
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 465–472
Manchester, August 2008

Stopping Criteria for Active Learning of Named Entity Recognition

Florian Laws
Institute for NLP

Universität Stuttgart
fl@ifnlp.org

Hinrich Schütze
Institute for NLP

Universität Stuttgart
hs999@ifnlp.org

Abstract

Active learning is a proven method for re-
ducing the cost of creating the training sets
that are necessary for statistical NLP. How-
ever, there has been little work on stopping
criteria for active learning. An operational
stopping criterion is necessary to be able
to use active learning in NLP applications.
We investigate three different stopping cri-
teria for active learning of named entity
recognition (NER) and show that one of
them, gradient-based stopping, (i) reliably
stops active learning, (ii) achieves near-
optimal NER performance, (iii) and needs
only about 20% as much training data as
exhaustive labeling.

1 Introduction

Supervised statistical learning methods are impor-
tant and widely successful tools for natural lan-
guage processing. These methods learn by esti-
mating a statistical model on labeled training data.
Often, these models require a large amount of
training data that needs to be hand-annotated by
human experts. This is time-consuming and ex-
pensive. Active learning (AL) reduces this annota-
tion effort by selecting unlabeled examples that are
maximally informative for the statistical learning
method and handing them to a human annotator
for labeling. The statistical model is then updated
with the newly gathered information. In this pa-
per, we adopt the uncertainty sampling approach
to AL (Lewis and Gale, 1994). Uncertainty sam-
pling selects those examples in the pool as most in-

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

formative for which the statistical classifier is least
certain in its classification decision.

While AL is an active area of research in NLP,
the issue of determining when to stop the AL
process has only recently come into focus (Zhu
and Hovy, 2007; Vlachos, 2008). This is some-
what surprising because the main purpose of ac-
tive learning is to save on annotation effort; decid-
ing on the point when enough data is annotated is
crucial to fulfilling this goal.

We investigate three different stopping criteria
in this paper. First, a user of a classification system
may want to set a minimum absolute performance
for the system to be deployed. The standard way of
assessing classifier performance uses a held-out la-
beled test set. However, labeling a test set of suffi-
cient size is contrary to the goal of minimizing an-
notation effort and impractical in most real-world
settings. We will show that the classifier can esti-
mate its own performance using only an unlabeled
reference set and propose to stop active learning
if estimated performance reaches the threshold set
by the user. The estimation is somewhat inaccu-
rate, however, and we investigate possible reasons
for estimation error.

An alternative criterion is based on maximum
possible performance. We will show that our per-
formance estimation method supports stopping AL
at a point where performance is almost optimal.

The third and last criterion is convergence. The
basic idea here is to stop active learning when more
examples from the pool do not contribute more
information, indicated either by the fact that the
classifier has reached maximum performance or by
the fact that the “uncertainty” of the classifier can-
not be decreased further. We determine the point
where the pool has become uninformative by com-
puting the gradient of either performance or uncer-

465

tainty.
This paper is organized as follows. Section 2

shows that three uncertainty measures achieve
near-optimal performance for NER at a fraction
of the labeling cost of exhaustive labeling of the
training set. In Section 3, we introduce a new
method for estimating the performance of an ac-
tively learned classifier in support of stopping ac-
tive learning when a certain level of performance
has been reached. Section 4 shows that the stop-
ping criterion of reaching peak confidence is not
applicable to NER with multiclass logistic regres-
sion. Section 5 presents stopping criteria based
on convergence. Sections 6 and 7 discuss related
work and present our conclusions.

2 Selection Functions

For measuring the uncertainty of a classification
decision in uncertainty sampling there exist diverse
measures appropriate for different basic classifiers
(e.g. margin-based measures for SVMs, and mea-
sures based on class probability for classification).
Choosing such an uncertainty measure is relatively
straightforward for a binary classification problem,
but for multiclass problems we need different mea-
sures, and it is not obvious which will perform
best.

Following Schein (2005), but in the context of
NER, we compare several measures of uncertainty
for multiclass logistic regression. For a given mea-
sure Mi,X , we select in each iteration the unlabeled
example(s) in the pool that have the smallest value
for Mi,X (corresponding to the maximum uncer-
tainty).

1-Entropy.

Mi,1-Entropy = 1 − H(p̂(.|xi))

= 1 +
∑

j

p̂(cj |xi) log p̂(cj |xi)

where p̂(cj |xi) is the current estimate of the proba-
bility of class cj given the example xi.1 1-Entropy
favors examples where the classifier assigns simi-
lar probabilities to all classes.

Margin. If c and c′ are the two most likely
classes, the margin is defined as follows:

Mi,Margin = |p̂(c|xi) − p̂(c′|xi)|
Margin picks examples where the distinction be-
tween two likely classes is hard.

1We use 1-Entropy instead of entropy, so all three mea-
sures will have lower values for less certain instances.

MinMax.

Mi,MinMax = max
j

(p̂(cj |xi))

The rationale here is that a low probability of the
selected class indicates uncertainty. We propose
MinMax as a measure that is more directly based
on the classifier’s decision for a particular exam-
ple. The other two measures also take into account
the classifier’s assessment of classes that were not
chosen for the unlabeled example.

2.1 Experiments
We used the newswire section of the ACE 2005
Multilingual Training Corpus (128 documents,
66,015 tokens) for our experiments. A subset of
the documents was randomly sampled into an eval-
uation set that consists of 6301 tokens. We used
30.000 of the remaining tokens as the uncertainty
sampling pool. The rest was left aside for future
experiments. We use the BBR package (Genkin et
al., 2007) for binary logistic regression as our base
classifier, with default values for all of BBR’s pa-
rameters. As our main focus is on AL, we only
use basic features like capitalization, puctuation as
well as word identity, prefixes and suffixes, each
for the classified word itself and for left and right
contexts.

We train separate classifiers for each named en-
tity (NE) class and another one for the class “not an
NE” (0). For each token we normalize the output
probability of the individual classifiers so they sum
to 1 and then select for each token the class with
the highest probability. Evaluation is performed by
comparing individual tokens to the gold standard.2

Using all labeled training data as our fully super-
vised baseline results in a performance of 78.7%
F1 (henceforth: F) and 96.6% accuracy. This is
comparable to the accuracy of 96.29% reported
by (Daume III, 2007) on the newswire domain.
Daumé’s work is the only study known to us that
uses the ACE dataset, but not the proprietary ACE
value score. In the rest of this paper, we report F
scores, because we believe that F is a more infor-
mative measure for NER than accuracy.

We use AL based on uncertainty sampling. We
start with a seed set of ten consecutive tokens
randomly selected from the training pool and la-
bel it. In each round of AL we select the ten
tokens with the smallest value of Mi,X (where

2Chunk-based NER results are not directly comparable
with this token-based evaluation.

466

Selection Baseline Peak perf.
1-Entropy 78.7 2139 (7.1%) 80.8 3460 (11.5%)
MinMax 78.7 2108 (7.0%) 80.8 3650 (12.1%)
Margin 78.7 2019 (6.7%) 81.2 3694 (12.3%)

Table 1: Percentage of data needed by AL to reach
baseline or peak performance.

X ∈ {1-Entropy, Margin, MinMax}) from the re-
maining pool, including tokens with the label 0.
We then label these tokens and add them to the la-
beled training set. The classifiers are retrained with
the new training set and the AL loop repeats. We
performed 20 runs of the experiments, each with
the same sampling pool, but a different seed set,
randomly selected as described above.

Table 1 shows that AL is quite successful for
NER. Only 7% of the training data is needed to
achieve the same performance as the supervised
baseline.

Furthermore we find that after the baseline per-
formance is reached the increase in performance
quickly levels off to a point where using more
training data does not yield performance improve-
ments anymore. In fact, our experiments show
that there is a peak in performance reached at
about 12% of the training data and performance
decreases again after this point (see Figure 1).
The peak is more prominent if the pool is large.
On a pool of 30,000 tokens, peak performance is
about 2.5% F -Score better than the baseline; on a
6000 token pool, the difference is only about 1.7%.
Therefore, once the peak is reached, the AL pro-
cess should stop, even if the annotation budget is
not yet used up.

0 2000 4000 6000 8000 10000

0.
60

0.
65

0.
70

0.
75

0.
80

Training examples

F
−

S
co

re

Margin
1−Entropy
MinMax

Figure 1: Performance as a function of number of
labeled training examples used

Comparing the different selection functions, we
found little difference between their performance.
Margin performs significantly better (Student’s t-
test, α = 0.05), but the difference is small (< 1%
F -Score). If we compare two AL processes (say
Margin and 1-Entropy) that were started with the
same pool and seed set and stop both processes
when they each reach their respective peak per-
formances, Margin has a better peak performance
of 0.3% F -Score on average (significant at α =
0.05).

The differences between 1-Entropy and MinMax
are not statistically significant, except for a short
start-up phase (see Figure 1).

3 Performance Estimation

In practical applications, classifiers can only be re-
liably deployed when they attain a predefined min-
imum absolute performance level. Thus, we would
like to determine if this level has been reached and
then stop the annotation process. However, this is
not a simple task, because in these settings there
is no labeled test set available to evaluate perfor-
mance. Creating this test set would mean a sub-
stantial annotation effort, which is what we want
to avoid by using AL in the first place. Therefore,
we will try to estimate the classifier’s performance
on unlabeled data.

Following Lewis (1995), we estimate the F -
Score based on the current estimates of the class
probabilities. Based on the F measure’s definition
as the harmonic mean of precision (P) and recall
(R), we can write F as a function of true positives
(TP), false positives (TP) and false negatives (FN):

F =
2 · P · R
P + R

=
2TP

2TP + FP + FN

Similar to Lewis, we estimate T̂P, F̂P, F̂N, but we
need to extend their work from binary classifica-
tion to 1-vs-all multiclass classification:

T̂P =
n∑
i

E∑
j

p̂(cj |xi)di,j (1)

F̂P =
n∑
i

E∑
j

(1 − p̂(cj |xi))di,j (2)

F̂N =
n∑
i

E∑
j

p̂(cj |xi)(1 − di,j) (3)

where n is the number of examples, E is the num-
ber of named entity classes, excluding the “not

467

an NE” class. p̂(cj |xi) is the estimated probabil-
ity that example xi has class cj . The flag di,j

indicates “is winning class”: di,j = 1 if j =
argmaxj p̂(cj |xi) and di,j = 0 else.

Like standard NER evaluation schemes, e.g.
(Tjong Kim Sang and De Meulder, 2003), we con-
sider only those decisions to be TPs where (i) the
reference class matches the selected class and (ii)
this class is not ”not an NE”. When estimating
TP, we assume that the probability of a match
equals the probability of the selected class (which
is p̂(cj |xi) · di,j). The probability of making an
FP error is just the remaining probability mass.
For FN, we can calculate the estimated probabil-
ity by summing up the class probabilities of the
non-selected named entity classes.

3.1 Evaluation of Performance Estimation

To evaluate the performance estimation method,
we ran it on an unlabeled reference set. The ref-
erence set is a set of unlabeled data distinct from
the sampling pool. In our experiments, we use the
tokens in the test set from 2.1, but with the labels
stripped off.

We compare the true performance on the test set
(reported as “True” in Table 2) with the estimate
(reported as “Lewis”). The ∆ columns report the
difference of the named method to “True”. We also
tested leave-one-out (LOO) estimation of F , P and
R using the data of the selected training set.

True Lewis ∆ Lewis LOO ∆ LOO
F 79 92 +13 85 +6
P 81 92 +11 86 +5
R 77 92 +15 84 +7

Table 2: Performance estimation. LOO and Lewis
overestimate true F by 6% and 13%, respectively.

We find that both methods overestimate preci-
sion and recall by a large margin. We also note
that the peak in performance at about 4200 train-
ing examples that we found when evaluating on
held-out data (see Figure 1) does not occur when
evaluating performance using the Lewis method.
Instead, the estimate of F grows monotonically.
This means that we cannot use a peak of estimated
F as a criterion for stopping. When setting an ab-
solute threshold of F = 80% for stopping, active
learning stops at about 1000 iterations, yielding a
true performance of only F = 73% (selection by
Margin, 20 trials). This indicates that we cannot
directly use Lewis estimates for stopping.

3.2 Error Analysis

The reason for the overestimation is that the logis-
tic regression classifier is too confident in its own
decision. For positive decisions, the class proba-
bility very often is close to 1, for negative deci-
sions, it is close to 0. As a result, the estimator
gives very little score for FN (Equation 3) or FP
(Equation 2) in most instances, which leads to the
high overestimation of performance.

To verify this, we grouped the empirical prob-
ability of a selected class being the correct class
in bins according to the estimated probability of
the logistic classifier. Table 3 shows this empiri-
cal probability given a class and its estimate. The
table is split into two halves, such that the empir-
ical probabilities for positive decisions (the class
got chosen as the best class) and negative deci-
sions are shown separately. The top value in each
cell (”emp”) shows the empirical probability as op-
posed to the estimated probability, which is the
value below (”est”). The product of the differ-
ence of these two probabilities and the number of
instances that were counted into this bin (”cnt”),
gives an estimate of how much the probability es-
timates in the bin contribute to the error (absolute
value) of the performance estimation.

The table shows that class probabilities are in
fact estimated too optimistically. For many of the
entries in the positives table, the estimated prob-
abilities are greater than the empirical probabili-
ties. In the negatives table, the estimated proba-
bilities are smaller. In both cases, the estimates
are closer to the respective extreme values 1 or 0,
which means they are overconfident. Note that for
positive decisions, the estimation error of the val-
ues in a single bin contributes to the overall estima-
tion error in two ways: overestimating TPs and un-
derestimating FPs. For example, the estimation er-
ror for the cell in bold is 29.2, contributing −29.2
for FP (underestimation) and +29.2 for TP (over-
estimation). Also note that due to the high num-
ber of non-NE tokens in the text, there is a large
number of negative decisions for each entity-class
classifier; thus, small differences in the probabili-
ties make large contributions to error.

We ran a separate experiment in which we
trained a classifier on the entire labeled pool. The
Lewis estimator overestimated F by 12% in this
case. This indicates that the estimation error does
not primarily come from the biased selection of
training examples inherent in the selective sam-

468

negative decisions positive decisions
0-.2 .2-.4 .4-.6 .2-.4 .4-.6 .6-.8 .8-1

O emp 0.0643 0.269 0.25 0.0 0.25 0.233 0.991
est 0.00825 0.295 0.438 0.394 0.537 0.714 0.999
cnt 607 26 12 1 16 30 5609
err 34 -0.67 -2.25 0.394(tn) 4.6 (tn) 14.4 (tn) 45.4 (tn)

GPE emp 0.00384 0.391 0.5 0.0 0.333 0.571 0.875
est 0.000812 0.296 0.435 0.357 0.535 0.687 0.989
cnt 5985 23 6 1 9 21 256
err 18.1 (fn) 2.19 (fn) 0.388 (fn) 0.357 (fp) 1.82 (fp) 2.42 (fp) 29.2 (fp)

ORG emp 0.00853 0.393 0.667 0.5 0.615 0.828
est 0.000847 0.283 0.441 0.545 0.71 0.968
cnt 6093 28 12 14 26 128
err 46.8 (fn) 3.06 (fn) 2.7 (fn) 0.631 (fp) 2.46 (fp) 17.9 (fp)

PER emp 0.0041 0.455 0.5 0.273 0.5 0.93
est 0.000748 0.283 0.48 0.563 0.718 0.98
cnt 6102 22 6 11 18 142
err 20.4 (fn) 3.78 (fn) 0.121 (fn) 3.2 (fp) 3.93 (fp) 7.19 (fp)

Table 3: Empirical probabilities and contribution to estimation errors. (We omit small classes and empty
columns.) Example (cell in bold): 256 tokens were estimated to be a GPE by the classifier with estimated
probabilities between 0.8 and 1.0. The average estimate was 0.989. In reality, only 224 of these tokens
(87.5%) were GPEs. The contribution of this cell to the overall FP count is (0.989−0.875) ·256 ≈ 29.2.

pling method, but from bias inherent in either the
whole pool of training data or the base classifier.

3.3 Towards a Better Estimate

Over-optimistic estimates for precision and recall
stem from the classifier’s over-optimistic probabil-
ity estimates. We try to correct the estimates by
replacing the predicted class probabilities with the
appropriate value in an empirical probability table
like the one shown in Table 3. However, since
in practice we do not have labels for the test set,
we cannot compute the empirical probabilities di-
rectly. Instead, we use leave-one-out estimation to
bootstrap the adjustment table from the selected
training data. The adjusted estimation shows a
marked increase in the estimates for FP and FN,
leading to a quite accurate estimate for precision
(+5 absolute error), but the now pessimistic esti-
mate for recall (−16) leads to underestimation of
F -Score overall (−8) (see Table 4).

True Lewis adj. Lewis ∆ adj. Lewis
F 78 91 70 -8
P 81 93 86 +5
R 76 89 60 -16
TP 520 596 555 +35
FP 125 48 90 -35
FN 163 70 379 +216

Table 4: Lewis estimation with adjusted probabili-
ties

As we see, the adjustment overshoots for recall,
indicating that the new estimated probabilities are
still off. There could be several reasons for this.

The first reason is that the bin width is quite coarse,
as there are only five bins for the entire probability
interval, each bin covering a range of 0.2. How-
ever, using finer bin widths can lead to data spar-
sity problems.

Another reason might be the estimation errors
within individual bins that compound to a quite
large overall error especially in the negative case.
Finally, differences in the distributions of training
set and reference set could cause unreliable esti-
mates. The empirical probabilities for the adjust-
ment table are estimated with leave-one-out on the
training set. However, since the training set is cre-
ated by selective sampling, it will be biased.

4 Confidence-based Stopping

We have found that performance estimation is not
yet reliable enough to stop when a desired perfor-
mance level is reached. However, since there is
a maximum performance that can be reached on
any given sampling pool, the annotation process
still should stop at this point regardless of whether
a target performance level has been reached or
not. We therefore seek a stopping criterion that
finds the maximum possible performance when the
classifier is iteratively trained on a given sampling
pool. Again, in practice we do not have a labeled
test set to evaluate against, so we have to try to find
the stopping point from either the remaining pool,
or the separate unlabeled reference set.

Vlachos (2008) proposes to calculate the confi-
dence of the classifier by using the average uncer-

469

tainty on the unlabeled reference set. For multi-
class problems, he uses SVM classifiers with the
SVM margin size as the uncertainty measure. Us-
ing this measure, Vlachos reports finding, albeit
distorted by fluctuations, a peak pattern in this con-
fidence measure that coincides with reaching max-
imal performance in his experiments. He then sug-
gests to use this peak confidence as the stopping
criterion.

However, in our experiments with multiclass
logistic regression, we could not find this peak
pattern when calculating the confidence using the
three uncertainty measures introduced above: 1-
Entropy, Margin and MinMax.

0 2000 4000 6000 8000 10000

0.
80

0.
85

0.
90

0.
95

1.
00

Iterations

C
on

fid
en

ce
 o

n
un

la
be

le
d

re
fe

re
nc

e
da

ta

1−Entropy
Minmax
Margin

Figure 2: Confidence on unlabeled reference set
(selection: 1-Entropy). The vertical lines indi-
cate when baseline and optimal performance are
reached. There is no peak pattern in the curves,
so reaching peak confidence cannot be used as a
stopping criterion.

In Figure 2, we show the three measures, av-
eraged over 20 trials as described in section 2.1.
Due to instability of AL during start-up, there are
some fluctuations in the first 100 iterations. Af-
ter 500 iterations the confidence curves stabilize
and at about 4000 iterations approach asymptotes,
without exhibiting peak patterns. Thus, the pro-
posed criterion of peak confidence based on aver-
age reference uncertainty does not seem applicable
for controlling AL with multiclass logistic regres-
sion.

5 Gradient-based Stopping

Since we cannot use peaks for stopping, we pro-
pose to stop when a base measurement character-

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iterations

M
ar

gi
n

Figure 3: Margin uncertainty of selected instance
(single run). The graph demonstrates that without
smoothing this criterion is too noisy.

izing the progress of active learning has converged.
We identify the point of convergence by computing
gradients. We find that the rise of the performance
estimation slows to an almost horizontal slope at
about the time when the true performance reaches
its peak. We therefore propose the following new
stopping criterion: Estimate the gradient of the
curve and stop when it approaches 0. Since we
do not need an accurate estimation of absolute per-
formance here, we can use the unadjusted Lewis
estimate for this method. We call this stopping cri-
terion (estimated) performance convergence.

In a similar way, we can use the gradient of the
uncertainty of the last selected instance. The in-
stance that was selected last is always the one with
maximum uncertainty, and thus the most informa-
tive for training. When the uncertainty measure
comes close to the extreme value of 1, we decide
that there are no informative examples left in the
pool and we stop the AL process. (Unfortunately,
1 is minimum uncertainty and 0 is maximum un-
certainty according to our definitions of the three
measures.) The gradient of the uncertainty mea-
sure approaches 0 at this point (see Figure 3), so
we can again use a gradient criterion for imple-
menting this idea. We call this stopping criterion
uncertainty convergence.

In Figure 3, which shows a graph of the Mar-
gin uncertainty of the selected instance, we can
also see that it is quite noisy. The value drops
sharply when some examples are encountered but
quickly returns to the previous level after a few it-
erations. The performance estimation measure is

470

slightly noisy as well, so we need a robust way of
computing the gradient. We achieve this with a
moving median approach. At each step, we com-
pute the median of w2 = {an−k, . . . , an} (the last
n values) and of w1 = {an−k−1, . . . , an−1} (the
previous last n values). Each value ai is the per-
formance at iteration i (for the performance gradi-
ent) or the uncertainty of the instance selected in
iteration i (for the uncertainty gradient).

We then estimate the gradient using the medians
of the two windows:

g = (median(w2) − median(w1))/1 (4)

For the performance estimate, which is less noisy,
we can also use the arithmetic mean instead of the
median. In this case, we simply replace “median”
with “mean” in Equation 4.

We found that a window of size k = 100 yields
good results in mitigating the noise while still re-
acting fast enough to the changes in the gradient.
We combine this criterion with a maximum crite-
rion and only stop if the last value an is a new max-
imum. We stop the AL process when (i) the current
certainty or estimated performance is a new max-
imum and (ii) the newly calculated gradient g is
positive and (iii) g falls below a predefined level ε.

5.1 Evaluation
We show the results of gradient stopping applied
to each of the three uncertainty measures and the
Lewis estimate. For comparison, we also include
results with a threshold-based criterion, where AL
stops when the uncertainty measure of the selected
instance reaches a threshold of 1−ε. This is similar
to (Zhu and Hovy, 2007), but extended by us to all
three uncertainty measures.

Table 5 shows results for each criterion. The
”Stop” value indicates number of tokens at which
the stopping criterion stopped AL. ”∆Bl” indicates
the difference between baseline performance and
performance at the stopping point, ”∆Pk” the dif-
ference to peak performance. The ”sd” columns
show the respective standard deviations.

We find that all stopping criteria stop before
20% of the pool is used, providing a large reduc-
tion in annotation effort. While the point of peak
performance can not be precisely found by the cri-
teria, all criteria reliably stop at a performance
level that surpasses the fully supervised baseline.
The threshold criteria seem to be a bit better in
finding a stopping point closer to optimal perfor-
mance. Not unsurprisingly, the stopping function

that matches the selection function performs best.
The gradient methods, however, seem to be provid-
ing better-than-baseline performance more consis-
tently (less variation) and might require less tuning
of the threshold parameter when other factors (e.g.,
the batch size) change. If lower noise allows it, as
for the Lewis estimate, moving averages should be
used in place of moving medians.

6 Related Work

Schütze et al. (2006) studied a Lewis-based per-
formance estimation method in a binary text clas-
sification setting. They attribute difficulties in esti-
mating recall to a ”missed cluster effect”, meaning
that the active sampling procedure is failing to se-
lect some clusters of relevant training examples in
the pool that are too dissimilar to the relevant ex-
amples already known. Diversity measures as pro-
posed by (Shen et al., 2004) might help in mitigat-
ing this effect, but our experiments show that there
are fundamental differences between text classifi-
cation and NER. Since missed clusters of relevant
examples in the training data would eventually be
used as we exhaustively label the entire pool, we
should see improvements in recall when the missed
clusters get used. Instead, we observed in section
2.1, that there are no further performance gains af-
ter a certain portion of the pool is labeled. Thus, all
examples that the classifier can make use of must
have been taken into account, and there appear to
be no missed clusters.

Tomanek et al. (2007) present a stopping cri-
terion for query-by-committee-based AL that is
based on the rate of disagreement of the classifiers
in the committee. While our uncertainty conver-
gence criterion can only be applied to uncertainty
sampling, the performance convergence criterion
can be used in a committee-based setting.

Li and Sethi (2006) estimate the conditional er-
ror as a measure of uncertainty in selection (instead
of using it for stopping as we do), using a variable-
bin histogram for improving the error estimates.
They do not evaluate the quality of the probabil-
ity estimates. As with our stopping criterion, we
expect this selection criterion to be the more ef-
fective the more accurate the probability estimates
are. We therefore believe that our method of im-
proving probability estimates based on LOO bins
could improve their selection criterion.

471

Stop crit. ε Peak Stop ∆ Bl sd ∆ Pk sd
1-Entropy threshold 0.01 80.8 3645 12.0% 1.44 0.7 −0.68 0.4
MinMax threshold 0.01 80.8 3133 10.3% 0.11 1.0 −2.0 0.8
Margin threshold 0.01 80.8 3158 10.4% 1.1 0.8 −1.0 0.8
1-Entropy gradient 0.00005 80.8 4572 15.0% 0.97 0.4 −1.1 0.5
MinMax gradient 0.00005 80.8 4397 14.5% 1.02 0.4 −1.1 0.5
Margin gradient 0.00005 80.8 5292 17.5% 0.81 0.3 −1.32 0.4
Lewis grd. (Median) 0.00005 80.8 2791 9.2% 0.8 1.4 −1.3 1.4
Lewis grd. (Mean) 0.00005 80.8 3999 13.1% 1.1 0.8 −0.95 0.6

Table 5: Performance at stopping points (baseline perf. 78.7, Selection: 1-Entropy)

7 Conclusion and Future Work

In this paper, we presented several criteria to stop
the AL process. For stopping the training at a
user-defined performance level, we proposed a
method for estimating classifier performance in a
multiclass classification setting. While we could
achieve acceptable accuracy in estimation of pre-
cision, we find that recall estimation is hard. Esti-
mation is not accurate enough to assist in making
a reliable decision if the performance of the classi-
fier is acceptable for practical use. In the future, we
plan to improve on performance estimation quality,
e.g., by using the variable-bin approach suggested
by Li and Sethi (2006).

Nevertheless, we showed that the gradient of the
performance estimate can successfully be used as
a stopping criterion relative to the optimal perfor-
mance that is attainable on a given pool. We also
describe stopping criteria based on the gradient of
the uncertainty measure of the instances selected
for training. The criteria reliably determine stop-
ping points that result in a performance that is bet-
ter than the supervised baseline and close to the
optimal performance. We believe that these crite-
ria can be applied to any AL setting based on un-
certainty sampling, not just NER.

If it turns out that the maximum possible per-
formance does not meet a user’s expectations, the
user needs to acquire fresh data and refill the pool.
This might lead to an approach to reduce the com-
putational cost of AL we want to evaluate in fu-
ture work: Subdivide a large sampling pool into
smaller sub-pools, run AL sequentially on the sub-
pools. When the stopping criterion is reached,
switch to the next sub-pool.

We also found that uncertainty curves of the se-
lected examples are quite noisy. We would like to
investigate which properties of the training exam-
ples cause these drops in the uncertainty curve.

References
Daume III, Hal. 2007. Frustratingly easy domain adap-

tation. In ACL-07, pages 256–263.

Genkin, A., D.D. Lewis, and D. Madigan. 2007.
Large-scale bayesian logistic regression for text cat-
egorization. Technometrics, 49(3):291–304.

Lewis, D.D. and W.A. Gale. 1994. A sequential algo-
rithm for training text classifiers. ACM SIGIR.

Lewis, D.D. 1995. Evaluating and optimizing au-
tonomous text classification systems. ACM SIGIR.

Li, M. and I.K. Sethi. 2006. Confidence-Based Ac-
tive Learning. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 28(8):1251–1261.

Schein, Andrew I. 2005. Active Learning for Logistic
Regression. Ph.D. thesis, University of Pennsylva-
nia.

Schütze, H., E. Velipasaoglu, and J.O. Pedersen. 2006.
Performance thresholding in practical text classifica-
tion. In CIKM, pages 662–671.

Shen, Dan, Jie Zhang, Jian Su, Guodong Zhou, and
Chew-Lim Tan. 2004. Multi-criteria-based active
learning for named entity recognition. In ACL ’04.

Tjong Kim Sang, Erik F. and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of CoNLL-2003, pages 142–147.

Tomanek, Katrin, Joachim Wermter, and Udo Hahn.
2007. An approach to text corpus construction
which cuts annotation costs and maintains reusabil-
ity of annotated data. In EMNLP-CoNLL.

Vlachos, Andreas. 2008. A stopping criterion for
active learning. Computer Speech and Language,
22(3):295–312.

Zhu, J. and E. Hovy. 2007. Active learning for word
sense disambiguation with methods for addressing
the class imbalance problem. In EMNLP-CoNLL.

472

