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Abstract 
Lexico-semantic networks such as WordNet 
have been criticized about the nature of the 
senses they distinguish as well as on the way 
they define these senses. In this article, we pre-
sent a possible solution to overcome these lim-
its by defining the sense of words from the way 
they are used. More precisely, we propose to 
differentiate the senses of a word from a net-
work of lexical cooccurrences built from a 
large corpus. This method was tested both for 
French and English and was evaluated for Eng-
lish by comparing its results with WordNet. 

1 Introduction 
Semantic resources have proved to be useful in 
information retrieval and information extraction 
for applications such as query expansion (Voor-
hees, 1998), text summarization (Harabagiu and 
Maiorano, 2002) or question/answering (Pasca and 
Harabagiu, 2001). But this work has also shown 
that these resources must be used with caution: 
they bring on an improvement of results only if 
word sense disambiguation is performed with a 
great accuracy. These findings bring one of the 
first roles of a semantic resource to light: discrimi-
nating and characterizing the senses of a set of 
words. The main semantic resources with a wide 
coverage that can be exploited by computers are 
lexico-semantic networks such as WordNet. Be-
cause of the way they were built, mainly by hand, 
these networks are not fundamentally different 
from traditional dictionaries. Hence, it is not very 
surprising that they were criticized, as in (Hara-
bagiu et al., 1999), for not being suitable for Natu-
ral Language Processing. They were criticized 
both about the nature of the senses they discrimi-
nate and the way they characterize them. Their 
senses are considered as too fine-grained but also 
incomplete. Moreover, they are generally defined 
through their relations with synonyms, hyponyms 

and hyperonyms but not by elements that describe 
the contexts in which they occur. 

One of the solutions for solving this problem 
consists in automatically discovering the senses of 
words from corpora. Each sense is defined by a list 
of words that is not restricted to synonyms or hy-
peronyms. The work done in this area can be di-
vided into three main trends. The first one, repre-
sented by (Pantel and Lin, 2002), is not focused on 
the problem of discovering word senses: its main 
objective is to build classes of equivalent words 
from a distributionalist viewpoint, hence to gather 
words that are mainly synonyms. In the case of 
(Pantel and Lin, 2002), the discovering of word 
senses is a side effect of the clustering algorithm, 
Cluster By Committee, used for building classes of 
words: as a word can belong to several classes, 
each of them can be considered as one of its 
senses. The second main trend, found in (Schütze, 
1998), (Pedersen and Bruce, 1997) and (Puran-
dare, 2003), represents each instance of a target 
word by a set of features that occur in its 
neighborhood and applies an unsupervised cluster-
ing algorithm to all its instances. Each cluster is 
then considered as a sense of the target word. The 
last trend, explored by (Véronis, 2003), (Dorow 
and Widdows, 2003) and (Rapp, 2003), starts from 
the cooccurrents of a word recorded from a corpus 
and builds its senses by gathering its cooccurrents 
according to their similarity or their dissimilarity. 
Our work takes place in this last trend. 

2 Overview 
The starting point of the method we present in this 
article is a network of lexical cooccurrences, that 
is a graph whose vertices are the significant words 
of a corpus and edges represent the cooccurrences 
between these words in the corpus. The discove-
ring of word senses is performed word by word 
and the processing of a word only relies on the 
subgraph that contains its cooccurrents. The first 



step of the method consists in building a matrix of 
similarity between these cooccurrents by exploit-
ing their relations in the subgraph. An unsuper-
vised clustering algorithm is then applied for 
grouping these cooccurrents and giving rise to the 
senses of the considered word. This method, as the 
ones presented in (Véronis, 2003), (Dorow and 
Widdows, 2003) and (Rapp, 2003), relies on the 
following hypothesis: in the subgraph gathering 
the cooccurrents of a word, the number of relations 
between the cooccurrents defining a sense is 
higher than the number of relations that these 
cooccurrents have with those defining the other 
senses of the considered word. The clustering al-
gorithm that we use is an adaptation of the Shared 
Nearest Neighbors (SNN) algorithm presented in 
(Ertöz et al., 2001). This algorithm particularly fits 
our problem as it automatically determines the 
number of clusters, in our case the number of 
senses of a word, and does not take into account 
the elements that are not representative of the clus-
ters it builds. This last point is especially important 
for our application as there is a lot of “noise” 
among the cooccurrents of a word. 

3 Networks of lexical cooccurrences 
The method we present in this article for discover-
ing word senses was applied both for French and 
English. Hence, two networks of lexical cooccur-
rences were built: one for French, from the Le 
Monde newspaper (24 months between 1990 and 
1994), and one for English, from the L.A. Times 
newspaper (2 years, part of the TREC corpus). The 
size of each corpus was around 40 million words. 

The building process was the same for the two 
networks. First, the initial corpus was pre-
processed in order to characterize texts by their 
topically significant words. Thus, we retained only 
the lemmatized form of plain words, that is, nouns, 
verbs and adjectives. Cooccurrences were classi-
cally extracted by moving a fixed-size window on 
texts. Parameters were chosen in order to catch 
topical relations: the window was rather large, 20-
word wide, and took into account the boundaries 
of texts; moreover, cooccurrences were indifferent 
to word order. As (Church and Hanks, 1990), we 
adopted an evaluation of mutual information as a 
cohesion measure of each cooccurrence. This 
measure was normalized according to the maximal 
mutual information relative to the considered cor-
pus. After filtering the less significant cooccur-

rences (cooccurrences with less than 10 occur-
rences and cohesion lower than 0.1), we got a net-
work with approximately 23,000 words and 
5.2 million cooccurrences for French, 30,000 
words and 4.8 million cooccurrences for English. 

4 Word sense discovery algorithm 
4.1 Building of the similarity matrix be-

tween cooccurrents 
The number and the extent of the clusters built by 
a clustering algorithm generally depend on a set of 
parameters that can be tuned in one way or an-
other. But this possibility is implicitly limited by 
the similarity measure used for comparing the ele-
ments to cluster. In our case, the elements to 
cluster are the cooccurrents in the network of lexi-
cal cooccurrences of the word whose senses have 
to be discriminated. Within the same framework, 
we tested two measures for evaluating the similar-
ity between the cooccurrents of a word in order to 
get word senses with different levels of granular-
ity. The first measure corresponds to the cohesion 
measure between words in the cooccurrence net-
work. If there is no relation between two words in 
the network, the similarity is equal to zero. This 
measure has the advantage of being simple and 
efficient from an algorithmic viewpoint but some 
semantic relations are difficult to catch only from 
cooccurrences in texts. For instance, we experi-
mentally noticed that there are few synonyms of a 
word among its cooccurrents1. Hence, we can ex-
pect that some senses that are discriminated by the 
algorithm actually refer to one sense. 

To overcome this difficulty, we also tested a 
measure that relies not only on first order cooccur-
rences but also on second order cooccurrences, 
which are known to be “less sparse and more ro-
bust” than first order ones (Schütze, 1998). This 
measure is based on the following principle: a vec-
tor whose size is equal to the number of cooccur-
rents of the considered word is associated to each 
of its cooccurrents. This vector contains the cohe-
sion values between this cooccurrent and the other 
ones. As for the first measure, a null value is taken 
when there is no relation between two words in the 
cooccurrence network. The similarity matrix is 
then built by applying the cosine measure between 
 
1 This observation comes from the intersection, for each word 
of the L.A. Times network, of its cooccurrents in the network 
and its synonyms in WordNet. 



each couple of vectors, i.e. each couple of cooc-
currents. With this second measure, two cooccur-
rents can be found strongly linked even though 
they are not directly linked in the cooccurrence 
network: they just have to share a significant num-
ber of words with which they are linked in the 
cooccurrence network. 

4.2 The Shared Nearest Neighbors (SNN) 
algorithm 

The SNN algorithm is representative of the algo-
rithms that perform clustering by detecting the 
high-density areas of a similarity graph. In such a 
graph, each vertex represents an element to cluster 
and an edge links two vertices whose similarity is 
not null. In our case, the similarity graph directly 
corresponds to the cooccurrence network with the 
first order cooccurrences whereas with the second 
order cooccurrences, it is built from the similarity 
matrix described in Section 4.1. The SNN algo-
rithm can be split up into two main steps: the first 
one aims at finding the elements that are the most 
representative of their neighborhood by masking 
the less important relations in the similarity graph. 
These elements are the seeds of the final clusters 
that are built in the second step by aggregating the 
remaining elements to those selected by the first 
step. More precisely, the SNN algorithm is applied 
to the discovering of the senses of a target word as 
follows: 

1. sparsification of the similarity graph: for each 
cooccurrent of the target word, only the links 
towards the k (k=15 in our experiments) most 
similar other cooccurrents are kept. 

2. building of the shared nearest neighbor graph: 
this step only consists in replacing, in the spar-
sified graph, the value of each edge by the 
number of direct neighbors shared by the two 
cooccurrents linked by this edge. 

3. computation of the distribution of strong links 
among cooccurrents: as for the first step, this 
one is a kind of sparsification. Its aim is to 
help finding the seeds of the senses, i.e. the 
cooccurrents that are the most representative of 
a set of cooccurrents. This step is also a means 
for discarding the cooccurrents that have no 
relation with the other ones. More precisely, 
two cooccurrents are considered as strongly 
linked if the number of the neighbors they 
share is higher than a fixed threshold. The 

higher than a fixed threshold. The number of 
strong links of each cooccurrent is then com-
puted. 

4. identification of the sense seeds and filtering 
of noise: the sense seeds and the cooccurrents 
to discard are determined by comparing their 
number of strong links with a fixed threshold. 

5. building of senses: this step mainly consists in 
associating to the sense seeds identified by the 
previous step the remaining cooccurrents that 
are the most similar to them. The result is a set 
of clusters that each represents a sense of the 
target word. For associating a cooccurrent to a 
sense seed, the strength of the link between 
them must be higher than a given threshold. If 
a cooccurrent can be tied to several seeds, the 
one that is the most strongly linked to it is cho-
sen. Moreover, the seeds that are considered as 
too close from each other for giving rise to 
separate senses can also be grouped during this 
step in accordance with the same criteria than 
the other cooccurrents. 

6. extension of senses: after the previous steps, a 
set of cooccurrents that are not considered as 
noise are still not associated to a sense. The 
size of this set depends on the strictness of the 
threshold controlling the aggregation of a 
cooccurrent to a sense seed but as we are inter-
ested in getting homogeneous senses, the value 
of this threshold cannot be too low. Neverthe-
less, we are also interested in having a defini-
tion as complete as possible of each sense. As 
senses are defined at this point more precisely 
than at step 4, the integration into these senses 
of cooccurrents that are not strongly linked to a 
sense seed can be performed on a larger basis, 
hence in a more reliable way. 

4.3 Adaptation of the SNN algorithm 
For implementing the SNN algorithm presented in 
the previous section, one of the points that must be 
specified more precisely is the way its different 
thresholds are fixed. In our case, we chose the 
same method for all of them: each threshold is set 
as a quantile of the values it is applied to. In this 
way, it is adapted to the distribution of these val-
ues. For the identification of the sense seeds 
(threshold equal to 0.9) and for the definition of 
the cooccurrents that are noise (threshold  equal to 



LM-1 LM-2 LAT-1 LAT-1.no LAT-2.no
number of words 17,261 17,261 13,414 6,177 6,177 
percentage of words with at least one sense 44.4% 42.7% 39.8% 41.8% 39% 
average number of senses by word 2.8 2.2 1.6 1.9 1.5 
average number of words describing a sense 16.1 16.3 18.7 20.2 18.9 

Table 1: Statistics about the results of our word sense discovery algorithm 

0.2), the thresholds are quantiles of the number of 
strong links of cooccurrents. For defining strong 
links (threshold equal to 0.65), associating cooc-
currents to sense seeds (threshold equal to 0.5) and 
aggregating cooccurrent to senses (threshold equal 
to 0.7), the thresholds are quantiles of the strength 
of the links between cooccurrents in the shared 
nearest neighbor graph. 

We also introduced two main improvements to 
the SNN algorithm. The first one is the addition of 
a new step between the last two ones. This comes 
from the following observation: although a sense 
seed can be associated to another one during the 
step 5, which means that the two senses they rep-
resent are merged, some clusters that actually cor-
respond to one sense are not merged. This problem 
is observed with the first and the second order 
cooccurrences and cannot be solved, without 
merging unrelated senses, only by adjusting the 
threshold that controls the association of a cooc-
current to a sense seed. In most of these cases, the 
“split” sense is scattered over one large cluster and 
one or several small clusters that only contain 3 or 
4 cooccurrents. More precisely, the sense seeds of 
the small clusters are not associated to the seed of 
the large cluster while most of the cooccurrents 
that are linked to them are associated to this seed. 
Instead of defining a specific mechanism for deal-
ing with these small clusters, we chose to let the 
SNN algorithm to solve the problem by only delet-
ing these small clusters (size < 6) after the step 5 
and marking their cooccurrents as unclassified. 
The last step of the algorithm aggregates in most 
of the cases these cooccurrents to the large cluster. 
Moreover, this new step makes the built senses 
more stable when the parameters of the algorithm 
are only slightly modified. 

The second improvement, which has a smaller 
impact than the first one, aims at limiting the noise 
that is brought into clusters by the last step. In the 
algorithm of (Ertöz et al., 2001), an element can 
be associated to a cluster when the strength of its 
link with one of the elements of this cluster is 

higher than a given threshold. This condition is 
stricter in our case as it concerns the average 
strength of the links between the unclassified 
cooccurrent and those of the cluster. 

5 Experiments 
We applied our algorithm for discovering word 
senses to the two networks of lexical cooccur-
rences we have described in Section 3 (LM: 
French; LAT: English) with the parameters given 
in Section 4. For each network, we tested the use 
of first order cooccurrences (LM-1 and LAT-1) 
and second order ones (LM-2 and LAT-2). For 
English, the use of second order cooccurrences 
was tested only for the subpart of the words of the 
network that was selected for the evaluation of 
Section 6 (LAT-2.no). Table 1 gives some statis-
tics about the results of the discovered senses for 
the different cases. We can notice that a significant 
percentage of words do not have any sense, even 
with second order cooccurrences. This comes from 
the fact that their cooccurrents are weakly linked 
to each other in the cooccurrence network they are 
part of, which probably means that their senses are 
not actually represented in this network. We can 
also notice that the use of second order cooccur-
rence actually leads to have a smaller number of 
senses by word, hence to have senses with a larger 
definition. As Véronis (2003), we give in Table 2 
as an example of the results of our algorithm some 
of the words defining the senses of the polysemous 
French word barrage, which was part of the 
ROMANSEVAL evaluation. Whatever the kind of 
cooccurrences it relies on, our algorithm finds 
three of the four senses distinguished in (Véronis, 
2003): dam (senses 1.3 and 2.1); barricading, 
blocking (senses 1.1, 1.2 and 2.2); barrier, frontier 
(senses 1.4 and 2.3). The sense play-off game 
(match de barrage), which refers to the domain of 
sport, is not found as it is weakly represented in 
the cooccurrence network and is linked to words, 
such as division, that are also ambiguous (it  refers 



LM-1 1.1 manifestant, forces_de_l’ordre, préfecture, agriculteur, protester, incendier, calme, pierre 
(demonstrator, the police, prefecture, farmer, to protest, to burn, quietness, stone)

1.2 conducteur, routier, véhicule, poids_lourd, camion, permis, trafic, bloquer, voiture, autoroute 
(driver, lorry driver, vehicule, lorry, truck, driving licence, traffic, to block, car, highway)

1.3 fleuve, rivière, lac, bassin, mètre_cube, crue, amont, pollution, affluent, saumon, poisson 
(river(2), lake, basin, cubic meter, swelling, upstream water, pollution, affluent, salmon, fish)

1.4 blessé, casque_bleu, soldat, tir, milice, convoi, évacuer, croate, milicien, combattant 
(wounded, U.N. soldier, soldier, firing, militia, convoy, to evacuate, Croatian, militiaman, combatant)

LM-2 2.1 eau, mètre, lac, pluie, rivière, bassin, fleuve, site, poisson, affluent, montagne, crue, vallée 
(water, meter, lake, rain, river(2), basin, setting, fish, affluent, mountain, swelling, valley)

2.2 conducteur, trafic, routier, route, camion, chauffeur, voiture, chauffeur_routier, poids_lourd 
(driver, traffic, lorry driver(3), road, lorry, car, truck)

2.3 casque_bleu, soldat, tir, convoi, milicien, blindé, milice, aéroport, blessé, incident, croate 
(U.N. soldier, soldier, firing, convoy, militiaman, tank, militia, airport, wounded, incident, Croatian)

Table 2: Senses found by our algorithm for the word barrage 

both to the sport and the military domains). It 
should be note that barrage has only 1,104 occur-
rences in our corpus while it has 7,000 occurrences 
in the corpus of (Véronis, 2003), built by crawling 
from the Internet the pages found by a meta search 
engine queried with this word and its morphologi-
cal variants. This example is also a good illustra-
tion of the difference of granularity of the senses 
built from first order cooccurrences and those built 
from the second order ones. The sense 1.1, which 
is close to the sense 1.2 as the two refers to dem-
onstrations in relation to a category of workers, 
disappears when the second order cooccurrences 
are used. Table 3 gives examples of discovered 
senses from first order cooccurrences only, one for 
French (LM-1) and two for English (LAT-1). 

6 Evaluation 
The discovering of word senses, as most of the 
work dedicated to the building of linguistic re-
sources, comes up against the problem of evaluat-
ing its results. The most direct way of doing it is to 
compare the resource to evaluate with a similar 
resource that is acknowledged as a golden stan-
dard. For word senses, the WordNet-like lexico-
semantic networks can be considered as such a 
standard. Using this kind of networks for evaluat-
ing the word senses that we find is of course criti-
cizable as our aim is to overcome their insufficien-
cies. Nevertheless, as these networks are carefully 
controlled, such an evaluation provides at least a 
first judgment about the reliability of the discov-
ered senses. We chose to take up the evaluation 
method proposed in (Pantel and Lin, 2002). This 
method relies on WordNet and shows a rather 

good agreement between its results and human 
judgments (88% for Pantel and Lin). As a conse-
quence, our evaluation was done only for English, 
and more precisely with WordNet 1.7. For each 
considered word, the evaluation method tries to 
map one of its discovered senses with one of its 
synsets in WordNet by applying a specific similar-
ity measure. Hence, only the precision of the word 
sense discovering algorithm is evaluated but 
Pantel and Lin indicate that recall is not very sig-
nificant in this context: a discovered sense may be 
correct and not present in WordNet and con-
versely, some senses in WordNet are very close 
and should be joined for most of the applications 
using WordNet. They define a recall measure but 
only for ranking the results of a set of systems. 
Hence, it cannot be applied in our case. 

The similarity measure between a sense and a 
synset used for computing precision relies on the 
Lin’s similarity measure between two synsets: 

 )2(log)1(log
)(log2)2,1(
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where s is the most specific synset that subsumes 
s1 and s2 in the WordNet hierarchy and P(s) 
represents the probability of the synset s estimated 
from a reference corpus, in this case the SemCor 
corpus. We used the implementation of this meas-
ure provided by the Perl module WordNet 
::Similarity v0.06 (Patwardhan and Pedersen, 
2003). The similarity between a sense and a synset 
is more precisely defined as the average value of 
the similarity values between the words that char-
acterize the sense, or a subset of them, and the 
synset. The similarity between a word and a synset 



organe (1300)2 patient, transplantation, greffe, malade, thérapeutique, médical, médecine, greffer, rein 
(patient, transplantation, transplant, sick person, therapeutic, medical, medicine, to transplant, 
kidney)
procréation, embryon, éthique, humain, relatif, bioéthique, corps_humain, gène, cellule 
(procreation, embryo, ethical, human, relative, bioethics, human body, gene, cell)
constitutionnel, consultatif, constitution, instituer, exécutif, législatif, siéger, disposition 
(constitutional, consultative, constitution, to institute, executive, legislative, to sit, clause)
article, hebdomadaire, publication, rédaction, quotidien, journal, éditorial, rédacteur  
(article, weekly, publication, editorial staff, daily, newspaper, editorial, sub-editor)

mouse (563) compatible, software, computer, machine, user, desktop, pc, graphics, keyboard, device 
laboratory, researcher, cell, gene, generic, human, hormone, research, scientist, rat 

party (16999) candidate, democrat, republican, gubernatorial, presidential, partisan, reapportionment 
ballroom, cocktail, champagne, guest, bash, gala, wedding, birthday, invitation, festivity 
caterer, uninvited, party-goers, black-tie, hostess, buffet, glitches, napkins, catering 

Table 3: Senses found by our algorithm from first order cooccurrences (LM-1 and LAT-1) 

is equal to the highest similarity value among 
those between the synset and the synsets to which 
the word belongs to. Each of these values is given 
by (1). A sense is mapped to the synset that is the 
most similar to it, providing that the similarity 
between them is higher than a fixed threshold 
(equal to 0.25 as in (Pantel and Lin, 2002)). Fi-
nally, the precision for a word is given by the pro-
portion of its senses that match one of its synsets. 

Table 4 gives the results of the evaluation of our 
algorithm for the words of the English cooccur-
rence network that are nouns only and for which at 
least one sense was discovered. As Pantel and Lin, 
we only take into account for evaluation 4 words 
of each sense, whatever the number of words that 
define it. But, because of the way our senses are 
built, we have not a specific measure of the simi-
larity between a word and the words that charac-
terize its senses. Hence, we computed two variants 
of the precision measure. The first one selects the 
four words of each sense by relying on their num-
ber of strong links in the shared nearest neighbor 
graph. The second one selects the four words that 
have the highest similarity score with one of the 
synsets of the target word, which is called “opti-
mal choice” in Table 43. A clear difference can be 
noted between the two variants. With the optimal 
choice of the four words, we get results that are 
similar to those of Pantel and Lin: their precision 
is equal to 60.8 with an average number of words 
defining a sense equal to 14. 

 
2 Each word is given with its frequency in the corpus used for 
building the cooccurrence network. 
3 This selection procedure is only used for evaluation and we 
do no rely on WordNet for building our senses. 

On the other hand, Table 4 shows that the words 
selected on the basis of their number of strong 
links are not strongly linked in WordNet (accord-
ing to Lin’s measure) to their target word. This 
does not mean that the selected words are not in-
teresting for describing the senses of the target 
word but more probably that the semantic relations 
that they share with the target word are different 
from hyperonymy. The results of Pantel and Lin 
can be explained by the fact that their algorithm is 
based on the clustering of similar words, i.e. words 
that are likely to be synonyms, and not on the clus-
tering of the cooccurrents of a word, which are not 
often synonyms of that word. Moreover, their ini-
tial corpus is much larger (around 144 millions 
words) than ours and they make use of more 
elaborated tools, such as a syntactic analyzer. 
 

LAT-1.no LAT-2.no
number of strong links 19.4 20.8 

optimal choice 56.2 63.7 

Table 4: Average precision of discovered senses 
for English in relation with WordNet 

As expected, the results obtained with first order 
cooccurrences (LAT-1.no), which produce a 
higher number of senses by word, are lower than 
the results obtained with second order cooccur-
rences (LAT-2.no). However, without a recall 
measure, it is difficult to draw a clear conclusion 
from this observation: some senses of LAT-1.no 
probably result from the artificial division of an 
actual word sense but the fact to have more homo-
geneous senses in LAT-2.no also facilitates in this 
case the mapping with WordNet’s synsets. 



7 Related work 
As they rely on the detection of high-density areas 
in a network of cooccurrences, (Véronis, 2003) 
and (Dorow and Widdows, 2003) are the closest 
methods to ours. Nevertheless, two main differ-
ences can be noted with our work. The first one 
concerns the direct use they make of the network 
of cooccurrences. In our case, we chose a more 
general approach by working at the level of a simi-
larity graph: when the similarity of two words is 
given by their relation of cooccurrence, our situa-
tion is comparable to the one of (Véronis, 2003) 
and (Dorow and Widdows, 2003); but in the same 
framework, we can also take into account other 
kinds of similarity relations, such as the second 
order cooccurrences. 

The second main difference is the fact they dis-
criminate senses in an iterative way. This approach 
consists in selecting at each step the most obvious 
sense and then, to update the graph of cooccur-
rences by discarding the words that make up the 
new sense. The other senses are then easier to dis-
criminate. We preferred to put emphasis on the 
ability to gather close or identical senses that are 
artificially distinguished (see Section 4.3). From a 
global viewpoint, these two differences lead 
(Véronis, 2003) and (Dorow and Widdows, 2003) 
to build finer senses than ours. Nevertheless, as 
methods for discovering word senses from a cor-
pus tend to find a too large number of close senses, 
it was more important from our viewpoint to fa-
vour the building of stable senses with a clear 
definition rather than to discriminate very fine 
senses. 

8 Conclusion and future work 
In this article, we have presented a new method for 
discriminating and defining the senses of a word 
from a network of lexical cooccurrences. This 
method consists in applying an unsupervised clus-
tering algorithm, in this case the SNN algorithm, 
to the cooccurrents of the word by relying on the 
relations that these cooccurrents have in the cooc-
currence network. We have achieved a first 
evaluation based on the methodology defined in 
(Pantel and Lin, 2002). This evaluation has shown 
that in comparison with WordNet taken as a refer-
ence, the relevance of the discriminated senses is 
comparable to the relevance of Pantel and Lin’s 
word senses. But it has also shown that the 
similarity between a discovered sense and a synset 

larity between a discovered sense and a synset of 
WordNet must be evaluated in our case by taking 
into account a larger set of semantic relations, es-
pecially those implicitly present in the glosses. 
Moreover, an evaluation based on the use of the 
built senses in an application such as query expan-
sion is necessary to determine the actual interest of 
this kind of resources in comparison with a lexico-
semantic network such as WordNet. 
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