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Abstract

We present procedures which pool lexical
information estimated from unlabeled data
via the Inside-Outside algorithm, with lex-
ical information from a treebank PCFG.
The procedures produce substantial im-
provements (up to 31.6% error reduction)
on the task of determining subcategoriza-
tion frames of novel verbs, relative to a
smoothed Penn Treebank-trained PCFG.
Even with relatively small quantities of
unlabeled training data, the re-estimated
models show promising improvements in
labeled bracketingf-scores on Wall Street
Journal parsing, and substantial benefit
in acquiring the subcategorization prefer-
ences of low-frequency verbs.

1 Introduction

In order to obtain the meaning of a sentence au-
tomatically, it is necessary to have access to its
syntactic analysis at some level of complexity.
Many NLP applications like translation, question-
answering, etc. might benefit from the avail-
ability of syntactic parses. Probabilistic parsers
trained over labeled data have high accuracy on in-
domain data: lexicalized parsers get anf-score of
up to 90.0% on Wall Street Journal data (Charniak
and Johnson (2005)’s re-ranking parser), while re-
cently, unlexicalized PCFGs have also been shown
to perform much better than previously believed
(Klein and Manning, 2003). However, the limited
size of annotated training data results in many pa-
rameters of a PCFG being badly estimated when
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trained on annotated data. The Zipfian nature of
a text corpus results in PCFG parameters related
to the properties of specific words being espe-
cially badly estimated. For instance, about 38% of
verbs in the training sections of the Penn Treebank
(PTB) (Marcus et al., 1993) occur only once – the
lexical properties of these verbs (such as their most
common subcategorization frames ) cannot be rep-
resented accurately in a model trained exclusively
on the Penn Treebank.

The research reported here addresses this issue.
We start with an unlexicalized PCFG trained on
the PTB. We then re-estimate the parameters of
this PCFG from raw text using an unsupervised
estimation method based on the Inside-Outside al-
gorithm (Lari and Young, 1990), an instance of
the Expectation Maximization algorithm (Demp-
ster et al., 1977) for PCFG induction. The re-
estimation improvesf-score on the standard test
section of the PTB significantly. Our focus is on
learning lexical parameters i.e. those parameters
related to the lexico-syntactic properties of open-
class words. Examples of such properties are: sub-
categorization frames of verbs and nouns, attach-
ment preference of adverbs to sentential, verbal or
nominal nodes, attachment preference of PPs to a
verbal or nominal node, etc.

The current research is related to semi-
supervised training paradigms like self-training –
these methods are currently being explored to im-
prove the performance of existing PCFG models
by utilizing unlabeled data. For example, Mc-
Closkey et al. (2006) achieve a 1.1% improvement
in labeled bracketingf-score by the use of un-
labeled data to self-train the parser-reranker sys-
tem from Charniak and Johnson (2005). Ear-
lier research on inside-outside estimation of PCFG
models has reported some positive results as well
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(Pereira and Schabes, 1992; Carroll and Rooth,
1998; Beil et al., 1999; imWalde, 2002). In
some of these cases, an initial model is derived
by other means – inside-outside is used tore-
estimatethe initial model. However, many ques-
tions still remain open about its efficacy for PCFG
re-estimation. Grammars used previously have
not been treebank grammars (for e.g., Carroll and
Rooth (1998) and Beil et al. (1999) used hand-
crafted grammars), hence these models could not
be evaluated according to standardized evaluations
in the parsing literature. In the current work, we
use a Penn Treebank based grammar; hence all re-
estimated grammars can be evaluated using stan-
dardized criteria.

The rest of the paper is organized as follows:
First, we describe in brief the construction of an
unlexicalized PCFG from the PTB. We then de-
scribe a procedure based on the inside-outside al-
gorithm to re-estimate the lexical parameters of
this PCFG from unlabeled Wall Street Journal
data. Finally, we present evaluations of the re-
estimated models, based on labeled bracketing
measures and on the detection of subcategorization
frames of verbs: there is a 31.6% reduction in er-
ror for novel verbs and up to 8.97% reduction in
overall subcategorization error.

2 Unlexicalized treebank PCFG

We build an unlexicalized PCFG from the stan-
dard training sections of the PTB. As is common
(Collins, 1997; Johnson, 1998; Klein and Man-
ning, 2003; Schmid, 2006), the treebank is first
transformed in various ways, in order to give an ac-
curate PCFG. In our framework, treebank trees are
augmented with extra features; the methodology
involves constructing a feature-constraint grammar
from a context-free treebank backbone grammar.
The detailed methodology is described in Deoskar
and Rooth (2008)1. A PCFG is trained on the
transformed treebank, with these added features
incorporated into the PCFG’s non-terminal cate-
gories. The framework affords us the flexibility
to stipulate the features to be incorporated in the
PCFG categories, as parameters of the PCFG.

Our features are largely designed to have a
linguistically relevant interpretation2. For exam-

1The reason for using this framework (as opposed to using
available unlexicalized PCFGs) is that it allows us flexibility
in designing features of interest, and can also be used for lan-
guages other than English with existing treebanks.

2In addition we also have some features that do not have a

this paper Schmid K&M
Recall 86.5 86.3 85.1

Precision 86.7 86.9 86.3
F-score 86.6 86.6 85.7

Table 1: Labeled bracketing scores, PTB sec. 23.

ple, there is a feature on verbs which denotes the
subcategorization frame of the verb (with values
like intransitive, transitive, etc.). Similarly, there
are features which denote the type of clause (fi-
nite, infinite, small clause, etc.), the subject type
of clausal nodes, the attachment of adverbs, va-
lence of nouns, etc. Unlike most existing treebank
PCFGs, all PTB function tags are retained, as are
all empty categories.

As a measure of the quality of the transformed-
PTB based PCFG, Table 1 gives the labeled brack-
eting scores on the standard test section 23 of
the PTB, comparing them to unlexicalized PCFG
scores in (Schmid, 2006) and (Klein and Man-
ning, 2003) (K&M). The current PCFGf-score is
comparable to the state-of-the-art in unlexicalized
PCFGs ((Schmid, 2006), to our knowledge). We
stopped grammar development when thef-score
reached state-of-the-art since our goal was to use
this grammar as the initial model and baseline
for the unsupervised re-estimation procedure, de-
scribed in the next section.

3 Inside-Outside Re-estimation

As a basic unsupervised estimation method, we
use standard inside-outside estimation of PCFGs,
which realizes EM estimation (Lari and Young,
1990; Pereira and Schabes, 1992). We use the
notation I(C, e) to designate the new frequency
model, computed via inside-outside from the cor-
pusC by using a probability model based on the
frequency modele3. The iterative inside-outside
re-estimation procedure has the following sim-
ple form (Eq.1), where each successive frequency
modelei+1 is estimated from the corpusC using a
probability model determined by the previous fre-
quency modelei. Our notation always refers to fre-

linguistic interpretation, but result in a good PCFG, such as a
parentfeature on some categories, following Johnson (1998).

3The inside-outside algorithm uses an existing grammar
model and a raw text corpus (incomplete data) to obtain cor-
responding complete data (a set of analyses/parses for the cor-
pus sentences). A new grammar model is then estimated from
this complete data. See (Prescher, 2003) for an explanation
using the standard EM notions of incomplete/complete data.
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quency models such asei, rather than the relative-
frequency probability models they determine4.

e1 = I(C, e0)
...
ei+1 = I(C, ei)

(1)

3.1 Interleaved Inside-Outside

It is well-known that while lexicalization is use-
ful, lexical parameters determined from the tree-
bank are poorly estimated because of the sparse-
ness of treebank data for particular words (e.g.
Hindle and Rooth (1993)). Gildea (2001) and
Bikel (2004) show that removing bilexical de-
pendencies hardly hurts the performance of the
Collins Model2 parser, although there is the ben-
efit of lexicalization in the form of lexico-syntactic
dependencies – structures being conditioned on
words. On the other hand, structural parameters
are comparatively well-estimated from treebanks
since they are not keyed to particular words. Thus,
it might be beneficial to use a combination of su-
pervised and unsupervised estimation for lexical
parameters, while obtaining syntactic (structural)
parameters solely by supervised estimation (i.e.
from a treebank). The experiments in this paper
are based on this idea. In an unlexicalised PCFG
like the one described in§2, it is easy to make
the distinction between structural parameters (non-
terminal rules) and lexical parameters (preterminal
to terminal rules).

To this end, we define a modified inside-outside
procedure in which a frequency transformation
T (c, t) is interleaved between the iterations of the
standard inside-outside procedure. The form of
this interleaved procedure is shown in Eq. 2. In
Eq. 2,t designates a smoothed treebank model (the
smoothing procedure is described later in§3.1.1).
This smoothed treebank model is used as the prior
model for the inside-outside re-estimation proce-
dure. For each iterationi, ci represent models ob-
tained by inside-outside estimation.di represent
derivedmodels obtained by performing a transfor-
mationT on ci. The transformationT combines
the re-estimated modelci and the smoothed tree-

4We use a frequency-based notation because we use out-
of-the-box software Bitpar (Schmid, 2004) which implements
inside-outside estimation – Bitpar reads in frequency models
and converts them to relative frequency models. We justify
the use of the frequency-based notation by ensuring that all
marginal frequencies in the treebank model are always pre-
served in all other models.

bank modelt (hence represented asT (ci, t)).

d0 = t smoothed treebank model
c1 = I(C, d0) estimation step
d1 = T (c1, t) transformation step
...
ci+1 = I(C, di) estimation step
di+1 = T (ci+1, t) transformation step

(2)
The lexical parameters for the treebank modelt
or the re-estimated modelsci are represented as
t(w, τ, ι) or ci(w, τ, ι), wherew is the terminal
word, τ is the PTB-style PoS tag, andι is the
sequence of additional features incorporated into
the PoS tag (the entries in our lexicon have the
form w.τ.ι with an associated frequency). The
transformationT preserves the marginal frequen-
cies seen in the treebank model. A marginal tag-
incorporation frequency is defined by summation:

f(τ, ι) =
∑
w

f(w, τ, ι). (3)

The transformationT is used to obtain the derived
modelsdi and consists of two parts, corresponding
to the syntactic and the lexical parameters ofdi:

• The syntactic parameters ofdi are copied
from t.

• To obtain the lexical parameters ofdi, lex-
ical parameters from the treebank modelt
and lexical parameters from the re-estimated
model are linearly combined, shown in Eq. 4.

di(w, τ, ι) = (1− λτ,ι)t(w, τ, ι) + λτ,ιc̄i(w, τ, ι)
(4)

whereλτ,ι is a parameter with0 < λτ,ι < 1 which
may depend on the tag and incorporation. The
term c̄i(w, τ, ι) in Eq. 4 is obtained by scaling the
frequencies inci(w, τ, ι), as shown in Eq. 5.

c̄i(w, τ, ι) =
t(τ, ι)
ci(τ, ι)

ci(w, τ, ι). (5)

In terms of probability models determined from
the frequency models, the effect ofT is to allocate
a fixed proportion of the probability mass for each
τ, ι to the corpus, and share it out among wordsw

in proportion to relative frequenciesci(w,τ,ι)
ci(τ,ι) in the

inside-outside estimateci. Eqs. 6 and 7 verify that
marginals are preserved in the derived modeld.

c̄(τ, ι) =
∑

w c̄(w, τ, ι) =
∑

w
t(τ,ι)
c(τ,ι)c(w, τ, ι)

= t(τ,ι)
c(τ,ι)

∑
w c(w, τ, ι)

= t(τ,ι)
c(τ,i)c(τ, ι) = t(τ, ι).

(6)
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d(τ, ι) =
∑

w d(w, τ, ι)
=

∑
w(1− λτ,ι)t(w, τ, ι) + λτ,ιc̄(w, τ, ι)

= (1− λτ,ι)
∑

w t(w, τ, ι)
+ λτ,ι

∑
w c̄(w, τ, ι)

= (1− λτ,ι)t(τ, ι) + λτ,ιc̄(τ, ι)
= (1− λτ,ι)t(τ, ι) + λτ,ιt(τ, ι)
= t(τ, ι).

(7)

3.1.1 Smoothing the treebank model

To initialize the iterative procedures, a smooth-
ing scheme is required which allocates frequency
to combinations of wordsw and PoS tagsτ which
are not present in the treebank model but are
present in the corpus, and also to all possible in-
corporations of a PoS tag. Otherwise, if the un-
smoothed treebank model (t0) has zero frequency
for some lexical parameter, the inside-outside es-
timate I(C, t0) for that parameter would also be
zero, and new lexical entries would never be in-
duced.

The smoothed treebank modelt is obtained from
the unsmoothed modelt0 as follows. First a PoS
tagger (Treetagger, (Schmid, 1994)) is run on the
unsupervised corpusC, which assigns PTB-style
PoS tags to the corpus. Tokens of words and
PoS tags are tabulated to obtain a frequency table
g(w, τ). Each frequencyg(w, τ) is split among
possible incorporationsι in proportion to a ratio of
marginal frequencies int0:

g(w, τ, ι) =
t0(τ, ι)
t0(τ)

g(w, τ) (8)

The smoothed modelt is defined as an interpola-
tion of g andt0 for lexical parameters as shown in
9, with syntactic parameters copied fromt0.

t(w, τ, ι) = (1− λτ,ι)t0(w, τ, ι) + λτ,ιg(w, τ, ι)
(9)

3.2 Experimental setup

The treebank grammar is trained over sections 0-
22 of the transformed PTB (minus about 7000 sen-
tences held out for testing). Testset I contains 1331
sentences and is constructed as follows: First, we
select 117 verbs whose frequency in PTB sections
0-22 is between 10-20 (mid-frequency verbs). All
sentences containing occurrences of these verbs
are held out from the training data to form Test-
set I. The effect of holding out these sentences is
to make these 117 verbsnovel(i.e. unseen in train-
ing). This testset is used to evaluate the learning of

subcategorization frames of novel verbs. We also
construct another testset (Testset II) by holding out
every 10th sentence in PTB sections 0-22 (4310
sentences).

The corpus used for re-estimation is about 4 mil-
lion words of unannotated Wall Street Journal text
(year 1997) (sentence length<25 words). The re-
estimation was carried out using Bitpar (Schmid,
2004) for inside-outside estimation. The parame-
ter λ in Eq. 4 was set to 0.5 for allτ andι, giving
equal weight to the treebank and the re-estimated
lexicons. Starting from a smoothed treebank gram-
mar t, we separately ran 6 iterations of the inter-
leaved estimation procedure defined in Eq. 2, and
4 iterations of standard inside-outside estimation.
This gave us two series of models corresponding
to the two procedures.

4 Labeled Bracketing Results

As a basic evaluation of the re-estimated gram-
mars, we report the labeled bracketing scores on
the standard test section 23 of the PTB (Table 2).
Using the re-estimated models, maximum proba-
bility (viterbi) parses were obtained for all sen-
tences in sec. 23, after stripping away the treebank
annotation, including the pre-terminal tag. The
baseline is the treebank modelt0t

5. The scores
for re-estimated grammars from successive itera-
tions are under columns It 1, It 2, etc. All models
obtained using the interleaved procedure show an
improvement over the baseline. The best model
is obtained after 2 iterations, after which the score
reduces a little. Statistically significant improve-
ments are marked with *, with p<0.005 for recall
and p<0.0001 for precision for the best model. Ta-
ble 2 also shows scores for grammars estimated
using the standard inside-outside procedure. The
first re-estimated model is better than any model
obtained from either procedure. Notice however,
the disparity in precision and recall – precision
is much lower than recall. This is not surpris-
ing; inside-outside is known to converge to incor-
rect solutions for PCFGs (Lari and Young, 1990;
de Marcken, 1995). This causes thef-score to de-
teriorate in successive iterations.

5This baseline is slightly lower than that reported in Ta-
ble 1 due to holding out an additional 7000 sentences from
the treebank training set. In order to accommodate unknown
words from the test data (sec 23), the treebank modelt0 is
smoothed in a manner similar to that shown in Eq. 9, with
the test words (tagged using Treetagger) formingg(w, τ ) and
λ = 0.1. A testset is always merged with a given model in
this manner before parsing, to account for unknown words.
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t0t It 1 It 2 It 3 It 4 It 5 It 6
Interleaved Recall 86.48 86.72 *86.79 *86.79 *86.78 86.81 86.72
Procedure Precision 86.61 86.95 *87.07 *87.06 *87.07 87.04 87.01

f-score 86.55 86.83 *86.93 *86.92 *86.92 86.92 86.86
Standard Recall 86.48 87.95 87.11 86.42 85.55
Procedure Precision 86.61 85.99 84.79 83.37 82.06

f-score 86.5 86.96 85.93 84.87 83.77

Table 2: Labeled Bracketing scores for various models, on PTB section 23.

The improvement in labeled bracketingf-score
for the interleaved procedure is small, but is an en-
couraging result. The benefit to the re-estimated
models comes only from better estimates of lex-
ical parameters. We expect that re-estimation
will benefit parameters associated with low fre-
quency words - lexical parameters for high fre-
quency words are bound to be estimated accurately
from the treebank. We did not expect a large im-
pact on labeled bracketing scores, given that low
frequency words have correspondingly few occur-
rences in this test dataset. It is possible that the im-
pact onf-score will be higher for a test set from a
different domain. Note also that the size of our un-
labeled training corpus (∼4M words) is relatively
small – only about 4 times the PTB.

5 Verbal Subcategorization

We focus on learning verbal subcategorization, as
a typical case of lexico-syntactic information. The
subcategorization frame (SF) of verbs is a parame-
ter of our PCFG - verbal tags in the PCFG are fol-
lowed by an incorporation sequence that denotes
the SF for that verb. We evaluate the re-estimated
models on the task of detecting correctSFs of verbs
in maximum-probability (viterbi) parses obtained
using the models. All tokens of verbs and their
preterminal symbols (consisting of a PoS tag and
an incorporation sequence encoding theSF) are ex-
tracted from the viterbi parses of sentences in a
testset. This tag-SF sequence is compared to a gold
standard, and is scored correct if the two match ex-
actly. PoS errors are scored as incorrect, even if the
SF is correct. The gold standard is obtained from
the transformed PTB trees.

The incorporation sequence corresponding to
theSF consists of 3 features: The first one denotes
basic categories of subcategorization such as tran-
sitive, intransitive, ditransitive,NP-PP, S, etc. The
second feature denotes, for clausal complements,
the type of clause (finite, infinite, small clause,

Figure 1: A subcat. frame for control verbwant.

etc.). The third feature encodes the nature of the
subject of the clausal complements (empty cate-
gory or non-empty). For example, the verbcon-
sideredin the treebank sentenceThey are officially
considered strategicgets a preterminal sequence of
VBD.s.e.sc. This sequence indicates a past tense
verb (VBD) with a clausal complement (s) which
has an empty subject (e) since the sentence is pas-
sive and is of the typesmall clause(sc). A control
verb (with an infinitival complement) in the sen-
tence fragment..did not want to fund X..gets the
frame s.e.to (see Fig. 1 for an example of a verb
with its complement, as parsed by our PCFG). We
have a total of 81 categories ofSFs (without count-
ing specific prepositions for prepositional frames),
making fairly fine-grained distinctions of verbal
categories.

5.1 Learning Subcat Frames of Novel Verbs

We measure the error rate in the detection of the
subcategorization frame of 1360 tokens of 117
verbs in Testset I. Recall from§3.2 that these
verbs are novel verbs with respect to the treebank
model. Table 3 shows this error rate (i.e. the
fraction of test items which receive incorrect tag-
incorporations in viterbi parses) for various mod-
els obtained using the interleaved and standard re-
estimation procedures.t0t1 is the treebank model
t0 with the test data from Testset I merged in (to
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Iterationi Interleaved Standard
Procedure Procedure

t0t1 33.36 33.36
1 *24.40 28.69
2 *23.45 25.56
3 *23.05 27.86
4 *22.89 28.41
5 *22.81 -
6 *22.83 -

Table 3: Subcat. error for novel verbs (Testset I).

account for unknown words) using the smoothing
scheme given in Eq. 9. This model has no verb
specific information for the test verbs. For each
test verb, it has a smoothedSF distribution pro-
portional to theSF distribution for all verbs of that
tag. The baseline error is 33.36%. This means that
there is enough information in the average distri-
bution of all verbs to correctly assign the subcat-
egorization frame to novel verbs in 66.64% cases.
For the models obtained using the interleaved re-
estimation, the error rate falls to the lowest value
of 22.81% for the model obtained in the5th iter-
ation: an absolute reduction of 10.55 points, and
a percentage error-reduction of 31.6%. The er-
ror reduction is statistically significant for all it-
erations compared to the baseline, with the5th it-
eration being also significantly better than the1st.
The models obtained using standard re-estimation
do not perform as well. Even for the model from
the first iteration, whose labeled bracketing score
was highest, theSF error is higher than the cor-
responding model from the interleaved procedure
(possibly due to the low precision of this model).
The error rate for the standard procedure starts to
increase after the2nd iteration in contrast to the in-
terleaved procedure.

5.2 Analysis of subcategorization learning

While the re-estimation clearly results in gains in
SF detection for novel verbs, we also perform an
evaluation for all verbs (novel and non-novel) in a
given testset (Testset II as described in§3.2). The
overall error reduction using the interleaved proce-
dure is 8.97% (in Iteration 1). In order to better un-
derstand the relative efficacy of the supervised and
unsupervised estimation for lexical items of differ-
ent frequencies, we break up the set of test verbs
into subsets based on their frequency of occurrence
in the PTB training data, and evaluate them sepa-

TB Freq t0t2 It 1 Abs.Reduc %Reduc
all 18.5 16.84 1.66 *8.97
0 41.26 33.01 8.25 *19.99
1 32.69 24.52 8.17 *24.99
2 36.55 22.76 13.79 *37.73
3 26.59 19.08 7.51 *28.24
4 22.38 20.28 2.1 9.38
5 24.63 19.40 5.23 *21.23
6-10 22.24 19.59 2.65 **11.92
11-20 21.54 18.02 3.52 *16.34
21-50 19.41 19.11 0.3 1.55
51-100 19.44 19.09 0.35 1.80
101-200 18.71 18.57 0.14 0.75
201-500 23.06 22.31 0.75 3.25
501-1K 18.07 16.82 1.25 6.92
1K-2K 12.38 12.25 0.13 1.05
2K-5K 9.42 7.62 1.8 *19.11
>5K 10.54 10.13 0.41 3.89

Table 4: Subcat. error breakup (Testset II)

rately. Table 4 shows the error rates for verbs di-
vided into these sets. We present error rates only
for Iteration 1 in Table 4, since most of the error
reduction takes place with the1st iteration. Sta-
tistically significant reductions are marked with *
(confidence>99.9) and ** (>95). The second row
shows error rates for verbs which have zero fre-
quency in the treebank training data (i.e. novel
verbs): Note that this error reduction is much less
than the 31.6% in Testset I. These verbs are truly
rare and hence have much fewer occurrences in
the unlabeled corpus than Testset I verbs, which
were artificially made novel (but are really mid-
frequency verbs). This might indicate that error
rates will decrease further if the size of the unla-
beled corpus is increased. There is substantial er-
ror reduction for low-frequency verbs (<21 PTB
occurrences). This is not hard to understand: the
PTB does not provide enough data to have good
parameter estimates for these verbs. For mid-to-
high frequency verbs (from 21 to 500), the benefit
of the unsupervised procedure reduces, though er-
ror reduction is still positive. Surprisingly, the er-
ror reduction for very high frequency verbs (more
than 500 occurrences in the treebank) is also fairly
high: we expected that parameters for high fre-
quency words would benefit the least from the un-
supervised estimation, given that they are already
common enough in the PTB to be accurately esti-
mated from it. The high frequency verbs (>500
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occurrences) consist of very few types– mainly
auxiliaries, some light verbs (make, do) and a few
others (rose, say). It is possible that re-estimation
from large data is beneficial for light verbs since
they have a larger number of frames. The fre-
quency range2K-5K consists solely of auxiliary
verbs. Examination of viterbi parses shows that
improved results are largely due to better detection
of predicative frames in re-estimated models.

To measure the impact of more unlabeled train-
ing data, we ran the interleaved procedure with 8M
words of WSJ text. TheSFerror for novel verbs re-
duces to 22.06% in the2nd iteration (significantly
different from the best error of 22.81% in the5th

iteration for 4M words of training data)). We also
get an improved overall error reduction of 9.9% on
Testset II for the larger training data, as compared
to 8.97% previously.

5.3 Previous Work

While there has been substantial previous work
on the task ofSF acquisition from corpora (Brent
(1991); Manning (1993); Briscoe and Carroll
(1997); Korhonen (2002), amongst others), we find
that relatively few parsing-based evaluations are
reported. Since their goal is to build probabilistic
SF dictionaries, these systems are evaluated either
against existing dictionaries, or on distributional
similarity measures. Most are evaluated on testsets
of high-frequency verbs (unlike the present work),
in order to gauge the effectiveness of the acquisi-
tion strategy. Briscoe and Carroll (1997) report a
token-based evaluation for seven verb types– their
system gets an average recall accuracy of 80.9%
for these verbs (which appear to be high-frequency
verbs). This is slightly lower than the present sys-
tem, which has an overall accuracy of 83.16% (on
Testset II (It 1), as shown in Table 4). However,
for low frequency verbs (exemplars<10) they re-
port that their results are around chance. A parsing
evaluation of their lexicon using an unlexicalized
grammar as baseline, on 250 sentences from the
Suzanne treebank gave a small (but not statistically
significant) improvement inf-score (from 71.49 to
72.14%). Korhonen (2002) reports a parsing-based
evaluation on 500 test sentences. She found a
small increase inf-score (of grammatical relations
markup) from 76.03 to 76.76. In generalPARSE-
VAL measures are not very sensitive to subcatego-
rization (Carroll et al., 1998); they therefore use
a dependency-based evaluation. In the present re-

search as well, we obtain statistically significant
but quite small improvements inf-score (§4). Since
we are interested in acquisition of PCFG lexicons,
we focus our evaluations on verbal subcategoriza-
tion of token occurrences of verbs in viterbi parses.

6 Conclusions

We have presented a methodology for incorporat-
ing additional lexical information from unlabeled
data into an unlexicalized treebank PCFG. We ob-
tain a large error reduction (31.6%) inSF detection
for novel verbs as compared to a treebank base-
line. The interleaved re-estimation scheme gives
a significant increase in labeled bracketing scores
from a relatively small unlabeled corpus. The in-
terleaved scheme has an advantage over standard
inside-outside PCFG estimation, as measured both
by labeled bracketing scores and on the task of de-
tectingSFs of novel verbs. Since our re-estimated
models are treebank models, all evaluations are
against treebank standards.

The grammar we worked with has very few in-
corporated features compared to the grammar used
by, say Klein and Manning (2003). It would make
sense to experiment with grammars with much
richer sets of incorporated features. Features re-
lated to structure-selection by categories other than
verbs – nouns, adverbs and adjectives – might be
beneficial. These features should be incorporated
as PCFG parameters, similar to verbal subcate-
gorization. Experiments with 8 million words of
training data gave significantly better results than
with 4 million words, indicating that larger train-
ing sets will be beneficial as well. It would also be
useful to make the transformationT of lexical pa-
rameters sensitive to treebank frequency of words.
For instance, more weight should be given to the
treebank model rather than the corpus model for
mid-to-high frequency words, by making the pa-
rameterλ in T sensitive to frequency.

This methodology is relevant to the task of
domain-adaption. Hara et al. (2007) find that re-
training a model of HPSG lexical entry assign-
ments is more critical for domain adaptation than
re-training a structural model alone. Our PCFG
captures many of the important dependencies cap-
tured in a framework like HPSG; in addition, we
can use unlabeled data from a new domain in an
unsupervised fashion for re-estimating lexical pa-
rameters, an important consideration in domain-
adaption. Preliminary experiments on this task us-
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ing New York Times unlabeled data with the PTB-
trained PCFG show promising results.
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