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Abstract

In this paper, we focus on the adaptation
problem that has a large labeled data in the
source domain and a large but unlabeled
data in the target domain. Our aim is to
learn reliable information from unlabeled
target domain data for dependency pars-
ing adaptation. Current state-of-the-art sta-
tistical parsers perform much better for
shorter dependencies than for longer ones.
Thus we propose an adaptation approach
by learning reliable information on shorter
dependencies in an unlabeled target data
to help parse longer distance words. The
unlabeled data is parsed by a dependency
parser trained on labeled source domain
data. The experimental results indicate
that our proposed approach outperforms
the baseline system, and is better than cur-
rent state-of-the-art adaptation techniques.

1 Introduction

Dependency parsing aims to build the dependency
relations between words in a sentence. There
are many supervised learning methods for training
high-performance dependency parsers(Nivre et al.,
2007), if given sufficient labeled data. However,
the performance of parsers declines when we are in
the situation that a parser is trained in one “source”
domain but is to parse the sentences in a second
“target” domain. There are two tasks(Daumé III,
2007) for the domain adaptation problem. The
first one is that we have a large labeled data in the
source domain and a small labeled data in target
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domain. The second is similar, but instead of hav-
ing a small labeled target data, we have a large but
unlabeled target data. In this paper, we focus on
the latter one.

Current statistical dependency parsers perform
worse while the distance of two words is becoming
longer for domain adaptation. An important char-
acteristic of parsing adaptation is that the parsers
perform much better for shorter dependencies than
for longer ones (the score at length l is much higher
than the scores at length> l ).

In this paper, we propose an approach by using
the information on shorter dependencies in auto-
parsed target data to help parse longer distance
words for adapting a parser. Compared with the
adaptation methods of Sagae and Tsujii (2007) and
Reichart and Rappoport (2007), our approach uses
the information on word pairs in auto-parsed data
instead of using the whole sentences as newly la-
beled data for training new parsers. It is difficult
to detect reliable parsed sentences, but we can find
relative reliable parsed word pairs according to de-
pendency length. The experimental results show
that our approach significantly outperforms base-
line system and current state of the art techniques.

2 Motivation and prior work

In dependency parsing, we assign head-dependent
relations between words in a sentence. A simple
example is shown in Figure 1, where the arc be-
tween a and hat indicates that hat is the head of a.

Current statistical dependency parsers perform
better if the dependency lengthes are shorter (Mc-
Donald and Nivre, 2007). Here the length of the
dependency from word wi to word w j is simply
equal to |i − j|. Figure 2 shows the results (F1
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The  boy  saw    a       red       hat    .

Figure 1: An example for dependency relations.
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Figure 2: The scores relative to dependency length.
“SameDomain” refers to training and testing in the
same domain, and “diffDomain” refers to training
and testing in two domains (domain adaptation).

score)1 on our testing data, provided by a deter-
ministic parser, which is trained on labeled source
data. Comparing two curves at the figure, we find
that the scores of diffDomain decreases much more
sharply than the scores of sameDomain, when de-
pendency length increases. The score decreases
from about 92% at length 1 to 50% at 7. When
lengthes are larger than 7, the scores are below
50%. We also find that the score at length l is much
higher (around 10%) than the score at length l + 1
from length 1 to 7. There is only one exception that
the score at length 4 is a little less than the score at
length 5. But this does not change so much and the
scores at length 4 and 5 are much higher than the
one at length 6.

Two words (word wi and word w j) having a
dependency relation in one sentence can be adja-
cent words (word distance = 1), neighboring words
(word distance = 2), or the words with distance >
2 in other sentences. Here the distance of word
pair (word wi and word w j) is equal to |i − j|. For
example, “a” and “hat” has dependency relation in
the sentence at Figure 1. They can also be adjacent
words in the sentence “The boy saw a hat.” and
the words with distance = 3 in “I see a red beauti-
ful hat.”. This makes it possible for the word pairs
with different distances to share the information.

According to the above observations, we present
1F1 = 2 × precision × recall/(precision + recall) where

precision is the percentage of predicted arcs of length d that
are correct and recall is the percentage of gold standard arcs
of length d that are correctly predicted.

an idea that the information on shorter depen-
dencies in auto-parsed target data is reliable for
parsing the words with longer distance for do-
main adaptation. Here, “shorter” is not exactly
short. That is to say, the information on depen-
dency length l in auto-parsed data can be used to
help parse the words whose distances are longer
than l when testing, where l can be any number.
We do not use the dependencies whose lengthes
are too long because the accuracies of long depen-
dencies are very low.

In the following content, we demonstrate our
idea with an example. The example shows how to
use the information on length 1 to help parse two
words whose distance is longer than 1. Similarly,
the information on length l can also be used to help
parse the words whose distance is longer than l.

Figure 2 shows that the dependency parser per-
forms best at tagging the relations between adja-
cent words. Thus, we expect that dependencies of
adjacent words in auto-parsed target data can pro-
vide useful information for parsing words whose
distances are longer than 1. We suppose that our
task is Chinese dependency parsing adaptation.

Here, we have two words “ JJ(large-scale)”
and “ NN(exhibition)”. Figure 3 shows
the examples in which word distances of these
two words are different. For the sentences in
the bottom part, there is a ambiguity of “JJ
+ NN1 + NN2” at “ JJ(large-scale)/

NN(art)/ NN(exhibition)”, “ JJ(large-
scale)/ NN(culture)/ NN(art)/

NN(exhibition)” and “ JJ(large-scale)/
NR(China)/ NN(culture)/ NN(art)/
NN(exhibition)”. Both NN1 and NN2 could be

the head of JJ. In the examples in the upper part,
“ JJ(large-scale)” and “ NN(exhibition)”
are adjacent words, for which current parsers
can work well. We use a parser to parse the
sentences in the upper part. “ (exhibition)” is
assigned as the head of “ (large-scale)”. Then
we expect the information from the upper part
can help parse the sentences in the bottom part.
Now, we consider what a learning model could
do to assign the appropriate relation between “

(large-scale)” and “ (exhibition)” in the
bottom part. We provide additional information
that “ (exhibition)” is the possible head of “

(large-scale)” in the auto-parsed data (the upper
part). In this way, the learning model may use this
information to make correct decision.
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Figure 3: Examples for “ (large-scale)” and
“ (exhibition)”. The upper part (A) refers to
the sentences from unlabeled data and the bottom
part (B) refers to the sentences waiting for parsing.

Up to now, we demonstrate how to use the in-
formation on length 1. Similarly, we can use the
information on length 2, 3, . . . . By this way, we
propose an approach by exploiting the information
from a large-scale unlabeled target data for depen-
dency parsing adaptation.

In this paper, our approach is to use unlabeled
data for parsing adaptation. There are several stud-
ies relevant to ours as described below.

CoNLL 2007(Nivre et al., 2007) organized a
shared task for domain adaptation without anno-
tated data in new domain. The labeled data was
from the Wall Street Journal, the development data
was from biomedical abstracts, and the testing data
was from chemical abstracts and parent-child dia-
logues. Additionally, a large unlabeled corpus was
provided. The systems by Sagae and Tsujii (2007),
Attardi et al. (2007), and Dredze et al. (2007) per-
formed top three in the shared task.

Sagae and Tsujii (2007) presented a procedure
similar to a single iteration of co-training. Firstly,
they trained two parsers on labeled source data.
Then the two parsers were used to parse the sen-
tences in unlabeled data. They selected only iden-
tical parsing results produced by the two parsers.
Finally, they retrained a parser on newly parsed
sentences and the original labeled data. They per-
formed the highest scores for this track. Attardi
et al. (2007) presented a procedure with correct-
ing errors by a revision techniques. Dredze et
al. (2007) submitted parsing results without adap-
tation. They declared that it was difficult to signif-
icantly improve performance on any test domain
beyond that of a state-of-the-art parser. Their er-
ror analysis suggested that the primary cause of
loss from adaptation is because of differences in
the annotation guidelines. Without specific knowl-
edge of the target domain’s annotation standards,

significant improvement can not be made.
Reichart and Rappoport (2007) studied self-

training method for domain adaptation (The WSJ
data and the Brown data) of phrase-based parsers.
McClosky et al. (2006) presented a successful in-
stance of parsing with self-training by using a re-
ranker. Both of them used the whole sentences as
newly labeled data for adapting the parsers, while
our approach uses the information on word pairs.

Chen et al. (2008) presented an approach by
using the information of adjacent words for in-
domain parsing. As Figure 2 shows, the score
curves of sameDomain (in-domain) parsing and
diffDomain (out-domain) parsing are quite differ-
ent. Our work focuses on parsing adaptation and is
based on the fact that current parsers perform much
better for shorter dependencies than for longer
ones. This causes that our work differs in that
we use the information on shorter dependencies
in auto-parsed target data to help parse the words
with longer distance for parsing adaptation. In this
paper, “shorter” and “longer” are relative. Length
l is relatively shorter than length l + 1, where l can
be any number.

3 The parsing approach

In this paper, we choose the model described by
Nivre (2003) as our parsing model. It is a deter-
ministic parser and works quite well in the shared-
task of CoNLL2006(Nivre et al., 2006).

3.1 The parsing model

The Nivre (2003) model is a shift-reduce type al-
gorithm, which uses a stack to store processed
tokens and a queue to store remaining input to-
kens. It can perform dependency parsing in O(n)
time. The dependency parsing tree is built from
atomic actions in a left-to-right pass over the in-
put. The parsing actions are defined by four opera-
tions: Shift, Reduce, Left-Arc, and Right-Arc, for
the stack and the queue. TOP is the token on top
of the stack and NEXT is next token in the queue.
The Left-Arc and Right-Arc operations mean that
there is a dependency relation between TOP and
NEXT.

The model uses a classifier to produce a se-
quence of actions for a sentence. In this paper,
we use the SVM model. And LIBSVM(Chang and
Lin, 2001) is used in our experiments.

Note that the approach (see section 4)we
present in this paper can also be applied to
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other parsers, such as the parser by Yamada and
Matsumoto (2003), or the one by McDonald et
al. (2006).

3.2 Parsing with basic features

The parser is a history-based parsing model, which
relies on features of the parsed tokens to predict
next parsing action. We represent basic features
based on words and part-of-speech (POS) tags.
The basic features are listed as follows:

• Lexical Features on TOP: the word of TOP, the word of
the head of TOP, and the words of leftmost and right-
most dependent of TOP.

• Lexical Features on NEXT: the word of NEXT and the
word of the token immediately after NEXT in the orig-
inal input string.

• POS features on TOP: the POS of TOP, the POS of the
token immediately below TOP, and the POS of leftmost
and rightmost dependent of TOP.

• POS features on NEXT: the POS of NEXT, the POS of
next three tokens after NEXT, and the POS of the token
immediately before NEXT in original input string.

Based on the above parsing model and basic fea-
tures, we train a basic parser on annotated source
data. In the following content, we call this parser
Basic Parser.

4 Domain adaptation with shorter
dependency

This section presents our adaptation approach by
using the information based on relative shorter de-
pendencies in auto-parsed data to help parse the
words whose distances are longer. Firstly, we use
the Basic Parser to parse all the sentences in un-
labeled target data. Then we explore reliable in-
formation based on dependency relations in auto-
parsed data. Finally, we incorporate the features
based on reliable information into the parser to im-
prove performance.

4.1 Extracting word pairs from auto-parsed
data

In this section, we collect word pairs from the
auto-parsed data. At first, we collect the word
pairs with length 1. In a parsed sentence, if two
words have dependency relation and their word
distance is 1, we will add this word pair into the
list Ldep and count its frequency. We also con-
sider the direction, LA for left arc and RA for
right arc. For example, “ (large-scale)” and
“ (exhibition)” are adjacent words in the sen-
tence “ (We)/ (held)/ (large-scale)/

(exhibition)/ ” and have a left dependency arc

assigned by the Basic Parser. The word pair
“ (large-scale)- (exhibition)” with “LA”
is added into Ldep.

Similarly, we collect the pairs whose word dis-
tances are longer than 1. In Ldep, with length l and
direction dr(LA or RA), the pair pu has f reql(pu :
dr). For example, f req2(pu : LA) = 3 refers to
the word pair pu with left arc(LA) occurs 3 times
in the auto-parsed data when two words’ distance
is 2. Because figure 2 shows that the accuracies
of long dependencies are low, we only collect the
pairs whose distances are not larger than a prede-
fined length lmax.

4.2 The adaptation approach
The word pair pt is the pair < wi,w j >.

4.2.1 The information on shorter distances
If the distance of pt is d, we will use the pairs

whose lengthes are less than d. It results in the
words with different distances using different set
of word pairs in Ldep. For example, if d is 5, we
can use the pairs with dependency lengthes from 1
to 4 in Ldep. The information is represented by the
equation as follows:

Id(pt : dr) =


0 pt < Ldep

f req1(pt : dr) d = 1∑d−1
l=1 f reql(pt : dr) d > 1

(1)

4.2.2 Classifying into buckets
According to Id(pt : dr), word pairs are grouped

into different buckets as follows:

Bucketd(pt : dr) =


B0 Id(pt : dr) = 0
B1 0 < Id(pt : dr) ≤ f1
. . .
Bn fn−1 < Id(pt : dr) ≤ fn
Ba fn < Id(pt : dr)

(2)

where, f1, f2, ..., fn are the thresholds. For exam-
ple, I3( - :LA) is 20, f3 = 15 and f4 = 25.
Then it is grouped into the bucket B4. We set
f1 = 2, f2 = 8, and f3 = 15 in the experiments.

4.2.3 Parsing with the adapting Features
Based on the buckets of word pairs, we represent

new features on labeled source data for the parser.
We call these new features adapting features. Ac-
cording to different word distances between TOP
and NEXT, the features are listed at Table 1. So
we have 8 types of the adapting features, includ-
ing 2 types for distance=1, 3 types for distance=2,
and 3 types for distance≥3. Each feature is format-
ted as “DistanceType:FeatureType:Bucket”, where
DistanceType is D1, D2, or D3 corresponding to
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three distances, FeatureType is FB0, FB1, or FB 1
corresponding to three positions. Here, if a word
pair has two dependency directions in Ldep, we will
choose the direction having higher frequency.

Then using the parsing model of Nivre (2003),
we train a new parser based on the adapting fea-
tures and basic features.

distance FB 1 FB0 FB1
=1 + +
=2 + + +
≥3 + + +

Table 1: Adapting features. FB0 refers to the
bucket of the word pair of TOP and NEXT, FB1
refers to the bucket of the word pair of TOP and
next token after NEXT, and FB 1 refers to the
bucket of the word pair of TOP and the token im-
mediately before NEXT. “+” refers to this item
having this type of feature.

4.2.4 An example
We show an example for representing the

adapting features. For example, we have the
string “ JJ(large-scale)/ NN(culture)/

NN(art)/ NN(exhibition)/ ”. And “
(large-scale)” is TOP and “ (exhibition)” is

NEXT. Because the distance of TOP and NEXT is
3, we have three features. We suppose that (FB0)
the bucket of the word pair (“ - ”) of TOP
and NEXT is bucket B4, (FB1) the bucket of the
word pair (“ - ”) of TOP and next token af-
ter NEXT is bucket B0, and (FB 1) the bucket of
the word pair (“ - ”)of TOP and the to-
ken immediately before NEXT is bucket B1. Then,
we have the features: “D3:FB0:B4”, “D3:FB1:B0”,
and “D3:FB 1:B1”.

4.3 Adaptation for unknown word2

The unknown word problem is an important issue
for domain adaptation(Dredze et al., 2007). Our
approach can work for improving performance of
parsing unknown word pairs in which there is
at least one unknown word. We collect word
pairs including unknown word pairs at Section 4.1.
Then unknown word pairs in testing data are also
mapped into one of the buckets via Equation (2).
So known word pairs can share the features with
unknown word pairs.

2An unknown word is a word that is not included in train-
ing data.

5 Experimental setup

CoNLL 2007(Nivre et al., 2007) organized the do-
main adaptation task and provided a data set in
English. However, the data set had differences
between the annotation guidelines in source and
target domains. Without specific knowledge of
the target domain’s annotation standards, signifi-
cant improvement can not be made(Dredze et al.,
2007). In this paper, we discussed the situation that
the data of source and target domains were anno-
tated under the same annotation guideline. So we
used a data set converted from Penn Chinese Tree-
bank (CTB)3.

Labeled data: the CTB(V5.0) was used in our
experiments. The data set was converted by the
same rules for conversion as Chen et al. (2008)
did. We used files 1-270, 400-554, and 600-931
as source domain training data (STrain), files 271-
300 as source domain testing data (STest) and files
590-596 as target domain testing data (TTest). We
used the gold standard segmentation and POS tags
in the CTB. The target domain data was from Sino-
rama magazine, Taiwan and the source domain
data was mainly from Xinhua newswire, mainland
of China. The genres of these two parts were quite
different. Table 2 shows the statistical information
of the data sets. Given the words of the STrain
data, TTest included 30.79% unknown words. We
also checked the distribution of POS tags. The dif-
ference was large, too.

Unlabeled data: three data sets were used in
our experiments, including the PFR data (5.44M
words), the CKIP data (5.44M words), and the
SINO data (25K words). The PFR corpus4 in-
cluded the documents from People’s Daily at 1998
and we used about 1/3 of all sentences. The CKIP5

corpus was used for SIGHAN word segmentation
bakeoff 2005. To simplify, we used their segmen-
tation. The SINO data was the files 1001-1151 of
CTB, also from Sinorama magazine, the same as
our testing target data. We removed the annotation
tags from the SINO data. Among the three unla-
beled data, the SINO data was closest to testing
target data because they came from the same re-
source. Table 2 lists the information of data sets.
From the table, we found that the PFR data was

3More detailed information can be found at
http://www.cis.upenn.edu/˜chinese/.

4More detailed information can be found at
http://www.icl.pku.edu.

5More detailed information can be found at
http://rocling.iis.sinica.edu.tw/CKIP/index.htm
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Num Of Words Unknown Word Rate
STrain 17983 -
STest 1829 9.73
TTest 1783 30.79
CKIP 140k -
STest 1829 11.42
TTest 1783 8.63
PFR 123k -

STest 1829 8.58
TTest 1783 15.64

Table 2: The information of the data sets

closer to source domain and the CKIP data was
closer to target domain.

To assign POS tags for the unlabeled data, we
used the package TNT (Brants, 2000) to train a
POS tagger on training data. Because the PFR data
and the CTB used different POS standards, we did
not use the POS tags in the PFR data.

We measured the quality of the parser by the un-
labeled attachment score (UAS), i.e., the percent-
age of tokens with correct head. We also reported
the accuracy of ROOT.

6 Results

In the following content, OURS refers to our pro-
posed approach. The baseline system refers to the
Basic Parser.

6.1 Basic experiments
In this section, we examined the performance of
baseline systems and our proposed approach with
different unlabeled data sets.

Table 3 shows the experimental results, where
“OURS with SINO(GOLD)” refers to the parser
using gold standard POS tags, and “OURS with
SINO(AUTO)” refers to the parser using auto-
assigned POS tags. From the two results of base-
line, we found that the parser performed very dif-
ferently in two domains by 8.24%.

With the help of SINO(AUTO), OURS pro-
vided 1.11% improvement for UAS and 6.16%
for ROOT. If we used gold standard POS tags,
the score was 78.40% for UAS (1.34% improve-
ment), and 65.40% for ROOT (6.64% improve-
ment). By using the SINO data, our approach
achieved significant improvements over baseline
system. It was surprised that OURS with CKIP
achieved 78.30% score, just a little lower than the
one with SINO(GOLD). The reason may be that
the size of the CKIP data was much bigger than
the SINO data. So we can obtain more word pairs
from the CKIP data. The parser achieved 0.30%

Data UAS ROOT
baseline(STest) 85.30 88.21
baseline(TTest) 77.06 58.76
OURS with SINO(GOLD) 78.40(+1.34) 65.40
OURS with SINO(AUTO) 78.17(+1.11) 64.92
OURS with CKIP 78.30(+1.24) 65.87
OURS with PFR 77.36(+0.30) 63.03

Table 3: Basic results

lmax SINO(GOLD) SINO(AUTO)
1 77.84 77.80
3 78.03 77.95
5 78.22 78.17
7 78.40 78.11
9 78.38 78.13
∞ 78.35 78.09

Table 4: The effect of different lmax

improvement with PFR. Even though the size of
the SINO data was smaller, the parser performed
well with its help.

These results indicated that we should collect
the unlabeled data that is closer to target domain
or larger. The improvements of OURS with CKIP
and OURS with SINO were significant in one-tail
paired t-test (p < 10−5).

6.2 The effect of different lmax

Table 4 shows the experimental results, where lmax

is described at Section 4.1. With SINO(GOLD),
our parser performed best at lmax = 7. And
with SINO(AUTO), it performed best at lmax = 5.
These indicated that our approach can incorpo-
rate pairs with different lengthes to improve per-
formance. We also found that the long dependen-
cies were not reliable, as the curve (diffDomain)
of Figure 2 showed that the scores were less than
50% when lengthes were larger than 8.

6.3 Comparison of other systems

In this section, we turned to compare our approach
with other methods. We implemented two sys-
tems: SelfTrain and CoTrain. The SelfTrain sys-
tem was following to the method described by
Reichart and Rappoport (2007) and randomly se-
lected new auto-parsed sentences. The CoTrain
system was similar to the learning scheme de-
scribed by Sagae and Tsujii (2007). However, we
did not use the same parsing algorithms as the
ones used by Sagae and Tsujii (2007). Firstly, we
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Method UAS ROOT
baseline 77.06 58.76
SelfTrain 77.44 60.18
CoTrain 77.57 60.81
OURS 78.30 65.87

Table 5: The results of several adaptation methods
with CKIP

trained a forward parser (same as our baseline sys-
tem) and a backward parser. Then the identical
parsed sentences by the two parsers were selected
as newly labeled data. Finally, we retrained a for-
ward parser with new training data. We selected
the sentences having about 200k words from the
CKIP data as newly labeled data for the SelfTrain
and CoTrain systems.

Table 5 shows the experimental results. Both
systems provided about 0.4%-0.5% improvement
over baseline system. Our approach performed
best among all systems. Another problem was
that the time for training the SelfTrain and CoTrain
systems became much longer because they almost
used double size of training data.

7 Analysis

In this section, we try to understand the benefit in
our proposed adaptation methods. Here, we com-
pare OURS’s results with baseline’s.

7.1 Improvement relative to dependency
length

We presented an idea that using the information on
shorter dependencies in auto-parsed target data to
help parse the words with longer distance for do-
main adaptation. In this section, we investigated
how our approach performed for parsing longer
distance words. Figure 4 shows the improvement
relative to dependency length. From the figure, we
found that our approach always performed better
than baseline when dependency lengthes were 1-7.
Especially, our approach achieved improvements
by 2.58% at length 3, 5.38% at 6, and 3.67% at
7. For longer ones, the improvement was not sta-
ble. One reason may be that the numbers of longer
ones were small. Another reason was that parsing
long distance words was very difficult. However,
we still found that our approach did improve the
performance for longer ones, by performing better
at 8 points and worse at 5 points when length was
not less than 8.
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Figure 4: Performance as a function of dependency
length

7.2 Improvement relative to unknown words

The unknown word problem is an important is-
sue for adaptation. Our approach can partially re-
lease the unknown word problem. We listed the
data of the numbers of unknown words from 0 to
8 because the number of sentences was very small
for others. We grouped each sentence into one of
three classes: (Better) those where our approach’s
score increased relative to the baseline’s score,
(NoChange) those where the score remained the
same, and (Worse) those where the score had a rel-
ative decrease. We added another class (NoWorse)
by merging Better and NoChange.

Figure 5 shows the experimental results, where
x axis refers to the number of unknown words in
one sentence and y axis refers to how many per-
cent the class has. For example, for the sentences
having 5 unknown words, about 45.45% improved,
22.73% became worse, 31.82% kept unchanged,
and 77.27% did not become worse. The NoWorse
curve showed that regardless of the number of un-
known words in a sentence, there was more than
60% chance that our approach did not harm the re-
sult. The Better curve and Worse curve showed
that our approach always provided better results.
Our approach achieved most improvement for the
middle ones. The reason was that parsing the sen-
tence having too many unknown words was very
difficult.

7.3 Improvement relative to POS pairs

In this section, we listed the improvements rela-
tive to POS tags of paired words having a depen-
dency relation. Table 6 shows the accuracies of
baseline and OURS on TOP 20 POS pairs (or-
dered by the frequencies of their occurrences in
testing data), where “A1” refers to the accuracy
of baseline, “A2” refers to the accuracy of OURS,
and “Pairs” is the POS pairs of dependent-head.
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Figure 5: Performance as a function of number of
unknown words

Pairs A1 A2(A2-A1) Pairs A1 A2(A2-A1)
NN-VV 79.61 81.90(+2.29) DEG-NN 94.74 94.74(=)
VV-VV 50.00 50.40(+0.40) CD-M 96.77 97.85(+1.08)
NN-NN 86.08 87.26(+1.18) NN-P 76.92 76.92(=)
AD-VV 91.01 91.01(=) JJ-NN 92.11 94.74(+2.63)
P-VV 68.60 70.25(+1.65) AD-VA 98.55 98.55(=)
DEC-NN 97.48 98.32(+0.84) NN-VA 78.95 84.21(+5.26)
NR-VV 81.98 81.98(=) NN-DEG 96.43 94.64(-1.79)
VV-DEC 74.07 73.15(-0.92) VV-VC 40.82 46.94(+6.12)
NR-NN 87.85 87.85(=) AD-VC 95.92 93.88(-2.04)
NN-VC 90.91 91.92(+1.01) VA-VV 60.87 67.39(+6.52)

Table 6: Improvement relative to POS pairs

For example, “NN-VV” means that “NN” is the
POS of the dependent and “VV” is the POS of the
head. And baseline yielded 79.61% accuracy and
OURS yielded 81.90% (2.29% higher) on “NN-
VV”. From the table, we found that our approach
worked well for most POS pairs (better for eleven
pairs, no change for six, and worse for three).

8 Conclusion

This paper presents a simple but effective approach
to adapt dependency parser by using unlabeled tar-
get data. We extract the information on shorter de-
pendencies in an unlabeled data parsed by a basic
parser to help parse longer distance words. The
experimental results show that our approach sig-
nificantly outperforms baseline system and current
state of the art adaptation techniques.

There are a lot of ways in which this research
could be continued. First, we can apply our ap-
proach to other languages because our approach is
independent on language. Second, we can enlarge
the unlabeled data set to obtain more word pairs to
provide more information for the parsers.
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Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, pages
915–932.

Nivre, J. 2003. An efficient algorithm for projective
dependency parsing. In Proceedings of IWPT2003,
pages 149–160.

Reichart, Roi and Ari Rappoport. 2007. Self-training
for enhancement and domain adaptation of statistical
parsers trained on small datasets. In Proceedings of
ACL, Prague, Czech Republic, June.

Sagae, Kenji and Jun’ichi Tsujii. 2007. Dependency
parsing and domain adaptation with LR models and
parser ensembles. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, pages
1044–1050.

Yamada, H. and Y. Matsumoto. 2003. Statistical de-
pendency analysis with support vector machines. In
Proceedings of IWPT2003, pages 195–206.

120


