB section 23 covered by
the Enju grammar.

Each parser’s output was evaluated in the fol-
lowing three representations:

• PTB-CFG trees: We converted the Enju

549

parser’s output to PTB-CFG trees by using a
synchronous grammar. For the CFG parsers,
we used their output as is.

• Simplified HPSG trees: We converted the
CFG parsers’ output to simplified HPSG trees
by using another synchronous grammar. The
Enju parser’s output was mapped to simpli-
fied HPSG trees. This was achieved by sim-
ply mapping the TFSs assigned to the non-
terminal nodes to atomic symbols.

• Unlabeled word-word dependency: We ex-
tracted head-modifier dependencies from the
PTB-CFG trees by using Collins’ head find-
ing rules.

The evaluation in the unlabeled word-word depen-
dency is motivated by the expectation that, by con-
verting PTB-CFG trees to an even simpler repre-
sentation, we can reduce the effect of the noise
introduced in the conversion of the Enju parser’s
output to the PTB-CFG trees.

4.2 Extraction of Synchronous grammars
The stochastic synchronous grammars used for the
tree-to-tree conversion were extracted from a par-
allel treebank consisting of the PTB-CFG trees in
sections 02-21 of PTB and the simplified HPSG
trees mapped from the HPSG treebank created by
the Mayz. We treated the POS tags, which are
common to the PTB-CFG grammar and the Enju
HPSG grammar, as the terminal symbols.

Although we can use a single synchronous
grammar for the conversion of both directions
(i.e., from PTB-CFG trees to simplified HPSG
trees, and the opposite), we used two different
synchronous grammars to achieve better conver-
sion accuracies. The two synchronous grammars
were created by applying different pre-processing
to the parallel treebank. Specifically, for the
HPSG→PTB-CFG direction, 1) the PTB-CFG
trees in the parallel treebank were binarized in such
a way that maximized the number of common-
span node pairs;2 2) commas in the PTB-CFG trees
were raised as high as possible, approximating the
change of the position of commas by the Mayz
program; 3) the POS tags for ‘not’ are changed
from ‘RB’ to ‘RB-not,’ because in PTB, ‘not’
is treated differently from other adverbs; 4) base

2The non-terminal nodes artificially introduced in the bi-
narization process were labeled as ‘A∗’, where ‘A’ is the label
of the nearest ‘non-artificial’ ancestor node.

NPs in PTB-CFG trees are marked as ‘NP-B.’ The
PTB-CFG trees converted from the Enju parser’s
output were post-processed so that the effect of the
pre-processing was removed; i.e., artificially cre-
ated non-terminal nodes like ‘A∗’ were removed,
‘RB-not’ was changed to ‘RB’, and ‘NP-B’ was
changed to ‘NP.’3

For the PTB-CFG→HPSG direction, 1) PTB-
CFG trees in the parallel treebank are head-
centered-binarized by using Collins’ head find-
ing rules; 2) the same pre-processing as for the
comma-raising, ‘not’ adverbs, and base NPs was
applied to the PTB-CFG trees. The same pre-
processing was applied to the CFG parsers’ output
before the conversion to simplified HPSG trees.

4.3 Accuracy of the Tree Conversion
To evaluate the accuracy of the tree conver-
sion, we converted the trees in section 23∗ of
the HPSG/PTB treebank into the other format
(target format) and compared the conversion re-
sults against the corresponding trees in the gold-
standard treebank of the target format. Table 1
presents the result of the evaluation. With the ex-
ception of the last column, the columns list the
PARSEVAL metrics of the converted trees. The
last column headed ‘back-off%’ shows the per-
centages of the trees for which the back-off mech-
anism described in Section 3 were used. The ac-
curacy of the word-word dependencies extracted
from the PTB-CFG trees converted from the HPSG
treebank was 98.76%.4

On average, a tree in section 23∗ of the HPSG
treebank includes 0.89 brackets that cross with the
brackets in the corresponding tree in the PTB-CFG
treebank, and a tree in the PTB-CFG treebank in-
cludes 0.78 brackets that cross with the brackets in
the corresponding tree in the HPSG treebank. The
figures in the column headed CBs (average number
of crossing brackets) show that most of such cross-
ing brackets are ‘corrected’ by the conversion.

4.4 Comparative Parser Evaluation using
Common Representations

We measured the labeled bracketing accuracy of
the parsers’ output in the PTB-CFG tree represen-
tation (on section 23), and in the simplified HPSG

3The positions of commas were left unchanged, because
we ignored commas in the evaluation, just as in the standard
way of evaluating CFG parsers based on the PARSEVAL met-
rics.

4Dependency relations involving a punctuation mark as
the modifier were not counted in the evaluation.

550

Conversion direction LP LR F1 CBs 0 CBs ≤ 2 CBs back-off%
HPSG→ PTB-CFG 98.41 98.08 98.24 0.01 99.34 100.00 2.59
PTB-CFG→ HPSG 97.54 97.45 97.49 0.13 93.99 98.33 10.80

Table 1: Accuracy of the tree conversion

Parser LP LR F1

Charniak and Johnson 91.79 90.88 91.33
Charniak 89.49 88.78 89.13
Collins (model 3) 88.62 88.28 88.45
Collins (model 2) 88.48 88.15 88.31
Collins (model 1) 87.94 87.51 87.72
Stanford lexicalized 86.36 86.47 86.41
Enju + tree conv. 87.18 86.47 86.82

Table 2: PTB-CFG tree evaluation

Parser (+ tree conv.) LP LR F1

Charniak and Johnson 91.44 91.31 91.37
Charniak 90.07 89.97 90.02
Collins (model 3) 88.79 88.38 88.58
Collins (model 2) 88.74 88.33 88.53
Collins (model 1) 88.62 88.48 88.54
Stanford lexicalized 88.04 88.12 88.08
Enju 90.79 90.30 90.54

Table 3: Simplified HPSG tree Evaluation

tree representation (on section 23∗). The results
are shown in Table 2 and Table 3. The accu-
racy of word-word dependencies extracted from
the PTB-CFG representation is shown in Table 4.
As shown in the previous section, approximately
2% of the brackets are wrong and approximately
1% of the word-word dependencies are wrong af-
ter the conversion in both direction even if a parser
gives 100% correct output. Taking this into con-
sideration, we might conclude, utilizing the results
shown in the three tables, that the performance
of the Enju parser is roughly the same level as
Collins’ parser and Stanford’s lexicalized parser.
Another notable fact depicted in the tables is that
Charniak and Johnson’s reranking parser outper-
forms the Enju parser even in the simplified HPSG
tree representation.

4.5 Comparative Error Analysis
To closely examine the difference in the parsers’
performances, we conducted a comparative error
analysis using the word-word dependency repre-
sentation of the parsing results. Specifically, we
tested the difference in the ability of resolving spe-
cific types of syntactic ambiguities between two
parsers by using McNemar’s test. To make the
samples for the McNemar’s test, we identified a
subset of tokens of type tm in the test set that have

Parser accuracy
Charniak and Johnson 93.66
Charniak 92.50
Collins (model 3) 91.15
Collins (model 2) 91.12
Collins (model 1) 90.66
Stanford lexicalized 90.91
Enju + tree conv. 90.77

Table 4: Unlabeled dependency evaluation

Modifier Head Enju Charinak p-value
tm tc tw X (Z) Y (W)
VB ROOT NN 20 (20) 1 (1) 8.57e-5
NN VB NN 69 (94) 30 (55) 1.34e-4
NN VB ROOT 14 (14) 0 (0) 5.12e-4
CD CD IN 0 (0) 11 (11) 2.57e-3
CD NN CD 12 (12) 1 (2) 5.55e-3
VB VB NN 17 (26) 4 (9) 8.83e-3
DT NN VB 10 (15) 1 (4) 1.59e-2
DT NN JJ 7 (10) 0 (3) 2.33e-2
VB VB MD 7 (9) 0 (1) 2.33e-2
TO VB NN 24 (31) 10 (19) 2.58e-2

Table 5: Error types with smallest p-values

a true head of type tc and another word of type
tw that is confusable as the head. For example, a
subset of tokens where (tm, tc, tw) = (preposition,
noun, verb) can be used to test the difference in
the parsers’ ability to resolve PP-attachment am-
biguities, by extracting the pairs of the predicted
head words for the prepositions from two parsers’
output, and using them as the sample set for the
McNemar’s test. When comparing two parsers A
and B, we approximated such a subset of tokens by
collecting the tokens of type tm, which have true
head of type tc, and for which either A or B pre-
dicted a wrong head of type tw.

We show the results of the comparison between
the Enju parser and the Charinak’s parser in Ta-
ble 5. We used section 22 of PTB for this ex-
periment. The table lists the type of the ambigu-
ities (tm, tc, tw) for which the accuracies by the
two parsers differ with the smallest p-values. Note
that the POS types tm, tc, and tw are determined
from the gold-standard POS tags, not the POS tags
given by parsers or the POS tagger. In the table, X
is the number of the tokens of type (tm, tc, tw) for
which only the Enju parser outputs wrong heads;
Z is the total number of wrong predictions of that
type made by the Enju parser; Y and W are de-

551

fined similarly for the Charinak’s parser.
The results indicate, for example, that there is

a significant difference between the two parsers
in the ability to identify the root of a sentence
(the first and third row). Investigation of the Enju
parser’s output including the root identification er-
rors revealed that almost all of the errors of this
type were caused by POS-tagging error; for ex-
ample, when the matrix verb of a sentence, like
‘costs,’ is mistakenly tagged as a noun, the matrix
verb is not identified as the root (as in the case with
the first row), and the subject is often mistakenly
identified as the root (as in the case with the third
row). This weak-point of the Enju parser is a con-
sequence of the architecture of the parser, wherein
the POS-tagging phase is completely separated
from the parsing phase. Although this weak-point
has already been pointed out (Yoshida et al., 2007),
we expect that we can identify other reasons for the
difference in the parsers’ performances by investi-
gating the other types of errors with small p-values
as well.

5 Conclusion
We have proposed the use of shallow CFG analy-
ses as the common representation for the compar-
ative performance analysis of parsers based on dif-
ferent grammar frameworks. We have presented a
method to convert the parsers’ output to the shal-
low CFG analyses that is based on synchronous
grammars. The experimental results showed that
our method gave a conversion accuracy of around
98% in terms of the labeled bracketing accuracy,
which was sufficiently high for extracting a mean-
ingful conclusion from a quantitative comparison
of the parsers’ performance. Furthermore, we con-
ducted a comparative analysis of the parsing re-
sults represented in word-word dependencies ex-
tracted from the shallow CFG analyses. As a re-
sult, we could identified a weak-point of the HPSG
parser that comes from the parser’s architecture.

Acknowledgements
This work was partially supported by Grant-in-Aid
for Specially Promoted Research (MEXT, Japan).

References
Carroll, J., T. Briscoe, and A. Sanlippo. 1998. Parser

evaluation : A survey and a new proposal. In In Pro-
ceedings First Conference on Linguistic Resources,
pages 447–455.

Charniak, E. and M. Johnson. 2005. Coarse-to-fine n-
best parsing and maxent discriminative reranking. In
Proc. ACL, pages 173–180.

Charniak, E. 2000. A maximum-entropy-inspired
parser. In Proc. NAACL, pages 132–139.

Chiang, D. 2007. Hierarchical phrase-based transla-
tion. Comput. Linguist., 33(2):201–228.

Clark, S. and J. R. Curran. 2004. The importance of su-
pertagging for wide-coverage ccg parsing. In Proc.
COLING, pages 282–288.

Clark, S. and J. Curran. 2007. Formalism-independent
parser evaluation with ccg and depbank. In Proc.
ACL, pages 248–255.

Collins, M. 1999. Head-driven statistical models for
natural language parsing. Ph.D. thesis, University
of Pennsylvania.

Eisner, J. 2003. Learning non-isomorphic tree map-
pings for machine translation. In Proc. ACL, Com-
panion Volume, pages 205–208.

Hockenmaier, J. and M. Steedman. 2007. Ccgbank:
A corpus of ccg derivations and dependency struc-
tures extracted from the penn treebank. Computa-
tional Linguistics, 33(3):355–396.

Klein, D. and C. D. Manning. 2003. A parsing: fast
exact viterbi parse selection. In Proc. NAACL, pages
40–47.

Marcus, M. P., B. Santorini, and M. A. Marcinkiewicz.
1994. Building a large annotated corpus of en-
glish: The Penn Treebank. Computational Linguis-
tics, 19(2):313–330.

Miyao, Y., T. Ninomiya, and J. Tsujii. 2005.
Corpus-oriented grammar development for acquir-
ing a Head-driven Phrase Structure Grammar from
the Penn Treebank. In Natural Language Processing
- IJCNLP 2004, volume 3248 of LNAI, pages 684–
693. Springer-Verlag.

Miyao, Y., K. Sagae, and J. Tsujii. 2007. Towards
framework-independent evaluation of deep linguistic
parsers. In Proc. GEAF, pages 238–258.

Ninomiya, T., Y. Tsuruoka, Y. Miyao, and J. Tsujii.
2005. Efficacy of beam thresholding, unification fil-
tering and hybrid parsing in probabilistic hpsg pars-
ing. In Proc. IWPT, pages 103–114.

Ninomiya, T., T. Matsuzaki, Y. Miyao, and J. Tsujii.
2007. A log-linear model with an n-gram refer-
ence distribution for accurate hpsg parsing. In Proc.
IWPT, pages 60–68.

Pollard, C. and I. A. Sag. 1994. Head-Driven Phrase
Structure Grammar. University of Chicago Press.

Yoshida, K., Y. Tsuruoka, Y. Miyao, and J. Tsujii.
2007. Ambiguous part-of-speech tagging for im-
proving accuracy and domain portability of syntactic
parsers. In Proc. IJCAI, pages 1783–1788.

552

