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Abstract

This paper addresses the fundamental
problem of document classification, and
we focus attention on classification prob-
lems where the classes are mutually exclu-
sive. In the course of the paper we advo-
cate an approximate sampling distribution
for word counts in documents, and demon-
strate the model’s capacity to outperform
both the simple multinomial and more re-
cently proposed extensions on the classifi-
cation task. We also compare the classi-
fiers to a linear SVM, and show that pro-
vided certain conditions are met, the new
model allows performance which exceeds
that of the SVM and attains amongst the
very best published results on the News-
groups classification task.

1 Introduction

Document classification is one of the key technolo-
gies in the emerging digital world: as the amount
of textual information existing in electronic form
increases exponentially, reliable automatic meth-
ods to sift through the haystack and pluck out the
occasional needle are almost a necessity.

Previous comparative studies of different classi-
fiers (for example, (Yang and Liu, 1999; Joachims,
1998; Rennie et al., 2003; Dumais et al., 1998))
have consistently shown linear Support Vector Ma-
chines to be the most appropriate method. Gen-
erative probabilistic classifiers, often represented
by the multinomial classifier, have in these same
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studies performed poorly, and this empirical evi-
dence has been bolstered by theoretical arguments
(Lasserre et al., 2006).

In this paper we revisit the theme of genera-
tive classifiers for mutually exclusive classification
problems, but consider classifiers employing more
complex models of language; as a starting point
we consider recent work (Madsen et al., 2005)
which relaxes some of the multinomial assump-
tions. We continue and expand upon the theme
of that work, but identify some weaknesses both
in its theoretical motivations and practical applica-
tions. We demonstrate a new approximate model
which overcomes some of these concerns, and
demonstrate substantial improvements that such a
model achieves on four classification tasks, three
of which are standard and one of which is a newly
created task. We also show the new model to be
highly competitive to an SVM where the previous
models are not.

§2 of the paper describes previous work which
has sought a probabilistic model of language and
its application to document classification. §3 de-
scribes the models we consider in this paper, and
gives details of parameter estimation. §4 describes
our evaluation of the models, and §5 presents the
results of this evaluation. §6 explores reasons for
the observed results, and finally §7 ends with some
concluding remarks.

2 Related Work

The problem of finding an appropriate and
tractable model for language is one which has been
studied in many different areas. In many cases, the
first (and often only) model is one in which counts
of words are modelled as binomial– or Poisson–
distributed random variables. However, the use of
such distributions entails an implicit assumption
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that the occurrence of words is the result of a fixed
number of independent trials—draws from a ”bag
of words”—where on each trial the probability of
success is constant.

Several authors, among them (Church and Gale,
1995; Katz, 1996), observe empirically such mod-
els are not always accurate predictors of actual
word behaviour. This moves them to suggest dis-
tributions for word counts where the underlying
probability varies between documents; thus the ex-
pected behaviour of a word in a new document is
a combination of predictions for all possible prob-
abilities. Other authors (Jansche, 2003; Eyhera-
mendy et al., 2003; Lowe, 1999) use these same
ideas to classify documents on the basis of subsets
of vocabulary, in the first and third cases with en-
couraging results using small subsets (in the sec-
ond case, the performance of the model is shown
to be poor compared to the multinomial).

When one moves to consider counts of all words
in some vocabulary, the proper distribution of
the whole vector of word counts is multinomial.
(Madsen et al., 2005) apply the same idea as for
the single word (binomial) case to the multino-
mial, using the most convenient form of distribu-
tion to represent the way the vector of multino-
mial probabilities varies between documents, and
report encouraging results compared to the simple
multinomial. However, we show that the use of
the most mathematically convenient distribution to
describe the way the vector of probabilities varies
entails some unwarranted and undesirable assump-
tions. This paper will first describe those assump-
tions, and then describe an approximate technique
for overcoming the assumptions. We show that,
combined with some alterations to estimation, the
models lead to a classifier able to outperform both
the multinomial classifier and a linear SVM.

3 Probabilistic Models of Language for
Document Classification

In this section, we briefly describe the use of a gen-
erative model of language as applied to the prob-
lem of document classification, and also how we
estimate all relevant parameters for the work which
follows.

In terms of notation, we use c̃ to represent a ran-
dom variable and c to represent an outcome. We
use roman letters for observed or observable quan-
tities and greek letters for unobservables (i.e. pa-
rameters). We write c̃ ∼ ϕ(c) to mean that c̃ has

probability density (discrete or continuous) ϕ(c),
and write p(c) as shorthand for p(c̃ = c). Finally,
we make no explicit distinction in notation be-
tween univariate and multivariate quantities; how-
ever, we use θj to refer to the j-th component of
the vector θ.

We consider documents to be represented as
vectors of count–valued random variables such
that d = {d1...dv}. For classification, interest
centres on the conditional distribution of the class
variable, given such a document. Where docu-
ments are to be assigned to one class only (as in
the case of this paper), this class is judged to be
the most probable class. For generative classifiers
such as those considered here, the posterior distri-
bution of interest is modelled from the joint distri-
bution of class and document; thus if c̃ is a variable
representing class and d̃ is a vector of word counts,
then:

p(c|d) ∝ p(c) · p(d|c) (1)

For the purposes of this work we also assume a
uniform prior on c̃, meaning the ultimate decision
is on the basis of the document alone.

Multinomial Sampling Model
A natural way to model the distribution of

counts is to let p(d|c) be distributed multinomially,
as proposed in (Guthrie et al., 1994; McCallum
and Nigam, 1998) amongst others. The multino-
mial model assumes that documents are the result
of repeated trials, where on each trial a word is se-
lected at random, and the probability of selecting
the j-th word from class c is θcj . However, in gen-
eral we will not use the subscript c – we estimate
one set of parameters for each possible class.

Using multinomial sampling, the term p(d|c)
has distribution:

pmultinomial(d|θ) =

(∑
j dj

)
!∏

j (dj !)

∏
j

θ
dj

j (2)

A simple Bayes estimator for θ can be obtained
by taking the prior for θ as a Dirichlet distribution,
in which case the posterior is also Dirichlet. De-
note the total training data for the class in ques-
tion as D = {(d11...d1v) ... (dk1...dkv)} (that is,
counts of each of v words in k documents). Then
if p(θ) ∼ Dirichlet(α1...αv), the mean of p(θ|D)
for the j-th component of θ (which is the estimate
we use) is:
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θ̂j = E[θj |D] =
αj + nj∑
j αj + n•

(3)

where the nj are the sufficient statistics
∑

i nij ,
and n• is

∑
j nj . We follow common practice and

use the standard reference Dirichlet prior, which is
uniform on θ, such that αj = 1 for all j.

3.1 Hierarchical Sampling Models

In contrast to the model above, a hierarchical sam-
pling model assumes that θ̃ varies between docu-
ments, and has distribution which depends upon
parameters η. This allows for a more realistic
model, letting the probabilities of using words vary
between documents subject only to some general
trend.

For example, consider documents about politics:
some will discuss the current British Prime Minis-
ter, Gordon Brown. In these documents, the proba-
bility of using the word brown (assuming case nor-
malisation) may be relatively high. Other politics
articles may discuss US politics, for example, or
the UN, French elections, and so on, and these ar-
ticles may have a much lower probability of using
the word brown: perhaps just the occasional refer-
ence to the Prime Minister. A hierarchical model
attempts to model the way this probability varies
between documents in the politics class.

Starting with the joint distribution p(θ, d|η) and
averaging over all possible values that θ may take
in the new document gives:

p(d|η) =
ˆ
p(θ|η)p(d|θ) dθ (4)

where integration is understood to be over the
entire range of possible θ. Intuitively, this allows
θ̃ to vary between documents subject to the restric-
tion that θ̃ ∼ p(θ|η), and the probability of observ-
ing a document is the average of its probability for
all possible θ, weighted by p(θ|η). The sampling
process is 1) θ is first sampled from p(θ|η) and
then 2) d is sampled from p(d|θ), leading to the
hierarchical name for such models.

Dirichlet Compound Multinomial Sampling
Model

(Madsen et al., 2005) suggest a form of (4)
where p(θ|η) is Dirichlet-distributed, leading to
a Dirichlet–Compound–Multinomial sampling dis-
tribution. The main benefit of this assumption is
that the integral of (4) can be obtained in closed

form. Thus p(d|α) (using the standard α notation
for Dirichlet parameters) has distribution:

pDCM (d|α) =

(∑
j dj

)
!∏

j (dj !)
×

Γ
(∑

j αj

)
Γ
(∑

j dj + αj

)
×
∏
j

Γ(αj + dj)
Γ(αj)

(5)

Maximum likelihood estimates for the α are dif-
ficult to obtain, since the likelihood for α is a func-
tion which must be maximised for all components
simultaneously, leading some authors to use ap-
proximate distributions to improve the tractability
of maximum likelihood estimation (Elkan, 2006).
In contrast, we reparameterise the Dirichlet com-
pound multinomial, and estimate some of the pa-
rameters in closed form.

We reparameterise the model in terms of µ and
λ – µ is a vector of length v, and λ is a con-
stant which reflects the variance of θ. Under this
parametrisation, αj = λµj . The estimate we use
for µj is simply:

µ̂j =
nj

n•
(6)

where nj and n• are defined above. This simply
matches the first moment about the mean of the
distribution with the first moment about the mean
of the sample. Once again letting:

D = {d1...dk} = {(d11...d1v)...(dk1...dkv)}
denote the training data such that the di are indi-

vidual document vectors and dij are counts of the
j-th word in the i-th document, the likelihood for
λ is:

L(λ) =
∏

i

Γ(
∑

j λµj)
Γ(
∑

j dij + λµj)

∏
j

Γ(λµj + dij)
Γ(λµj)

(7)
This is a one–dimensional function, and as such

is much more simple to maximise using standard
optimisation techniques, for example as in (Minka,
2000).

As before, however, simple maximum likeli-
hood estimates alone are not sufficient: if a word
fails to appear at all in D, the corresponding µj

will be zero, in which case the distribution is im-
proper. The theoretically sound solution would be
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to incorporate a prior on either α or (under our
parameterisation) µ; however, this would lead to
high computational cost as the resulting posterior
would be complicated to work with. (Madsen et
al., 2005) instead set each α̂j as the maximum like-
lihood estimate plus some ε, in some ways echo-
ing the estimation of θ for the multinomial model.
Unfortunately, unlike a prior this strategy has the
same effect regardless of the amount of training
data available, whereas any true prior would have
diminishing effect as the amount of training data
increased. Instead, we supplement actual training
data with a pseudo–document in which every word
occurs once (note this is quite different to setting
ε = 1); this echoes the effect of a true prior on µ,
but without the computational burden.

A Joint Beta-Binomial Sampling Model

Despite its apparent convenience and theoretical
well–foundedness, the Dirichlet compound multi-
nomial model has one serious drawback, which
is emphasised by the reparameterisation. Under
the Dirichlet, there is a functional dependence be-
tween the expected value of θj , µj and its variance,
where the relationship is regulated by the constant
λ. Thus two words whose µj are the same will also
have the same variance in the θj . This is of concern
since different words have different patterns of use
– to use a popular turn of phrase, some words are
more “bursty” than others (see (Church and Gale,
1995) for examples). In practice, we may hope
to model different words as having the same ex-
pected value, but drastically different variances –
unfortunately, this is not possible using the Dirich-
let model.

The difficulty with switching to a different
model is the evaluation of the integral in (4). The
integral is in fact in many thousands of dimensions,
and even if it were possible to evaluate such an
integral numerically, the process would be excep-
tionally slow.

We overcome this problem by decomposing the
term p(d|η) into a product of independent terms
of the form p(dj |ηj). A natural way for each of
these terms to be distributed is to let the probability
p(dj |θj) be binomial and to let p(θj |ηj) be beta–
distributed. The probability p(dj |ηj) (where ηj =
{αj , βj}, the parameters of the beta distribution) is
then:

pbb(dj |αj , βj) =
(
n

dj

)
B(dj + αj , n− dj + βj)

B(αj , βj)
(8)

where B(•) is the Beta function. The term
p(d|η) is then simply:

pbeta−binomial(d|η) =
∏
j

p(dj |ηj) (9)

This allows means and variances for each of the
θj to be specified separately, but this comes at a
price: while the Dirichlet ensures that

∑
j θj = 1

for all possible θ, the model above does not. Thus
the model is only an approximation to a true model
where components of θ have independent means
and variances, and the requirements of the multi-
nomial are fulfilled. However, given the inflexibil-
ity of the Dirichlet multinomial model, we argue
that such a sacrifice is justified.

In order to estimate parameters of the Beta–
Binomial model, we take a slight departure from
both (Lowe, 1999) and (Jansche, 2003) who have
both used a similar model previously for individual
words. (Lowe, 1999) uses numerical techniques
to find maximum likelihood estimates of the αj

and βj , which was feasible in that case because of
the highly restricted vocabulary and two-classes.
(Jansche, 2003) argues exactly this point, and uses
moment–matched estimates; our estimation is sim-
ilar to that, in that we use moment–matching, but
different in other regards.

Conventional parameter estimates are affected
(in some way or other) by the likelihood function
for a parameter, and the likelihood function is such
that longer documents exert a greater influence on
the overall likelihood for a parameter. That is, we
note that if the true binomial parameter θij for the
j-th word in the i-th document were known, then
the most sensible expected value for the distribu-
tion over θj would be:

E [θj ] =
1
k
×

k∑
i=1

θij (10)

Whereas the expected value of conventional
method–of–moments estimate is:

E [θj ] =
k∑

i=1

p (θij)× θ̂ij (11)

That is, a weighted mean of the maximum like-
lihood estimates of each of the θij , with weights
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given by p (θij), i.e. the length of the i-th docu-
ment. Similar effects would be observed by max-
imising the likelihood function numerically. This
is to our minds undesireable, since we do note be-
lieve that longer documents are necessarily more
representative of the population of all documents
than are shorter ones (indeed, extremely long doc-
uments are likeliy to be an oddity), and in any case
the goal is to capture variation in the parameters.

This leads us to suggest estimates for parameters
such that the expected value of the distribution is
as in 10 but with the θij (which are unknown) re-
placed with their maximum likelihood estimates,
θ̂ij . We then use these estimates to specify the de-
sired variance, leading to the simultaneous equa-
tions:

αj

αj + βj
=

∑
i θ̂ij

k
(12)

αjβj

(αj + βj)2(αj + βj + 1)
=∑

i(θ̂ij − E[θj ])2

k
(13)

As before, we supplement actual training doc-
uments with a pseudo-document in which every
word occurs once to prevent any αj being zero.

4 Evaluating the Models

This section describes evaluation of the models
above on four text classification problems.

The Newsgroups task is to classify postings into
one of twenty categories, and uses data originally
collected in (Lang, 1995). The task involves a rel-
atively large number of documents (approximately
20,000) with roughly even distribution of mes-
sages, giving a very low baseline of approximately
5%.

For the second task, we use a task derived from
the Enron mail corpus (Klimt and Yang, 2004), de-
scribed in (Allison and Guthrie, 2008). Corpus is
a nine–way email authorship attribution problem,
with 4071 emails (between 174 and 706 emails per
author)1. The mean length of messages in the cor-
pus is 75 words.

WebKB is a web–page classification task, where
the goal is to determine the webpage type of the
unseen document. We follow the setup of (McCal-
lum and Nigam, 1998) and many thereafter, and

1The corpus is available for download from
www.dcs.shef.ac.uk/˜ben.

use the four biggest categories, namely student,
faculty, course and project. The resulting
corpus consists of approximately 4,200 webpages.

The SpamAssassin corpus is made available for
public use as part of the open-source Apache Spa-
mAssassin Project2. It consists of email divided
into three categories: Easy Ham, which is email
unambiguously ham (i.e. not spam), Hard Ham
which is not spam but shares many traits with
spam, and finally Spam. The task is to apply these
labels to unseen emails. We use the latest ver-
sion of all datasets, and combine the easy ham and
easy ham 2 as well as spam and spam 2 sets to
form a corpus of just over 6,000 messages.

In all cases, we use 10–fold cross validation
to make maximal use of the data, where folds
are chosen by random assignment. We define
“words” to be contiguous whitespace–delimited
alpha–numeric strings, and perform no stemming
or stoplisting.

For the purposes of comparison, we also present
results using a linear SVM (Joachims, 1999),
which we convert to multi–class problems using
a one–versus–all strategy shown to be amongst
the best performing strategies (Rennie and Rifkin,
2001). We normalise documents to be vectors of
unit length, and resolve decision ambiguities by
sole means of distance to the hyperplane. We also
note that experimentation with non–linear kernels
showed no consistent trends, and made very little
difference to performance.

5 Results

Table 1 displays results for the three models over
the four datasets. We use the simplest measure of
classifier performance, accuracy, which is simply
the total number of correct decisions over the ten
folds, divided by the size of the corpus. In response
to a growing unease over the use of significance
tests (because they have a tendency to overstate
significance, as well as obscure effects of sample
size) we provide 95% intervals for accuracy as well
as the metric itself. To calculate these, we view ac-
curacy as an (unknown) parameter to a binomial
distribution such that the number of correctly clas-
sified documents is a binomially distributed ran-
dom variable. We then calculate the Bayesian in-
terval for the parameter, as described in (Brown et
al., 2001), which allows immediate quantification

2The corpus is available online at
http://spamassassin.apache.org/publiccorpus/
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of uncertainty in the true accuracy after a limited
sample.

As can be seen from the performance figures,
no one classifier is totally dominant, although there
are obvious and substantial gains in using the Beta-
Binomial model on the Newsgroups and Enron
tasks when compared to all other models. The Spa-
mAssassin corpus shows the beta–binomial model
and the SVM to be considerably better than the
other two models, but there is little to choose be-
tween them. The WebKB task, however, shows
extremely unusual results: the SVM is head and
shoulders above other methods, and of the genera-
tive approaches the multinomial is clearly superior.
In all cases, the Dirichlet model actually performs
worse than the multinomial model, in contrast to
the observations of (Madsen et al., 2005).

In terms of comparison with other work, we note
that the performance of our multinomial model
agrees with that in other work, including for exam-
ple (Rennie et al., 2003; Eyheramendy et al., 2003;
Madsen et al., 2005; Jansche, 2003). Our Dirichlet
model performs worse than that in (Madsen et al.,
2005) (85% here compared to 89% in that work),
which we attribute to their experimentation with
alternate smoothing ε as described in §3.1. We
note however that the Beta-Binomial model here
still outperforms that work by some considerable
margin. Finally, we note that our beta–binomial
model outperforms that in (Jansche, 2003), which
we attribute mainly to the altered estimate, but also
to the partial vocabulary used in that work. In fact,
(Jansche, 2003) shows there to be little to sepa-
rate the beta-binomial and multinomial models for
larger vocabularies, in stark contrast to the work
here, and this is doubtless due to the parameter es-
timation.

6 Analysis

One might expect performance of a hierarchical
sampling model to eclipse that of the SVM because
of the nature of the decision boundary, provided
certain conditions are met: the SVM estimates
a linear decision boundary, and the multinomial
classifier does the same. However, the decision
boundaries for the hierarchical classifiers are non–
linear, and can represent more complex word be-
haviour, provided that sufficient data exist to pre-
dict it. However, unlike generic non–linear SVMs
(which made little difference compared to a lin-
ear SVM) the non–linear decision boundary here

arises naturally from a model of word behaviour.
For the hierarchical models, performance rests

on the ability to estimate both the rate of word oc-
currence θj and also the way that this rate varies
between documents. To reliably estimate variance
(and arguably rate as well) would require words to
occur a sufficient number of times. However, this
section will demonstrate that two of the datasets
have many words which do not occur with suf-
ficient frequency to estimate parameters, and in
those two the linear SVM’s performance is more
comparable.

We present two quantifications of word reuse to
support our conclusions. The first are frequency
spectra for each of the four corpora, shown in Fig-
ure 1. The two more problematic datasets appear
in the top of the figure. To generate the charts, we
pool all documents from all classes in a each prob-
lem, and count the number of words that appear
once, twice, and so on. The x axis is the num-
ber of times a word occurs, and the y axis the total
number of words which have that count.

The WebKB corpus has the large majority of
words occurring very few times (the mass of the
distribution is concentrated towards the left of the
chart), while the SpamAssassin corpus is more rea-
sonable and the Newsgroups corpus has by far
the most words which occur with substantial fre-
quency (this correlates perfectly with the relative
performances of the classifiers on these datasets).
For the Enron corpus, it is somewhat harder to tell,
since its size means no words occur with substan-
tial frequency.

We also consider the proportion of all word pairs
in a corpus in which the first word is the same as
the second word. If a corpus has n• words total
with total counts n1...nv then the statistic is:

r =
1

(n•(n• − 1)) /2

∑
i

(ni(ni − 1))/2. (14)

To measure differing tendencies to reuse words,
we calculate the r statistic once for each class, and
then its mean across all classes in a problem (Ta-
ble 2). We note that the two corpora on which the
hierarchical model dominates have much greater
tendency for word reuse, meaning the extra pa-
rameters can be esimated with greater accuracy.
The SpamAssassin corpus is, by this measure, a
harder task, but this is somewhat mitigated by the
more even frequency distribution evidenced in Fig-
ure 1; on the other hand, the WebKB corpus does
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Newsgroups Enron Authors WebKB SpamAssassin

Multinomial 85.66 ± 0.5 74.55 ± 1.34 85.69 ± 1.06 95.96 ± 0.5

DCM 85.03 ± 0.51 74.43 ± 1.34 82.69 ± 1.15 91.47 ± 0.7

Beta-Bin 91.65 ± 0.4∗+ 83.54 ± 1.14∗+ 84.81 ± 1.08 97.35 ± 0.4∗

SVM 88.8 ± 0.45∗ 80 ± 1.23∗ 92.68 ± 0.79∗ 97.65 ± 0.38∗

Table 1: Performance of four classifiers on four tasks. Error is 95% interval for accuracy. Bold denotes
best performance on a task. ∗ denotes performance superior to multinomial which exceeds posterior
uncertainty (i.e. observed performance outside 95% interval). + denotes the same for the SVM
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Frequency Spectrum of Words in the WebKB Corpus
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Frequency Spectrum of Words in the Newsgroups Corpus
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Frequency Spectrum of Words in the Enron Authors Corpus
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Figure 1: Frequency spectra for the four datasets. y axis is on a logarithmic scale

not look promising for the hierarchical model by
either measure.

7 Conclusion

In this paper, we have advocated the use of a
joint beta–binomial distribution for word counts in
documents for the purposes of classification. We
have shown that this model outperforms classifiers
based upon both multinomial and Dirichlet Com-
pound Multinomial distributions for word counts.

We have further made the case that, where cor-
pora are sufficiently large as to warrant it, a gener-
ative classifier employing a hierarchical sampling
model outperforms a discriminative linear SVM.
We attribute this to the capacity of the proposed
model to capture aspects of word behaviour be-

yond a simpler model. However, in cases where
the data contain many infrequent words and the
tendency to reuse words is relatively low, default-
ing to a linear classifier (either the multinomial
for a generative classifier, or preferably the lin-
ear SVM) increases performance relative to a more
complex model, which cannot be fit with sufficient
precision.
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