
Web-Based List Question Answering

Hui Yang, Tat-Seng Chua
School of Computing

National University of Singapore
3 Science Drive 2, 117543, Singapore

yangh@lycos.co.uk,chuats@comp.nus.edu.sg

Abstract

While research on question answering has be-
come popular in recent years, the problem of ef-
ficiently locating a complete set of distinct
answers to list questions in huge corpora or the
Web is still far from being solved. This paper ex-
ploits the wealth of freely available text and link
structures on the Web to seek complete answers
to list questions. We introduce our system,
FADA, which relies on question parsing, web
page classification/clustering, and content extrac-
tion to find reliable distinct answers with high re-
call.

1 Introduction
The Text REtrieval Conference Series (TREC) has
greatly encouraged Question Answering (QA) re-
search in the recent years. The QA main task in the
recent TREC-12 involved retrieving short concise
answers to factoid and list questions, and answer
nuggets for definition questions (Voorhees, 2003).
The list task in TREC-12 required systems to as-
semble a set of distinct and complete exact answers
as responses to questions like “What are the brand
names of Belgian chocolates?”. Unlike the questions
in previous TREC conferences, TREC-12 list ques-
tions did not specify a target number of instances to
return but expected all answers contained in the cor-
pus. Current QA systems (Harabagiu et al., 2003;
Katz et al., 2003) usually extract a ranked list of fac-
toid answers from the top returned documents by
retrieval engines. This is actually the traditional way
to find factoid answers. The only difference between
answering list questions and factoid questions here is
that list QA systems allow for multiple answers,
whose scores are above a cut-off threshold.

An analysis of the results of TREC-12 list QA
systems (Voorhees, 2003) reveals that many of them
severely suffer from two general problems: low re-
call and non-distinctive answers. The median aver-
age F1 performance of list runs was only 21.3%
while the best performer could only achieve 39.6%
(Table 1). This unsatisfactory performance exposes
the limitation of using only traditional Information
Retrieval and Natural Language Processing tech-
niques to find an exhaustive set of factoid answers as
compared to only one.

TREC-12 Run Tag Avg F1
LCCmainS03 0.396
nusmml03r2 0.319
MITCSAIL03c 0.134
isi03a 0.118
BBN2003B 0.097
Average 0.213

Table 1: TREC-12 Top 5 Performers (Voorhees, 2003)

In contrast to the traditional techniques, the Web
is used extensively in systems to rally round factoid
questions. QA researchers have explored a variety of
uses of the Web, ranging from surface pattern min-
ing (Ravichandran et al., 2002), query formulation
(Yang et al., 2003), answer validation (Magnini et
al., 2002), to directly finding answers on the Web by
data redundancy analysis (Brill et al., 2001). These
systems demonstrated that with the help of the Web
they could generally boost baseline performance by
25%-30% (Lin 2002).

The well-known redundancy-based approach iden-
tifies the factoid answer as an N-gram appearing
most frequently on the Web (Brill et al. 2001). This
idea works well on factoid questions because factoid
questions require only one instance and web docu-
ments contains a large number of repeated informa-
tion about possible answers. However, when dealing
with list questions, we need to find all distinct in-
stances and hence we cannot ignore the less frequent
answer candidates. The redundancy-based approach
fails to spot novel or unexpectedly valuable informa-
tion in lower ranked web pages with few occur-
rences.

In this paper, we propose a novel framework to
employ the Web to support list question answering.
Based on the observations that multiple answer in-
stances often appear in the list or table of a single
web page while multiple web pages may also con-
tain information about the same instance, we differ-
entiate these two types of web pages. For the first
category, which we call Collection Page (CP), we
need to extract table/list content from the web page.
For the second category, which we call Topic Page
(TP), we need to find distinct web pages relating to
different answer instances. We will demonstrate that
the resulting system, FADA (Find All Distinct An-
swers), could achieve effective list question answer-
ing in the TREC corpus.

Figure 1: Examples of Collection Page (top)
and Topic Page (bottom)

The remainder of this paper is organized as fol-
lowing. Section 2 gives the design considerations of
our approach. Section 3 details our question analysis
and web query formulation. Section 4 describes the
web page classification and web document features
used in FADA. Section 5 shows the algorithm of
topic page clustering while Section 6 details the an-
swer extraction process. Section 7 discusses experi-
mental results. Section 8 concludes the paper.

2 Design Considerations
Our goal is to find as many distinct exact answers on
the Web as possible. This requires us to:

• perform effective and exhaustive search; and
• extract distinct answers.

In order to perform effective search, we employ
question transformation to get effectual web queries.
However, this is not a trivial task. If the query is too
general, too many documents may be retrieved and
the system would not have sufficient resources to
scan through all of them. If the query is too specific,
no pages may be retrieved.

Given millions of web pages returned by search
engines, our strategy is to divide-and-conquer by
first identify Collection Pages (CP) that contain a list
of answer instances. For example, for the question
“What breeds of dog have won the "Best in Show"
award at the Westminster Dog Show?”, we can find
a Collection Page as shown in Figure 1 (top). Such a
web page is a very good resource of answers. In
general, we observe that there is a large number of
named entities of the type desired appearing in a
Collection Page, typically in a list or table. Our in-
tuition is that if we can find a Collection Page that
contains almost all the answers, then the rest of the
work is simply to extract answers from it or related
web pages by wrapper rule induction.

Another kind of “good” web page is a Topic Page,
that contains just one answer instance (Figure 1, bot-
tom). It typically contains many named entities,
which correspond to our original query terms and
some other named entities of the answer target type.
Given the huge amount of web data, there will be
many Topic Pages that refer to the same answer in-
stance. There is hence a need to group the pages and
to identify a pertinent and distinctive page in order
to represent a distinct answer.

Table 2: Web Page Classes

The rest of the top returned web pages could be

either relevant or irrelevant to the question. In sum-
mary, we need to classify web pages into four
classes: Collection Page, Topic Page, Relevant Page,
and Irrelevant Page (Table 2), based on their func-
tionality and contribution in finding list answers.

Based on the above considerations, we propose a
general framework to find list answers on the Web
using the following steps:
a) Retrieve a good set of web documents.
b) Identify Collection Pages and distinct Topic

Pages as main resources of answers.
c) Perform clustering on other web pages based on

their similarities to distinct Topic Pages to form
clusters that correspond to distinct answer in-
stances.

d) Extract answers from Collection Pages and Topic
Page clusters.

3 Question Transformation and Web Page
Retrieval

Agichtein et al. (2001) presented a technique on
learning search engine specific query transforma-
tions for question answering. A set of transformation
rules are learned from a training corpus and applied
to the questions at the search time. Related work
could also be found in Kwok et al. (2001) where the
user’s question is processed by a parser to learn its
syntactic structure and various query modulation
techniques are applied to the initial questions to get
high quality results for later answer extraction.

FADA performs question parsing to identify key
question words and the expected answer type. It ex-
tracts several sets of words from the original ques-
tion and identifies the detailed question classes. It

Web page class Description
Collection Page Containing a list of answers
Topic Page The best page to represent an answer

instance
Relevant Page Relevant to an answer instance by

providing either support or objection to
the Topic Page

Irrelevant Page Not related to any answer instance

then formulates a number of queries by combining
the known facets together with heuristic patterns for
list questions.

We perform both shallow and full parsing on a
question followed by Named Entity Recognition
(NER) to get the known query facets and their types.
The shallow parser we used is the free online mem-
ory-based chunker1 and the full parser is MINIPAR2.
Both parsers are very efficient and usually parse 300
words within a second. The procedure of query pars-
ing is as follows:

a) Remove head words. The head words in a ques-
tion could be wh-question words and leading
verbs. The list of head words includes “who, what,
when, where, which, how, how much, how many,
list, name, give, provide, tell”, etc. Removing
them enables us to get the correct subject/object
relation and verb in the question. For example, for
question “What breeds of dog have won the ‘Best
in Show’ award at the Westminster Dog Show?”,
after removing the head word, the question be-
comes “breeds of dog have won the ‘Best in
Show’ award at the Westminster Dog Show”.

b) Detect subject and object for the remaining ques-
tion segments by shallow parsing. For example,
after parsing the above question, we get:
[NP1

Subject breeds//NNS NP1
Subject] {PNP [P

of/IN P] [NP dog/NN NP] PNP} [VP1
have/VBP won/VBN VP1] [NP1

Object the/DT
``/`` Best/JJS NP1

Object] {PNP [P in/IN
P] [NP Show/NNP ''/'' award/NN NP]
PNP} {PNP [P at/IN P] [NP the/DT
Westminster/NNP Dog//NNP Show/NNP NP]
PNP}

From the parsed sentence, we want to get the logi-
cal subject as the sentence subject or its immedi-
ate modifiers. Here we have the logical subject-
“breeds of dog”, verb-“won”, and logical object-
“the best in show award”. If the resulting logical
subject/object is the term “that” as in the follow-
ing parsed query for “U.S. entertainers that later
became politicians”:
[NP U.S./NNP entertainers//NNS NP]
[NP1

Subject that/WDT NP1
Subject] [ADVP

later/RB ADVP] [VP1 became/VBD VP1]
[NP1

Object politicians//NNS NP1
Object]

we get the noun or noun phrase before the clause
as the logical subject/object. Hence, we have the
logical subject-“entertainers”, action-“became”,
and logical object-“politician”.

c) Extract all the noun phrases as potential descrip-
tions from the remaining question segments,
which are usually prepositional phrases or clauses.
For the “dog breeds” example, we get the descrip-
tions-“Westminster Dog Show”.

1 http://ilk.kub.nl/cgi-bin/tstchunk/demo.pl
2 http://www.cs.ualberta.ca/~lindek/minipar.htm

d) Apply named entity recognition to the resulting
description phrases by using NEParser, a fine-
grained named entity recognizer used in our
TREC-12 system (Yang et al., 2003). It assigns
tags like “person”, “location”, “time”, “date”,
“number”. For the “dog breed” example, “West-
minster” gets the location tag.

After the above analysis, we obtain all the known
facets provided in the original question. We then
make use of this knowledge to form web queries to
get the right set of pages. This is a crucial task in
dealing with the Web. One of the query transforma-
tion rules is given as follows:

(list|directoty|category|top|favorite
)? (:|of)? <subj> <action>? <object>?
<description1>? <description2>? …
<descriptionN>?

The rule starts the query optionally with leading
words (list, directory, category), optionally followed
by a colon or “of”, followed by subject phrase
(<subj>), optionally followed by action (<action>),
optionally followed by object (<object>) and de-
scription phrases (<description1>…<descriptionN>).
In the above pattern, “?” denotes optional, “…” omit,
and “|” alternative. For example, for the “dog breed”
question, we form queries “breed of dog won best in
show Westminster Dog Show”, “directory breed of
dog best in show Westminster Dog Show”, and “list
breed of dog won best in show” etc.

Transforming the initial natural language ques-
tions into a good query can dramatically improve the
chances of finding good answers. FADA submits
these queries to well-known search engines (Google,
AltaVista, Yahoo) to get the top 1,000 Web pages
per search engine per query. Here we attempt to re-
trieve a large number of web pages to serve our goal
- find All Distinct answers. Usually, there are a large
number of web pages which are redundant as they
come from the same URL addresses. We remove the
redundant web pages using the URL addresses as the
guide. We also filter out files whose formats are nei-
ther HTML nor plain text and those whose lengths
are too short or too long. Hence the size of the re-
sulting document set for each question varies from a
few thousands to ten of thousands.

4 Web Page Classification
In order to group the web pages returned by the
search engines into the four categories discussed
earlier, it is crucial to find a good set of features to
represent the web pages. Many techniques such as
td.idf (Salton and Buckley, 1988) and a stop word
list have been proposed to extract lexical features to
help document clustering. However, they do not
work well for question answering. As pointed out by
Ye et al. (2003) in their discussion on the per-
son/organization finding task, given two resume

pages about different persons, it is highly possible
that they are grouped into one cluster because they
share many similar words and phrases. On the other
hand, it is difficult to group together a news page
and a resume page about the same target entity, due
to the diversity in subject matter, word choice, liter-
ary styles and document format. To overcome this
problem, they used mostly named entity and link
information as the basis for clustering. Compared to
their task, our task of finding good web documents
containing answers is much more complex. The fea-
tures are more heterogeneous, and it is more difficult
to choose those that reflect the essential characteris-
tics of list answers.

In our approach, we obtain the query words
through subject/object detection and named entity
recognition. We found that there are a large number
of named entities of the same type appearing in a
Collection Page, typically within a list or table. And
in a Topic Page, there is also typically a group of
named entities, which could correspond to our origi-
nal query terms or answer target type. Therefore,
named entities play important roles in semantic ex-
pression and should be used to reflect the content of
the pages.

The Web track in past TREC conferences shows
that URL, HTML structure, anchor text, hyperlinks,
and document length tend to contain important heu-
ristic clues for web clustering and information re-
trieval (Craswell and Hawking, 2002). We have
found that a Topic Page is highly likely to repeat the
subject in its URL, title, or at the beginning of its
page. In general, if the subject appears in important
locations, such as in HTML tags <title>, <H1> and
<H2>, or appears frequently, then the corresponding
pages should be Topic Pages and their topic is about
the answer target.
Followed the above discussion, we design a set of 29
features based on Known Named Entity Type, An-
swer Named Entity Type, ordinary Named Entities,
list, table, URL, HTML structure, Anchor, Hyper-
links, and document length to rep resent the web
pages. Table 3 lists the features used in our system.
In the table and subsequent sections, NE refers to
Named Entity.

We trained two classifiers: the Collection Page
classifier and the Topic Page classifier. The former
classifies web pages into Collection Pages and non-
collection pages while the later further classifies the
non-collection pages into Topic Pages and Others.
Both Classifiers are implemented using Decision
Tree C4.5 (Quinlan 1993). We used 50 list questions
from TREC-10 and TREC-11 for training and
TREC-12 list questions for testing. We parse the
questions, formulate web queries and collect web
pages by using the algorithm described in Section 2.

Table 3: Web Page Features

Each sample is represented using the features
listed in Table 3. Some of the decision rules are as
follows:
a) OUT_Link >= 25 & NE > 78 &
b) Answer_NE >= 30 -> Class CP OUT_Link

<= 25 & Answer_NE <= 5 & NE > 46 ->
Class TP

c) OUT_Link >= 25 & URL_Depth > 3 ->
Others

d) NE <= 4 -> Others

Rule a) implies that good Collection Pages should
have many outlinks, NEs and especially answer NEs.
Rule b) implies that good Topic Pages should have
many NEs but relatively few links and answer NEs.
Rule c) show that Others have deeper URL depth;
while Rule d) shows that they have fewer NEs.

 Feature Meaning
1 |PER| # of Person NEs
2 |ORG| # of Organization NEs
3 |LOC| # of Location NEs
4 |TME| # of Time NEs, including date, year, month
5 |NUM| # of Numer NEs
6 |COD| # of Code NEs, including phone number,

zip code, etc
7 |OBJ| # of Object NEs, including animal, planet,

book, etc
8 |NE| Total number of the above NEs
9 |Known_NE| Total # of NEs within the same NE type as

in the question. In the “dog breed” example,
it is the number of Location NEs since
“Westminster” is identified as Location by
NER.

10 |Unknown_N
E|

of NEs belonging to other NE type. In the
“dog breed” example, it is the total number
of Time and Breed NEs

11 |Answer_NE| # of NEs belonging to expected answer
type. In the “dog breed” example, it is the
number of Breed NEs

12 |Known_NE|
/ |NE|

Ratio of | Known _NE| to |NE|

13 |Unknown_N
E| / |NE|

Ratio of | Unknown _NE| to |NE|

14 |Answer_NE|
/ |NE|

Ratio of |Answer_NE| to |NE|

15 Length # of tokens in a page
16 Content_Len

gth
of words in a page excluding HTML
tags

17 |NE|/Length Ratio of |NE| to |Token|
18 |NE|/Content

_Length
Ratio of |NE| to |Word|

19 |In_Link| # of in-links
20 |Out_Link| # of out-links
21 |All_Link| The sum of in-links and out-links
22 Keyword_in

_Title
Boolean indicating presence of keywords in
page title

23 Keyword_
in_URL

Boolean indicating presence of keywords in
URL

24 Keyword_
in_Page

Boolean indicating presence of keywords in
the page

25 |Answer_NE
_in_Title|

of NEs belonging to expected answer type
presenting in page title

26 |Answer_NE
_in_URL|

of NEs belonging to expected answer type
presenting in URL

27 || # of HTML tags representing a list or table,
including , , ,
,<td>

28 |<a
href=|

of HTML tags, including , ,
,
,<td> to represent a list/table of
anchors,

29 URL_Depth The depth of URL

Web page classification enables us to get Collec-
tion Pages, Topic Pages and the rest of the pages.
Our experiments on TREC-12 list questions showed
that we can achieve a classification precision of
91.1% and 92% for Collection Pages and Topic
Pages respectively.

5 Finding Answer Sources
Based on Web page classification, we form the ini-
tial sets of Collection Pages CPSet, Topic Pages
TPSet and OtherSet. In order to boost the recall, we
first use the outgoing links of Collection Pages to
find more Topic Pages. These outgoing pages are
potential Topic Pages but not necessarily appearing
among the top returned web documents. Our subse-
quent tests reveal that the new Topic Pages intro-
duced by links from Collection Pages greatly
increase the overall answer recall by 23%. The new
Topic Page set becomes:
TPSet’ = TPSet + {outgoing pages of CPs}
Second, we select distinct Topic Pages. We com-

pare the page similarity between each pair of Topic
Pages using the algorithm below.

for each pair {tpi, tpj} in TPSet’
 if (sim(tpi,tpj)> Θ)
 if אANE_in_tpi > אANE_in_tpj
 move tpj into OtherSet;

Here the page similarity function sim() is a linear
combination of overlaps between Known_NE, An-
swer_NE, URL similarity and link similarity. Θ is
preset at 0.75 and may be overridden by the user.
 ANE_in_tpi is the number of named entities ofא
answer type in Topic Page tpi. For those pairs with
high similarity, we keep the page that contains more
named entities of answer type in TPSet’ and move
the other into OtherSet. The resulting Topic Pages
in TPSet’ are distinct and will be used as cluster
seeds for the next step.

Third, we identify and dispatch Relevant Pages
from OtherSet into appropriate clusters based on
their similarities with the cluster seeds.
for each rpi in OtherSet {

 k = argmax {sim(rpi , tpk) }
 if (sim(rpi , tpk) > τ)
 insert rpi into clusterk;
 else
 insert rpi into IrrelevantSet; }

Here τ is preset at 0.55, and sim() is defined as
above. Each cluster corresponds to a distinct answer
instance. The Topic Page provides the main facts
about that answer instance while Relevant Pages
provide supporting materials for the unique answer
instance. The average ratio of correct clustering is
54.1% in our experiments.

Through web page clustering, we avoid early an-
swer redundancy, and have a higher chance to find-
ing distinct answers on the noisy Web.

6 Answer Extraction

6.1 HTML Source Page Cleaning
Many HTML web pages contain common HTML
mistakes, including missing or unmatched tags, end
tags in the wrong order, missing quotes round attrib-
utes, missed / in end tags, and missing > closing tags,
etc. We use HtmlTidy3 to clean up the web pages
before classification and clustering. FADA also uses
an efficient technique to remove advertisements. We
periodically update the list from Accs-Net4, a site
that specializes in creating such blacklists of adver-
tisers. If a link address matches an entry in a black-
list, the HTML portion that contained the link is
removed.

6.2 Answer Extraction from CP
Collection Pages are very good answer resources for
list QA. However, to extract the “exact” answers
from the resource page, we need to perform wrapper
rule induction to extract the useful content. There is
a large body of related work in content extraction,
which enables us to process only extracted content
rather than cluttered data coming directly from the
web. Gupta et al. (2003) parsed HTML documents
to a Document Object Model tree and to extract the
main content of a web page by removing the link
lists and empty tables. In contrast, our link list ex-
tractor finds all link lists, which are table cells or
lists for which the ratio of the number of links to the
number of non-linked words is greater than a spe-
cific ratio. We have written separate extractors for
each answer target type. The answers obtained in
Collection Pages are then “projected” onto the
TREC AQUAINT corpus to get the TREC answers
(Brill et al., 2001).

6.3 Answer Extraction from TP Cluster
Having web pages clustered for a certain question,
especially when the clusters nicely match distinct
answer, facilitates the task of extracting the possible
answers based on the answer target type. We per-
form this by first analyzing the main Topic Pages in
each cluster. In case we find multiple passages con-
taining different answer candidates in the same
Topic Page, we select the answer candidate from the
passage that has the most variety of NE types since
it is likely to be a comprehensive description about
different facets of a question topic. The answer
found in the Topic Page is then “projected” onto the
QA corpus to get the TREC answers as with the Col-
lection Page. In case no TREC answers can be found

3 http://htmltrim.sourceforge.net/tidy.html
4 http://www.accs-net.com/hosts/get_hosts.html

based on the Topic Page, we go to the next most
relevant page in the same cluster to search for the
answer. The process is repeated until either an an-
swer from the cluster is found in the TREC corpus
or when all Relevant Pages in the cluster have been
exhausted.

For the question “Which countries did the first
lady Hillary Clinton visit?”, we extracted the Loca-
tions after performing Named Entity analysis on
each cluster and get 38 country names as answers.
The recall is much higher than the best performing
system (Harabagiu et al., 2003) in TREC-12 which
found 26 out of 44 answers.

7 Evaluation on TREC-12 Question Set
We used the 37 TREC-12 list questions to test the
overall performance of our system and compare the
answers we found in the TREC AQUAINT corpus
(after answer projection (Brill et al. 2001)) with the
answers provided by NIST.

7.1 Tests of Web Page Classification
In Section 3, the web pages are classified into three
classes: Collection Pages, Topic Pages, and Others.
Table 4 shows the system performance of the classi-
fication. We then perform a redistribution of classi-
fied pages, where the outgoing pages from CPs go to
TP collection, and the Relevant Pages are grouped as
supportive materials into clusters, which are based
on distinct Topic Page. Nevertheless, the perform-
ance of web page classification will influence the
later clustering and answer finding task. Table 4
shows that we could achieve an overall classification
average precision of 0.897 and average recall of
0.851. This performance is adequate to support the
subsequent steps of finding complete answers.

Table 4: Performance of Web Page Classification

7.2 Performance and Effects of Web Page
Clustering

Relevant Pages are put into clusters to provide sup-
portive material for a certain answer instance. The
performance of Relevant Page dispatch/clustering is
54.1%. We also test different clustering thresholds
for our web page clustering as defined in Section 5.
We use the F1 measure of the TREC-12 list QA re-
sults as the basis to compare the performance of dif-
ferent clustering threshold combinations as shown in
xx. We obtain the best performance of F1 = 0.464
when τ=0.55 and Θ=0.75.

 Θ(0.55) Θ(0.65) Θ(0.75) Θ=0.85
τ=0.25 0.130 0.234 0. 324 0.236
τ=0.35 0.136 0.244 0. 338 0.232
τ=0.45 0.148 0.332 0. 428 0.146
τ=0.55 0.166 0.408 0. 464 0.244
τ=0.65 0.200 0.322 0. 432 0.236

Table 5: Clustering Threshold Effects

7.3 Overall Performance
Table 6 compares a baseline list question answering
system with FADA. The baseline is based on a sys-
tem which we used in participation in the TREC-12
QA task (Yang et al., 2003). It extends the tradi-
tional IR/NLP approach for factoid QA to perform
list QA, as is done in most other TREC-12 systems.
It achieves an average F1 of 0.319, and is ranked 2nd
in the list QA task.

We test two variants of FADA – one without in-
troducing the outgoing pages from CPs as potential
TPs (FADA1), and one with (FADA2). The two
variants are used to evaluate the effects of CPs in the
list QA task. The results of these two variants of
FADA on the TREC-12 list task are presented in
Table 6.

Table 6: Performance on TREC-12 Test Set

Without the benefit of the outgoing pages from
CPs to find potential answers, FADA1 could boost
the average recall by 30% and average F1 by 16.6%
as compared to the baseline. The great improvement
in recall is rather encouraging because it is crucial
for a list QA system to find a complete set of an-
swers, which is how list QA differ from factoid QA.

By taking advantage of the outgoing pages from
CPs, FADA2 further improves performance to an
average recall of 0.422 and average F1 of 0.464. It
outperforms the best TREC-12 QA system (Voorhees,
2003) by 19.6% in average F1 score.

From Table 6, we found that the outgoing pages
from the Collection Pages (or resource pages) con-
tribute much to answer finding task. It gives rise to
an improvement in recall of 22.7% as compared to
the variant of FADA1 that does not take advantage
of outgoing pages. We think this is mainly due to the
characteristics of the TREC-12 questions. Most
questions ask for well-known things, and famous
events, people, and organization. For this kind of
questions, we can easily find a Collection Page that
contains tabulated answers since there are web sites
that host and maintain such information. For in-
stance, “Westminster Dog Show” has an official

 Avg P Avg R Avg F1
Baseline 0.568 0.264 0.319
FADA1 (w/o outgoing pages) 0.406 0.344 0.372
FADA2 (w/ outgoing pages) 0.516 0.422 0.464
TREC-12 best run - - 0.396

Page Class Avg Prec. Avg Rec.
Collection 91.1% 89.5%
Topic 92.0% 88.4%
Relevant 86.5% 83.4%
Overall 89.7% 85.1%

web site5. However, for those questions that lack
Collection Pages, such as “Which countries did the
first lady Hillary Clinton visit?”, we still need to rely
more on Topic Pages and Relevant Pages.

With the emphasis on answer completeness and
uniqueness, FADA uses a large set of documents
obtained from the Web to find answers. As com-
pared to the baseline system, this results in a drop in
average answer precision although both recall and F1
are significantly improved. This is due to the fact
that we seek most answers from the noisy Web di-
rectly, whereas in the baseline system, the Web is
merely used to form new queries and the answers are
found from the TREC AQUAINT corpus. We are
still working to find a good balance between preci-
sion and recall.

The idea behind FADA system is simple: Since
Web knowledge helps in answering factoid ques-
tions, why not list questions? Our approach in
FADA demonstrates that this is possible. We believe
that list QA should benefit even more than factoid
QA from using Web knowledge.

8 Conclusion
We have presented the techniques used in FADA,

a system which aims to find complete and distinct
answers on the Web using question parsing, web
page classification/clustering and content extraction.
By using the novel approach, we can achieve a recall
of 0.422 and F1 of 0.464, which is significantly bet-
ter than the top performing systems in the TREC-12
List QA task. The method has been found to be ef-
fective. Our future work includes discovering an-
swers on non-text web information, such as images.
Much text information is stored as images on the
web, and hence, cannot be accessed by our approach,
and some do contain valuable information.

References
E. Agichtein, S. Lawrence, and L. Gravano. 2001.

"Learning search engine specific query transforma-
tions for question answering.” In the Proceedings of
the 10th ACM World Wide Web Conference (WWW
2001).

E. Brill, J. Lin, M. Banko, S. Dumais, and A. Ng. 2001.
“Data-intensive question answering”. In the Pro-
ceedings of the 10th Text REtrieval Conference
(TREC 2001).

N. Craswell, D Hawking. 2002. “Overview of the
TREC-2002 Web Track”, In the Proceedings of the
11th Text REtrieval Conference. (TREC 2002).

S. Gupta, G. Kaiser, D. Neistadt, P. Grimm, 2003.
“DOM-based Content Extraction of HTML Docu-
ments”, In the Proceedings of the 12th ACM World
Wide Web conference. (WWW 2003).

5 http://www.westminsterkennelclub.org/

S. Harabagiu, D. Moldovan, C. Clark, M. Bowden, J.
Williams, J. Bensley, 2003 “Answer Mining by
Combining Extraction Techniques with Abductive
Reasoning,” In the notebook of the 12th Text RE-
trieval Conference (TREC 2003), 46-53.

B. Katz, J. Lin, D. Loreto, W. Hildebrandt, M. Bilotti,
S. Felshin, A. Fernandes, G. Marton, F. Mora, 2003,
“Integrating Web-Based and Corpus-Based Tech-
niques for Question Answering”, In the notebook of
the 12th Text REtrieval Conference (TREC 2003),
472-480.

C. Kwok, O. Etzioni, and D. S. Weld, 2001, “Scaling
Question Answering to the Web”, In the Proceed-
ings of the 10th ACM World Wide Web conference.
(WWW 2001).

C. Y. Lin, “The Effectiveness of Dictionary and Web-
Based Answer Reranking.” In the Proceedings of the
19th International Conference on Computational
Linguistics (COLING 2002).

B. Magnini, M. Negri, R. Prevete and H. Tanev. 2002.
“Is it the Right Answer? Exploiting Web Redun-
dancy for Answer Validation”. In the Proceedings of
the 40th Annual Meeting of the Association for
Computational Linguistics. (ACL 2002), 425-432.

J. R. Quinlan, 1993. C4.5: Programs for Machine
Learning. Morgan-Kaufmann, San Francisco.

D. Ravichandran, and E. H. Hovy. 2002. ”Learning
Surface Text Patterns for a Question Answering
System.” In the Proceedings of the 40th ACL con-
ference. (ACL 2002).

G. Salton and C. Buckley, "Term-weighting ap-
proaches in automatic text retrieval", Information
Processing and Management: an International Jour-
nal, v.24 n.5, 1988

E.M.Voorhees. 2003. “Overview of the TREC 2003
Question Answering Track.” In the notebook of the
12th Text REtrieval Conference (TREC 2003), 14-27.

H. Yang, T. S. Chua, S Wang, C. K. Koh. 2003.
“Structured Use of External Knowledge for Event-
based Open Domain Question Answering”, In the
Proceedings of the 26th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2003).

H. Yang, H. Cui, M. Maslennikov, L. Qiu, M. Y. Kan,
T. S. Chua. 2003. “QUALIFIER in the TREC12 QA
Main Task”, In the notebook of the 12th Text RE-
trieval Conference (TREC 2003).

S. Ye, T. S. Chua, J. R. Kei. 2003. “Querying and
Clustering Web Pages about Persons and Organiza-
tions”. Web Intelligence 2003, 344-350.

