
A Natural Language Processing Infrastructure for Turkish

A. C. Cem SAY
Department of Computer Engineering,

Bogaziçi University,
Bebek,�stanbul

say@boun.edu.tr

Özlem ÇET�NO�LU
Faculty of Engineering and Natural Sciences,

Sabancı University,
Tuzla,�stanbul

ozlemc@sabanciuniv.edu

�eniz DEM�R
Department of Computer Engineering,

Bogaziçi University
Bebek,�stanbul

sdemir@cse.yeditepe.edu.tr

Fatih Ö�ÜN
Department of Computer Engineering,

Bogaziçi University
Bebek,�stanbul

fatih_ogun@yahoo.com

Abstract

We built an open-source software platform in-
tended to serve as a common infrastructure that
can be of use in the development of new applica-
tions involving the processing of Turkish. The
platform incorporates a lexicon, a morphological
analyzer/generator, and a DCG parser/generator
that translates Turkish sentences to predicate
logic formulas, and a knowledge base frame-
work. Several developers have already utilized
the platform for a variety of applications, includ-
ing conversation programs and an artificial per-
sonal assistant, tools for automatic analysis of
rhyme and meter in Turkish folk poems, a proto-
type sentence-level translator between Albanian,
Turkish, and English, natural language interfaces
for generating SQL queries and JAVA code, as
well as a text tagger used for collecting statistics
about Turkish morpheme order for a speech rec-
ognition algorithm. The results indicate the
adaptability of the infrastructure to different
kinds of applications and how it facilitates im-
provements and modifications.

Introduction

The obvious potential of natural language processing
technology for economic, social and cultural pro-
gress can be realized more comprehensively if NLP
techniques applicable to a wider selection of the lan-
guages of the world are developed. Before the full-
scale treatment of a new language can start, a con-
siderable amount of effort has to be invested to
computerize the lexical, morphological and syntactic
specifics of that language, which would be required
by any nontrivial application.

We built an open-source software platform in-
tended to serve as a common infrastructure that can
be of use in the development of new applications
involving the processing of Turkish. The platform,
named TOY (Çetino�lu 2001), is essentially a big
set of predicates in the logic programming language
Prolog. The choice of Prolog, which was designed
specifically with computational linguistics applica-
tions in mind, as the implementation language for
our software has natural consequences for the
knowledge representation setup to be used by other
programs built on our platform. Prolog is based on
first-order predicate calculus, it allows knowledge
items to be represented in terms of logic-style facts
and rules, and a built-in theorem prover drives the
execution of Prolog queries.

The TOY program’s internal organization into
source files reflects the three different levels (see
Figure 1) on which text-based NLP applications can
be based. In terms of that figure, processing at a
“deeper” level necessitates all components of “shal-
lower” levels.

In this paper, we describe this infrastructure and
how it was adapted to a variety of applications. Sec-
tion 2 gives a brief overview of the infrastructure.
Section 3 presents the applications based on it.

1 Infrastructure

The TOY platform is formed of a lexicon that con-
tains most of the Turkish morphemes (either root or
suffix), a Turkish morphological analyzer/generator,
a DCG parser/generator for Turkish, and a semantic
processor which interfaces the aforementioned sub-
units with the underlying knowledge base for
knowledge addition and extraction.

Figure 1. TOY’s Internal Organization.

1.1 Lexicon

A complete lexicon is supposed to contain entries
for all morphemes (meaningful units that make up
words) for the language in question. There are two
kinds of morphemes: roots and affixes. In Turkish,
all affixes follow the root, that is, they are suffixes.
Our lexicon contains entries for over 29000 roots
and 157 suffixes. A single morpheme may have
more than one entry, corresponding to its different
allomorphs. A morpheme definition example for the
word “çocuk” (“child”) is shown in Figure 2.

Figure 2. Morpheme Definition.

The semantic representation slot gives a descrip-

tion of the contribution of the morpheme to the
meaning of full-size sentences in which it appears:
Since the meanings of sentences are represented by
predicate logic formulas in our setup, roots contrib-
ute “partial” versions of such formulas, with “holes”
to be filled by the contributions of the other words of
the sentence. For instance, the semantic representa-
tion entry of the noun “çocuk” is çocuk(_). In the
sentence “Ali çocuktur” (“Ali is a child”), the value
of the missing argument is supplied by the name Ali,
resulting in the formula çocuk('Ali') for the overall
sentence.

For noun entries, the commonsense knowledge
slot contains a pointer to the location of the thing
described by this noun in the taxonomy tree (see
Figure 4) used by the program. (The entry for
“çocuk”, for instance, indicates that it can be
reached by descending from the root along the “con-
crete entity”-“animate-“human being” arcs.) For
verbs, this slot contains a set of restrictions on the
various argument slots of the verb. As an example,
the agent of the verb “ye-” (“eat”) is restricted to be
a living thing, and its theme is restricted to be a
solid.

1.2 Morphological Analyzer/ Generator

In the infrastructure, possible legal orderings of
Turkish morphemes are represented by a large finite
state diagram, a small part of which can be seen in
Figure 3. The morphological component of the plat-
form is a finite state transducer that makes use of the
lexicon for traversing the arcs of the diagram
(adopted, with changes, from Kemal Oflazer’s work
on Turkish morphology (Oflazer 1993)) to associate
a character string with the list of meaning contribu-
tions of its morphemes. This traversal is complicated
by the vowel harmony constraint of Turkish mor-
phology. This rule means that, when adding a suffix
to a word, the allomorph to be added is a function of
the last vowel of the word to be extended. For in-
stance, the plural suffix has the two allomorphs “-
ler” and “-lar”. The Turkish word for “children” is
“çocuklar”, while “olives” is “zeytinler”, since
“back vowels” like “a” and “u” require a back vowel
in the suffix, whereas “front vowels” like “e” and “i”
require a front vowel there. The program keeps track
of the vowels during the transduction to enforce
these constraints. Words of foreign origin which vio-
late vowel harmony are flagged appropriately in the
lexicon.

Figure 3. A Subgraph of the Morphological FST

Employed by TOY.

Like most Prolog predicates the morphological

component is reversible, that is, the same piece of
code can be used both to analyze a given word to
obtain its underlying constituents, and to generate a
word when given a list of such constituents. Another
built-in feature of Prolog makes it very easy for the
program to compute all results associated with a par-
ticular input when more than one legal output is
possible, as in the case of the analysis of the
morphologically ambiguous word “yedi”, where our

morphological parser produces, through backtrack-
ing, two alternative analyses: the third-
person/singular past tense inflection of the verb “ye-
” (“eat”), and the Turkish number word for “seven”.

1.3 DCG Parser/Generator

We encoded a subset of the syntax rules of Turkish
in Prolog’s DCG notation. The DCG formalism al-
lows the computation of the meaning formula of a
constituent to be performed in parallel with its syn-
tactic parsing; each DCG rule is written to indicate
how the partial meanings of the elements on its
right-hand side fit together to produce the semantic
expression for the constituent on the left-hand side.

Certain language constructs correspond naturally
to the notion of quantification in predicate calculus.
For instance, the sentence “Bir çocuk zeytin yedi.”
(“A child ate (an/some) olive(s)”) can be represented
by the logical formula
∃X∃Y(çocuk(X) ∧ zeytin(Y) ∧ ye(Event, X,Y, Loca-

tion, Time, Goal, Source, Instrument, defi-
nite_past, none, positive)).

In the Prolog program, existentially quantified
expressions like this one have the form
some(X,Restrictor,Scope), where X is the quantified
variable, and Restrictor and Scope are the two sides
of the conjunction (Covington, 1994)
some(X,çocuk(X),some(Y,zeytin(Y),ye(EventMarker,

X,Y,Location,Time,Goal,Source,Instrument,
definite_past,none,positive)))

The successful DCG parsing of a sentence also re-
sults in a field being instantiated to a symbol repre-
senting the sentence’s mood. Possible values for the
mood field are “statement,” “yes_no_question,” and
“wh_question.”

This component of the program is also designed
to be reversible, that is, it can produce the corre-
sponding sentence when given a logical formula, but
yet another peculiarity of the language complicates
the solution: Turkish word order is (almost) free,
which basically means that the sentence constituents
can be shuffled around without changing the mean-
ing. Therefore, a single semantic formula usually
corresponds to several different sentences, even
without taking synonymity of words into account.
Our software has the capability of producing multi-
ple alternative sentences as output in such cases.

1.4 Anaphora Resolver

In general, the full-scale processing of all but very
simple sentences necessitates information that is not
present in the sentence itself, the most obvious ex-
amples being question sentences. This additional
information is either pre-encoded in the knowledge
base as part of a big store of commonsense knowl-
edge, or, when the agent is involved in a dialogue or

a story understanding task, it is gleaned from the
other sentences in the input.

One example where the computation of the mean-
ing of a declarative sentence requires access to
knowledge obtained from previous sentences is the
process of anaphora resolution. Resolving an ana-
phor is the job of finding out which discourse
marker (unique internal name) to use for the entity
referred to by this phrase in the knowledge base.
There is no “correct” algorithm for this task because
of the inherent ambiguity of natural language (Lenat
1995). Our resolver selects a discourse marker for an
anaphoric reference making use of the taxonomy
tree (see Figure 4), semantic type information in its
dictionary, pointers to the locations in this tree, and
the positions of the original referents in their sen-
tences.

Our resolver treats only definite clauses as ana-
phors and resolves direct anaphors. Gelbukh and
Sidorov (1999) propose ways of solving indirect
anaphors.

Figure 4. TOY’s Taxonomy Tree.

An anaphor and its antecedent can be related if

semantic type of the anaphor contains the semantic
type of the antecedent or vice versa or their types
intersect. Resolution of indirect anaphors will be
added to TOY’s anaphora resolver in the future. This
taxonomy tree will also be used for this purpose.

1.5 Knowledge Base Interface

This module translates predicate logic formulas cre-
ated by the DCG parser to Prolog facts and rules. As
an example, the sentence “Ali çocuktur” (“Ali is a
child”) is eventually translated to the Prolog fact
çocuk('Ali'), whose form enables it to take part in
automatic proofs involving this knowledge item
when necessary. In general, nouns and adjectives are
represented as single-argument predicates standing
for the invoked property.

Verbs other than “to be” have a considerably
more complicated representation. The Prolog
equivalent of the sentence “Ali gitti” (“Ali left”) is

Figure 5. Prolog Representation Example.

Of course, from the point of view of the com-
puter, (or, for that matter, of anybody who cannot
speak Turkish,) a formula like çocuk('Ali') is just as
opaque as “Ali çocuktur”. When we look up a
strange word in the dictionary, we comprehend its
meaning by mentally linking it in appropriate ways
to the words appearing in its description. If a suffi-
ciently large subgraph of this network of concepts
that exists in our minds is replicated in the computer,
it would be able to give the same response to an in-
put sentence as a human utilizing the same network.
For instance, the Prolog rule

çocuk(X):- insan(X), küçük(X).
(where “insan” means “human” and “küçük” means
“small” in Turkish) relates these three concepts in a
way similar to the picture in most people’s minds.

The translation of a Turkish sentence to the corre-
sponding predicate logic formula by the DCG rules
is just an intermediate step in the processing of that
sentence. “Understanding” a sentence necessitates a
computation involving both this formula and the
current contents of the knowledge base, possibly
resulting in a change to the knowledge base, and the
generation of an appropriate response.

Skolemization is used in the automatic transfor-
mation of the logical formulas of declarative sen-
tences to actual Prolog code by means of replacing
all the existentially quantified variables by special
expressions called Skolem functions. The purpose of
this operation is to assign a discourse marker to
every entity which is mentioned but not named in
the sentence. These markers are the atomic symbols
used by the computer to model the world being de-
scribed and referred to during the conversation, and
keeping track of them is an essential part of the dia-
logue processing task.

For wh-question sentences, the DCG parser cre-
ates formulas in the form of Prolog predicates. For
instance, the sentence “Kim zeytin yedi?” (“Who ate
(an/some) olive(s)?”) is translated to the formula
which(X,insan(X),some(Y,zeytin(Y),ye(Event,X,Y,

Loc, Time,Goal,Source, Instrument,
 definite_past, none, positive))
whose form matches the already available logic pro-
gram which(Item,Property1Item,Property2Item). See
the next section for a discussion of these “question-
word” routines.

2 Applications Based on TOY

In this section, we will present some applications
that were developed using the TOY infrastructure.
Each subsection will briefly explain the application,
the TOY components used, and the modifications
done on the infrastructure.

2.1 Conversational agent – TOYagent

Smith (1994) classifies dialogue styles that can be
adopted by the computer during human-computer
interaction into four modes, depending on the degree
of control that the computer has on the dialogue:
Directive, suggestive, declarative, and passive.
TOYagent’s original approach mostly suits the pas-
sive mode, where the user has complete control, and
the computer passively acknowledges user state-
ments, and provides information only as a response
to direct user requests.

TOYagent (Demir 2003) enables users to make
on-line additions to the lexicon without the need to
know Prolog. When faced with a word that it is un-
able to parse morphologically, TOYagent engages in
a (mostly menu-driven) subdialogue with the user to
identify the root, category, and morphophonemic
properties of the word, and adds the appropriate en-
tries to the lexicon. The meanings of these new
words can be incorporated to the system by the logic
program synthesis facility, which enables the user to
provide natural language descriptions for new predi-
cates in terms of existing predicates. These descrip-
tions are automatically converted to Prolog clauses
and added to the knowledge base of the program for
future use.

The original dialogue algorithm embedded in
TOYagent can be summarized as follows:
1. Read a sentence (this may cause a “word learn-

ing” subdialogue if one or more words in the sen-
tence cannot be parsed by the morphological
analyzer)

2. Analyze the sentence using the DCG parser, re-
solving anaphors if necessary. If the syntactic
parse is unsuccessful, report this to the user and
GOTO 1.

3. If the mood is “statement”, then the user is mak-
ing a declarative statement; use the built-in theo-
rem prover to try to prove the logical formula
corresponding to the sentence. There are two pos-
sibilities: (In the following, all the “canned” re-
sponses are in Turkish, of course.)

 a. If the formula can be proven using the cur-
rent contents of the knowledge base, the informa-
tion contained in the sentence is already there;
respond with “Thanks, I know that”

 b. If Prolog fails to prove the formula with its
current knowledge, then negate the formula and
try to prove this negation. There are two possibili-
ties:

 i. If this new formula can be proven using the
current contents of the knowledge base, the infor-
mation contained in the sentence is contradictory
with what we already know; respond with “I do
not think so”

 ii. If Prolog fails to prove this new formula
with its current knowledge, create the necessary
discourse and event markers and assert the Prolog
clauses representing the input sentence to the
knowledge base, responding with “Thanks for the
information”

4. If the mood is “yes_no_question”, the user has
asked a yes-no question; use the built-in the prover
to try to prove the sentence’s logical formula.
There are two possibilities:

 a. If the formula can be proven using the current
contents of the knowledge base, respond with
“Yes”

 b. If Prolog fails to prove the formula with its
current knowledge, then negate the formula and
try to prove this negation. There are two possibili-
ties:

 i. If this new formula can be proven using the
current contents of the knowledge base, respond
with “No”

 ii. If Prolog fails to prove this new formula
with its current knowledge, respond with “I do not
know.”

5. If the mood is “wh_question”, the user has asked
a wh-question; use the built-in theorem prover on
the sentence’s logical formula. The associated
program of each question word scans the knowl-
edge base and produces the relevant answer. The
answer can be printed out directly, or, if required,
in the form of a grammatical sentence generated
by a procedure that first prepares a new logical
formula from the produced knowledge items and
then uses the syntax and morphology components
to form the statement corresponding to this for-
mula. GOTO 1.
The following conversation fragments, in which

user entries are shown in boldface, illustrate several
aspects of TOYagent. (The English translations are
not part of TOYagent’s input-output, and have been
added “manually.”)

As an example to “online” learning of lexical en-
tries, we deleted the word “ana” (“mother”) from the
lexicon, and carried out the following dialogue with
the program:
 Her ana güzeldir. (Every mother is beautiful)
“ana” kelimesini bilmiyorum. (I do not know the
word “ana”)
 Kelimenin kökü nedir? (What is the stem of this
word?)
 1: a
2: an
3: ana
 Hangisi: 3.
 (Please enter: 3.)
“ana” kelimesinin tipi nedir? (What is the type of
the word “ana”?)

 1: Cins isim (1: Common noun)
 2: Sıfat (2: Adjective)
 3: Özel isim(3: Proper noun)
 Hangisi: 3.
(Please enter: 3)
 Sözlü�e eklendi. (It has been added to the lexicon)
 “ana” ne demek? Anlatır mısın? (Could you ex-
plain the word “ana”?)
 Çocu�u olan bir bayan anadır. (A female who has a
child is a mother)
 Te�ekkürler, ö�rendim. (Thanks for the information)

Since the unknown word could have appeared in

an inflected form in the input sentence, TOYagent
first asks about the actual stem. A Prolog rule corre-
sponding to the relevant universally quantified logic
formula is prepared and asserted for each of the
user’s sentences read in this dialogue. The last line is
the program’s response to the original input sen-
tence.
Ay�e bir anadır. (Ay�e is a mother)
Te�ekkürler, ö�rendim. (Thanks for the information)
Ay�e güzel midir? (Is Ay�e beautiful?)
Evet. (Yes)
Neden? (Why?)
Her ana güzeldir. (Every mother is beautiful)
Ay�e anadır. (Ay�e is a mother)

The affirmative answer requires stepping through

the implication translated to Prolog during the proc-
essing of the original user entry. The question
“why?” is answered by translating the Prolog formu-
las used for the previous answer back to sentence
form.

Definite noun phrases are treated as anaphors:
Canan küçük bir çocuk. (Canan is a small child)
Te�ekkürler, ö�rendim. (Thanks for the information)
Çocuk kahvaltıda zeytin yedi. (The child ate olives
for breakfast)
Te�ekkürler, ö�rendim. (Thanks for the information)
Kim zeytin yedi? (Who ate olives?)
Canan zeytin yedi. (Canan ate olives)
Kaç ki�i kahvaltıda zeytin yedi? (How many people
ate olives for breakfast?)
Bir ki�i kahvaltıda zeytin yedi. (One person ate ol-
ives for breakfast)

The definite noun phrase in the second user entry

(“the child”) is matched to the most recently men-
tioned child. As mentioned earlier, question words
have small Prolog programs corresponding to them.
The answer extracted from the knowledge base is
presented in the form of a grammatically correct
sentence. (The fact that every child is also a person
is one of the commonsense items that have been
preencoded in the knowledge base.)

A rudimentary capability of commonsense rea-
soning about time is implemented: The “time” ar-
gument in verb predicates has a substructure with
slots for the beginning and ending points of the in-
terval corresponding to the event. (In the present
version, only a small subset of the verbal lexicon
entries have their time subslots manually encoded
for this purpose.) Hours are used as the unit interval.
Kemal küçük bir çocuk. Bütün küçük çocuklar 10
saat uyurlar. (Kemal is a small child. All small chil-
dren sleep for 10 hours)
Te�ekkürler, ö�rendim. (Thanks for the information)
Kemal saat 23’te uyudu. (Kemal fell asleep at 23
hours)
Te�ekkürler, ö�rendim. (Thanks for the information)
Kemal ne zaman uyudu? (When did Kemal fall
asleep?)
Kemal yirmiüçte uyudu. (Kemal fell asleep at twenty
three)
Kemal ne zaman uyandı? (When did Kemal wake
up?)
Kemal dokuzda uyandı. (Kemal woke up at nine)

Note that the program is able to do the “modulo

24” calculation required for producing the appropri-
ate answer.

To find pronominal references in the absence of
gender information, the semantic network is utilized.
In the following excerpt, the pronoun “o”
(“he/she/it”) is correctly deduced to correspond to
“çay” (“tea”), since the network does not allow
“Kemal”, a human name, to be the agent of the word
“bit-” (“to be consumed entirely”), which can have
only inanimate material at that role.
Kemal kahvaltıda ne içti? (What did Kemal drink for
breakfast?)
Bilmiyorum. (I do not know)
Kemal çay içti ise o bitmi�tir. (If Kemal drank tea,
(he/she/it) must have been consumed entirely)
Te�ekkürler, ö�rendim. (Thanks for the information)
Kemal çay içti. (Kemal drank tea)
Te�ekkürler, ö�rendim.(Thanks for the information)
Çay bitmi� midir? (Has the tea been consumed en-
tirely?)
Evet (Yes)

The latest release of TOYagent (Ö�ün 2003) is

able to manage conversations with multiple agents,
can adapt different “attitudes” about whether to be-
lieve what a user says depending on the user’s pro-
file, and has the capability of detecting and pointing
out inconsistencies among the statements made by
different users. This version also supports an op-
tional “inquisitive” dialogue mode, where the com-
puter questions the user about the values of currently
empty slots in the verb predicates corresponding to
previous user statements.

2.2 Turkish Natural Language Interface
For SQL Queries (NALAN-TS)

NALAN-TS (Maden, Demir and Özcan 2003) is a
Turkish natural language query interface for SQL
databases, formed of a syntactic parser, semantic
analyzer, meaning extractor, SQL constructor and
executer. It is a dictionary based application and in-
cludes Turkish and database dictionaries.

Figure 6. NALAN-TS Flow Diagram.

The shaded modules in Figure 6 were taken com-

pletely from the TOY infrastructure, except for a
few modifications like the addition of new Turkish
syntax rules and a different format for the semantic
representation of the words in the dictionary. TOY’s
knowledge base interface is taken as the basis by
NALAN-TS.

2.3 Turkish Speaking Assistant -TUSA

TUSA (�eker, 2003) is a natural language interface
for an online personal calendar. The morphological
analyzer/generator of TOY was taken as a basis in
this project with modifications made for utilizing.

2.4 Generating Java Class Skeleton Using a
Natural Language Interface- TUJA

TUJA (Özcan, �eker and Karadeniz 2004) is a natu-
ral language interface for generating Java source
code and creating an object-oriented semantic net-
work. This program uses TOY’s morphological ana-
lyzer/generator as the starting point.

2.5 Other Applications

Ballhysa (2000) used TOY to produce a prototypical
sentence-level translator between Albanian, English,
and Turkish. (To our knowledge, this is the first
NLP work ever done on Albanian) Duta�acı (2002)
used the morphological component to tag a Turkish
corpus of nearly ten million words to collect statis-
tics and compared the performance of an N-gram
model of speech recognition based on morphemes
with those based on words or syllables. Tekeli
(2002) made use of the word-level components to
build an “ELIZA-like” (Covington 1994) dialogue
program which caricaturizes Fatih Terim, a famous
soccer coach and an idiosyncratic Turkish speaker.

The program’s “bag of tricks” includes coming up
with rhyming responses to user sentences. Bilsel
(2000) developed a “poem expert” for analyzing
Turkish folk poems for their rhyme and meter prop-
erties, a demanding task which is part of the high-
school curriculum in Turkey.

Conclusion

Our work on TOY is continuing on many fronts: The
DCG component is currently being extended to
cover both a bigger subset of Turkish syntax, and
some types of agrammatical sentences. We hope that
TOY will be useful in the development of many
other applications in the near future.

References

Can Tekeli 2002. TERIM_SON. B.S. Thesis, Department
of Computer Engineering, Bogazici University.

Douglas Lenat 1995. CYC: A Large-Scale Investment in
Knowledge Infrastructure. In “Comm. ACM, 38/11”,
pages 33-38.

Eda Bilsel 2000. Poem Analyzer, B.S. Thesis, Department
of Computer Engineering, Bogazici University.

Elton Ballhysa 2000. Albanian-Turkish-English Transla-
tor. B.S. Thesis, Department of Computer Engineering,
Bogazici University.

Ender Özcan, �adi E. �eker and Zeynep. I. Karadeniz
2004. Generating Java Class Skeleton Using A Natural
Language Interface. In “First International Workshop
on Natural Language Understanding and Cognitive Sci-
ence-NLUCS”.

Fatih Ö�ün 2003. Design and Implementation of an Im-
proved Conversational Agent Infrastructure for Turk-
ish. M.S. Thesis, Department of Computer Engineering,
Bogazici University.

Helin Duta�acı 2002. Statistical Language Models for
Large Vocabulary Turkish Speech Recognition. M.S.
Thesis, Department of Computer Engineering, Bogazici
University.

Ibrahim Maden, �eniz Demir and Ender Özcan 2003.
Turkish Natural Language Interface for Generating
SQL Queries. In “TBD 20. Ulusal Bili�im Kurultayi”.

Kemal Oflazer 1993. Two-Level Description of Turkish
Morphology. In “Proc. Second Turkish Symposium on
Artificial Intelligence and Neural Networks”, Bogazici
University Press, pages 86-93, Istanbul.

Michael A .Covington 1994. Natural Language Process-
ing for Prolog Programmers. Prentice Hall, Englewood
Cliffs, NJ.

Özlem Çetino�lu 2001. A Prolog Based Natural Lan-
guage Processing Infrastructure for Turkish. M.S. The-
sis, Department of Computer Engineering, Bogazici
University.

Ronnie W. Smith 1994. Spoken Variable Initiative Dia-
log: An Adaptable Natural-Language Interface. In
“IEEE Expert: Intelligent Systems and Their Applica-
tions 9/1”,pages 45-50.

�adi E. �eker 2003. Design and Implementation of a
Personal Calendar with a Natural Language Interface
in Turkish. M.S. Thesis, Department of Computer En-
gineering, Yeditepe University.

�eniz Demir 2003. Improved Treatment of Word Meaning
in a Turkish Conversational Agent. M.S. Thesis, De-
partment of Computer Engineering, Bogazici Univer-
sity.

