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Abstract 

While research on question answering has be-
come popular in recent years, the problem of ef-
ficiently locating a complete set of distinct 
answers to list questions in huge corpora or the 
Web is still far from being solved. This paper ex-
ploits the wealth of freely available text and link 
structures on the Web to seek complete answers 
to list questions. We introduce our system, 
FADA, which relies on question parsing, web 
page classification/clustering, and content extrac-
tion to find reliable distinct answers with high re-
call.  

1 Introduction 
The Text REtrieval Conference Series (TREC) has 
greatly encouraged Question Answering (QA) re-
search in the recent years. The QA main task in the 
recent TREC-12 involved retrieving short concise 
answers to factoid and list questions, and answer 
nuggets for definition questions (Voorhees, 2003). 
The list task in TREC-12 required systems to as-
semble a set of distinct and complete exact answers 
as responses to questions like “What are the brand 
names of Belgian chocolates?”. Unlike the questions 
in previous TREC conferences, TREC-12 list ques-
tions did not specify a target number of instances to 
return but expected all answers contained in the cor-
pus. Current QA systems (Harabagiu et al., 2003; 
Katz et al., 2003) usually extract a ranked list of fac-
toid answers from the top returned documents by 
retrieval engines. This is actually the traditional way 
to find factoid answers. The only difference between 
answering list questions and factoid questions here is 
that list QA systems allow for multiple answers, 
whose scores are above a cut-off threshold. 

An analysis of the results of TREC-12 list QA 
systems (Voorhees, 2003) reveals that many of them 
severely suffer from two general problems: low re-
call and non-distinctive answers. The median aver-
age F1 performance of list runs was only 21.3% 
while the best performer could only achieve 39.6% 
(Table 1). This unsatisfactory performance exposes 
the limitation of using only traditional Information 
Retrieval and Natural Language Processing tech-
niques to find an exhaustive set of factoid answers as 
compared to only one. 

TREC-12 Run Tag Avg F1  
LCCmainS03 0.396 
nusmml03r2 0.319 
MITCSAIL03c 0.134 
isi03a 0.118 
BBN2003B 0.097 
Average 0.213 

Table 1: TREC-12 Top 5 Performers (Voorhees, 2003) 

In contrast to the traditional techniques, the Web 
is used extensively in systems to rally round factoid 
questions. QA researchers have explored a variety of 
uses of the Web, ranging from surface pattern min-
ing (Ravichandran et al., 2002), query formulation 
(Yang et al., 2003), answer validation (Magnini et 
al., 2002), to directly finding answers on the Web by 
data redundancy analysis (Brill et al., 2001). These 
systems demonstrated that with the help of the Web 
they could generally boost baseline performance by 
25%-30% (Lin 2002). 

The well-known redundancy-based approach iden-
tifies the factoid answer as an N-gram appearing 
most frequently on the Web (Brill et al. 2001). This 
idea works well on factoid questions because factoid 
questions require only one instance and web docu-
ments contains a large number of repeated informa-
tion about possible answers. However, when dealing 
with list questions, we need to find all distinct in-
stances and hence we cannot ignore the less frequent 
answer candidates. The redundancy-based approach 
fails to spot novel or unexpectedly valuable informa-
tion in lower ranked web pages with few occur-
rences.  

In this paper, we propose a novel framework to 
employ the Web to support list question answering.  
Based on the observations that multiple answer in-
stances often appear in the list or table of a single 
web page while multiple web pages may also con-
tain information about the same instance, we differ-
entiate these two types of web pages. For the first 
category, which we call Collection Page (CP), we 
need to extract table/list content from the web page. 
For the second category, which we call Topic Page 
(TP), we need to find distinct web pages relating to 
different answer instances. We will demonstrate that 
the resulting system, FADA (Find All Distinct An-
swers), could achieve effective list question answer-
ing in the TREC corpus.  



Figure 1: Examples of Collection Page (top) 
and Topic Page (bottom)  

The remainder of this paper is organized as fol-
lowing. Section 2 gives the design considerations of 
our approach. Section 3 details our question analysis 
and web query formulation. Section 4 describes the 
web page classification and web document features 
used in FADA. Section 5 shows the algorithm of 
topic page clustering while Section 6 details the an-
swer extraction process. Section 7 discusses experi-
mental results. Section 8 concludes the paper. 

2 Design Considerations  
Our goal is to find as many distinct exact answers on 
the Web as possible. This requires us to:  

• perform effective and exhaustive search; and  
• extract distinct answers. 

In order to perform effective search, we employ 
question transformation to get effectual web queries. 
However, this is not a trivial task. If the query is too 
general, too many documents may be retrieved and 
the system would not have sufficient resources to 
scan through all of them. If the query is too specific, 
no pages may be retrieved. 

Given millions of web pages returned by search 
engines, our strategy is to divide-and-conquer by 
first identify Collection Pages (CP) that contain a list 
of answer instances. For example, for the question 
“What breeds of dog have won the "Best in Show" 
award at the Westminster Dog Show?”, we can find 
a Collection Page as shown in Figure 1 (top). Such a 
web page is a very good resource of answers. In 
general, we observe that there is a large number of 
named entities of the type desired appearing in a 
Collection Page, typically in a list or table. Our in-
tuition is that if we can find a Collection Page that 
contains almost all the answers, then the rest of the 
work is simply to extract answers from it or related 
web pages by wrapper rule induction.  

Another kind of “good” web page is a Topic Page, 
that contains just one answer instance (Figure 1, bot-
tom). It typically contains many named entities, 
which correspond to our original query terms and 
some other named entities of the answer target type. 
Given the huge amount of web data, there will be 
many Topic Pages that refer to the same answer in-
stance.  There is hence a need to group the pages and 
to identify a pertinent and distinctive page in order 
to represent a distinct answer.  

 
Table 2: Web Page Classes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The rest of the top returned web pages could be 

either relevant or irrelevant to the question. In sum-
mary, we need to classify web pages into four 
classes: Collection Page, Topic Page, Relevant Page, 
and Irrelevant Page (Table 2), based on their func-
tionality and contribution in finding list answers. 

Based on the above considerations, we propose a 
general framework to find list answers on the Web 
using the following steps: 
a) Retrieve a good set of web documents. 
b) Identify Collection Pages and distinct Topic 

Pages as main resources of answers. 
c) Perform clustering on other web pages based on 

their similarities to distinct Topic Pages to form 
clusters that correspond to distinct answer in-
stances. 

d) Extract answers from Collection Pages and Topic 
Page clusters. 

3 Question Transformation and Web Page 
Retrieval  

Agichtein et al. (2001) presented a technique on 
learning search engine specific query transforma-
tions for question answering. A set of transformation 
rules are learned from a training corpus and applied 
to the questions at the search time. Related work 
could also be found in Kwok et al. (2001) where the 
user’s question is processed by a parser to learn its 
syntactic structure and various query modulation 
techniques are applied to the initial questions to get 
high quality results for later answer extraction. 

FADA performs question parsing to identify key 
question words and the expected answer type. It ex-
tracts several sets of words from the original ques-
tion and identifies the detailed question classes. It 

Web page class Description 
Collection Page Containing a list of  answers  
Topic Page The best page to represent an answer 

instance 
Relevant Page Relevant to an  answer instance by 

providing either support or objection to 
the Topic Page 

Irrelevant Page Not related to any answer instance 



then formulates a number of queries by combining 
the known facets together with heuristic patterns for 
list questions.  

We perform both shallow and full parsing on a 
question followed by Named Entity Recognition 
(NER) to get the known query facets and their types. 
The shallow parser we used is the free online mem-
ory-based chunker1 and the full parser is MINIPAR2. 
Both parsers are very efficient and usually parse 300 
words within a second. The procedure of query pars-
ing is as follows:  

a) Remove head words. The head words in a ques-
tion could be wh-question words and leading 
verbs. The list of head words includes “who, what, 
when, where, which, how, how much, how many, 
list, name, give, provide, tell”, etc. Removing 
them enables us to get the correct subject/object 
relation and verb in the question. For example, for 
question “What breeds of dog have won the ‘Best 
in Show’ award at the Westminster Dog Show?”, 
after removing the head word, the question be-
comes “breeds of dog have won the ‘Best in 
Show’ award at the Westminster Dog Show”.  

b) Detect subject and object for the remaining ques-
tion segments by shallow parsing. For example, 
after parsing the above question, we get: 
[NP1

Subject breeds//NNS NP1
Subject] {PNP [P 

of/IN P] [NP dog/NN NP] PNP} [VP1 
have/VBP won/VBN VP1] [NP1

Object the/DT 
``/`` Best/JJS NP1

Object] {PNP [P in/IN 
P] [NP Show/NNP ''/'' award/NN NP] 
PNP} {PNP [P at/IN P] [NP the/DT 
Westminster/NNP Dog//NNP Show/NNP NP] 
PNP} 

From the parsed sentence, we want to get the logi-
cal subject as the sentence subject or its immedi-
ate modifiers. Here we have the logical subject-
“breeds of dog”, verb-“won”, and logical object-
“the best in show award”. If the resulting logical 
subject/object is the term “that” as in the follow-
ing parsed query for “U.S. entertainers that later 
became politicians”: 
[NP U.S./NNP entertainers//NNS NP] 
[NP1

Subject that/WDT NP1
Subject] [ADVP 

later/RB ADVP] [VP1 became/VBD VP1] 
[NP1

Object politicians//NNS NP1
Object] 

we get the noun or noun phrase before the clause 
as the logical subject/object. Hence, we have the 
logical subject-“entertainers”, action-“became”, 
and logical object-“politician”. 

c) Extract all the noun phrases as potential descrip-
tions from the remaining question segments, 
which are usually prepositional phrases or clauses. 
For the “dog breeds” example, we get the descrip-
tions-“Westminster Dog Show”.  

                                                            
1 http://ilk.kub.nl/cgi-bin/tstchunk/demo.pl 
2 http://www.cs.ualberta.ca/~lindek/minipar.htm 

d) Apply named entity recognition to the resulting 
description phrases by using NEParser, a fine-
grained named entity recognizer used in our 
TREC-12 system (Yang et al., 2003). It assigns 
tags like “person”, “location”, “time”, “date”, 
“number”. For the “dog breed” example, “West-
minster” gets the location tag. 

After the above analysis, we obtain all the known 
facets provided in the original question. We then 
make use of this knowledge to form web queries to 
get the right set of pages. This is a crucial task in 
dealing with the Web. One of the query transforma-
tion rules is given as follows:  

(list|directoty|category|top|favorite
)? (:|of)? <subj> <action>? <object>? 
<description1>? <description2>? … 
<descriptionN>? 

The rule starts the query optionally with leading 
words (list, directory, category), optionally followed 
by a colon or “of”, followed by subject phrase 
(<subj>), optionally followed by action (<action>), 
optionally followed by object (<object>) and de-
scription phrases (<description1>…<descriptionN>). 
In the above pattern, “?” denotes optional, “…” omit, 
and “|” alternative. For example, for the “dog breed” 
question, we form queries “breed of dog won best in 
show Westminster Dog Show”, “directory breed of 
dog best in show Westminster Dog Show”, and “list 
breed of dog won best in show” etc. 

Transforming the initial natural language ques-
tions into a good query can dramatically improve the 
chances of finding good answers. FADA submits 
these queries to well-known search engines (Google, 
AltaVista, Yahoo) to get the top 1,000 Web pages 
per search engine per query. Here we attempt to re-
trieve a large number of web pages to serve our goal 
- find All Distinct answers. Usually, there are a large 
number of web pages which are redundant as they 
come from the same URL addresses. We remove the 
redundant web pages using the URL addresses as the 
guide. We also filter out files whose formats are nei-
ther HTML nor plain text and those whose lengths 
are too short or too long. Hence the size of the re-
sulting document set for each question varies from a 
few thousands to ten of thousands. 

4 Web Page Classification  
In order to group the web pages returned by the 
search engines into the four categories discussed 
earlier, it is crucial to find a good set of features to 
represent the web pages. Many techniques such as 
td.idf (Salton and Buckley, 1988) and a stop word 
list have been proposed to extract lexical features to 
help document clustering. However, they do not 
work well for question answering. As pointed out by 
Ye et al. (2003) in their discussion on the per-
son/organization finding task, given two resume 



pages about different persons, it is highly possible 
that they are grouped into one cluster because they 
share many similar words and phrases. On the other 
hand, it is difficult to group together a news page 
and a resume page about the same target entity, due 
to the diversity in subject matter, word choice, liter-
ary styles and document format.  To overcome this 
problem, they used mostly named entity and link 
information as the basis for clustering. Compared to 
their task, our task of finding good web documents 
containing answers is much more complex. The fea-
tures are more heterogeneous, and it is more difficult 
to choose those that reflect the essential characteris-
tics of list answers. 

In our approach, we obtain the query words 
through subject/object detection and named entity 
recognition.  We found that there are a large number 
of named entities of the same type appearing in a 
Collection Page, typically within a list or table.  And 
in a Topic Page, there is also typically a group of 
named entities, which could correspond to our origi-
nal query terms or answer target type. Therefore, 
named entities play important roles in semantic ex-
pression and should be used to reflect the content of 
the pages.  

The Web track in past TREC conferences shows 
that URL, HTML structure, anchor text, hyperlinks, 
and document length tend to contain important heu-
ristic clues for web clustering and information re-
trieval (Craswell and Hawking, 2002). We have 
found that a Topic Page is highly likely to repeat the 
subject in its URL, title, or at the beginning of its 
page. In general, if the subject appears in important 
locations, such as in HTML tags <title>, <H1> and 
<H2>, or appears frequently, then the corresponding 
pages should be Topic Pages and their topic is about 
the answer target.  
Followed the above discussion, we design a set of 29 
features based on Known Named Entity Type, An-
swer Named Entity Type, ordinary Named Entities, 
list, table, URL, HTML structure, Anchor, Hyper-
links, and document length to rep resent the web 
pages. Table 3 lists the features used in our system. 
In the table and subsequent sections, NE refers to 
Named Entity. 

We trained two classifiers: the Collection Page 
classifier and the Topic Page classifier. The former 
classifies web pages into Collection Pages and non-
collection pages while the later further classifies the 
non-collection pages into Topic Pages and Others. 
Both Classifiers are implemented using Decision 
Tree C4.5 (Quinlan 1993). We used 50 list questions 
from TREC-10 and TREC-11 for training and 
TREC-12 list questions for testing. We parse the 
questions, formulate web queries and collect web 
pages by using the algorithm described in Section 2.  
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 3: Web Page Features 

Each sample is represented using the features 
listed in Table 3. Some of the decision rules are as 
follows: 
a) OUT_Link >= 25 & NE > 78 &  
b) Answer_NE >= 30 -> Class CP OUT_Link 

<= 25 & Answer_NE <= 5 & NE > 46 -> 
Class TP  

c) OUT_Link >= 25 & URL_Depth > 3 -> 
Others 

d) NE <= 4  -> Others 

Rule a) implies that good Collection Pages should 
have many outlinks, NEs and especially answer NEs. 
Rule b) implies that good Topic Pages should have 
many NEs but relatively few links and answer NEs. 
Rule c) show that Others have deeper URL depth; 
while Rule d) shows that they have fewer NEs. 

 Feature Meaning 
1 |PER| # of Person NEs 
2 |ORG| # of Organization NEs 
3 |LOC| # of Location NEs 
4 |TME| # of Time NEs, including date, year, month 
5 |NUM| # of Numer NEs 
6 |COD| # of Code NEs, including phone number, 

zip code, etc 
7 |OBJ| # of Object NEs, including animal, planet, 

book,  etc 
8 |NE| Total number of the above NEs 
9 |Known_NE| Total # of NEs within the same NE type as 

in the question. In the “dog breed” example, 
it is the number of Location NEs since 
“Westminster” is identified as Location by 
NER. 

10 |Unknown_N
E| 

# of NEs belonging to other NE type. In the 
“dog breed” example, it is the total number 
of Time and Breed NEs 

11 |Answer_NE| # of NEs belonging to expected answer 
type. In the “dog breed” example, it is the 
number of Breed NEs 

12 |Known_NE| 
/ |NE| 

Ratio of  | Known _NE| to |NE| 

13 |Unknown_N
E| / |NE| 

Ratio of  | Unknown _NE| to |NE| 

14 |Answer_NE| 
/ |NE| 

Ratio of  |Answer_NE| to |NE| 

15 Length # of tokens in a page 
16 Content_Len

gth 
# of words in a page excluding HTML 
tags 

17 |NE|/Length Ratio of |NE| to |Token| 
18 |NE|/Content

_Length 
Ratio of |NE| to |Word| 

19 |In_Link| # of in-links 
20 |Out_Link| # of out-links  
21 |All_Link| The sum of in-links and out-links 
22 Keyword_in

_Title 
Boolean indicating presence of keywords in 
page title 

23 Keyword_ 
in_URL 

Boolean indicating presence of keywords in 
URL 

24 Keyword_ 
in_Page 

Boolean indicating presence of keywords in 
the page 

25 |Answer_NE
_in_Title| 

# of NEs belonging to expected answer type 
presenting in page title 

26 |Answer_NE
_in_URL| 

# of NEs belonging to expected answer type 
presenting in URL 

27 |<li>| # of HTML tags representing a list or table, 
including <li>, <ol>, <ul>, <br>,<td> 

28 |<li><a 
href=| 

# of HTML tags, including <li>, <ol>, 
<ul>, <br>,<td> to represent a list/table of 
anchors, 

29 URL_Depth The depth of URL 

 



Web page classification enables us to get Collec-
tion Pages, Topic Pages and the rest of the pages. 
Our experiments on TREC-12 list questions showed 
that we can achieve a classification precision of 
91.1% and 92% for Collection Pages and Topic 
Pages respectively. 

5 Finding Answer Sources  
Based on Web page classification, we form the ini-
tial sets of Collection Pages CPSet, Topic Pages 
TPSet and OtherSet. In order to boost the recall, we 
first use the outgoing links of Collection Pages to 
find more Topic Pages.  These outgoing pages are 
potential Topic Pages but not necessarily appearing 
among the top returned web documents. Our subse-
quent tests reveal that the new Topic Pages intro-
duced by links from Collection Pages greatly 
increase the overall answer recall by 23%. The new 
Topic Page set becomes: 
TPSet’ = TPSet + {outgoing pages of CPs} 
Second, we select distinct Topic Pages. We com-

pare the page similarity between each pair of Topic 
Pages using the algorithm below.  

for each pair {tpi, tpj} in TPSet’  
  if (sim(tpi,tpj)> Θ) 
    if אANE_in_tpi > אANE_in_tpj 
  move tpj into OtherSet; 

Here the page similarity function sim() is a linear 
combination of overlaps between Known_NE, An-
swer_NE, URL similarity and link similarity. Θ is 
preset at 0.75 and may be overridden by the user. 
 ANE_in_tpi is the number of named entities ofא
answer type in Topic Page tpi. For those pairs with 
high similarity, we keep the page that contains more 
named entities of answer type in TPSet’ and move 
the other into OtherSet. The resulting Topic Pages 
in TPSet’ are distinct and will be used as cluster 
seeds for the next step. 

Third, we identify and dispatch Relevant Pages 
from OtherSet into appropriate clusters based on 
their similarities with the cluster seeds.  
for each rpi in OtherSet { 

  k = argmax {sim(rpi , tpk) } 
 if (sim(rpi , tpk ) >  τ )  
   insert rpi into clusterk; 
  else  
    insert rpi into IrrelevantSet; } 

Here τ  is preset at 0.55, and sim() is defined as 
above. Each cluster corresponds to a distinct answer 
instance. The Topic Page provides the main facts 
about that answer instance while Relevant Pages 
provide supporting materials for the unique answer 
instance. The average ratio of correct clustering is 
54.1% in our experiments. 

Through web page clustering, we avoid early an-
swer redundancy, and have a higher chance to find-
ing distinct answers on the noisy Web. 

6 Answer Extraction 

6.1 HTML Source Page Cleaning  
Many HTML web pages contain common HTML 
mistakes, including missing or unmatched tags, end 
tags in the wrong order, missing quotes round attrib-
utes, missed / in end tags, and missing > closing tags, 
etc. We use HtmlTidy3 to clean up the web pages 
before classification and clustering. FADA also uses 
an efficient technique to remove advertisements. We 
periodically update the list from Accs-Net4, a site 
that specializes in creating such blacklists of adver-
tisers. If a link address matches an entry in a black-
list, the HTML portion that contained the link is 
removed.  

6.2 Answer Extraction from CP 
Collection Pages are very good answer resources for 
list QA. However, to extract the “exact” answers 
from the resource page, we need to perform wrapper 
rule induction to extract the useful content. There is 
a large body of related work in content extraction, 
which enables us to process only extracted content 
rather than cluttered data coming directly from the 
web. Gupta et al. (2003) parsed HTML documents 
to a Document Object Model tree and to extract the 
main content of a web page by removing the link 
lists and empty tables. In contrast, our link list ex-
tractor finds all link lists, which are table cells or 
lists for which the ratio of the number of links to the 
number of non-linked words is greater than a spe-
cific ratio. We have written separate extractors for 
each answer target type. The answers obtained in 
Collection Pages are then “projected” onto the 
TREC AQUAINT corpus to get the TREC answers 
(Brill et al., 2001). 

6.3 Answer Extraction from TP Cluster 
Having web pages clustered for a certain question, 
especially when the clusters nicely match distinct 
answer, facilitates the task of extracting the possible 
answers based on the answer target type. We per-
form this by first analyzing the main Topic Pages in 
each cluster.  In case we find multiple passages con-
taining different answer candidates in the same 
Topic Page, we select the answer candidate from the 
passage that has the most variety of NE types since 
it is likely to be a comprehensive description about 
different facets of a question topic. The answer 
found in the Topic Page is then “projected” onto the 
QA corpus to get the TREC answers as with the Col-
lection Page. In case no TREC answers can be found 
                                                            
3 http://htmltrim.sourceforge.net/tidy.html 
4 http://www.accs-net.com/hosts/get_hosts.html 



based on the Topic Page, we go to the next most 
relevant page in the same cluster to search for the 
answer. The process is repeated until either an an-
swer from the cluster is found in the TREC corpus 
or when all Relevant Pages in the cluster have been 
exhausted.   

For the question “Which countries did the first 
lady Hillary Clinton visit?”, we extracted the Loca-
tions after performing Named Entity analysis on 
each cluster and get 38 country names as answers. 
The recall is much higher than the best performing 
system (Harabagiu et al., 2003) in TREC-12 which 
found 26 out of 44 answers. 

7 Evaluation on TREC-12 Question Set 
We used the 37 TREC-12 list questions to test the 
overall performance of our system and compare the 
answers we found in the TREC AQUAINT corpus 
(after answer projection (Brill et al. 2001)) with the 
answers provided by NIST.  

7.1 Tests of Web Page Classification 
In Section 3, the web pages are classified into three 
classes: Collection Pages, Topic Pages, and Others. 
Table 4 shows the system performance of the classi-
fication. We then perform a redistribution of classi-
fied pages, where the outgoing pages from CPs go to 
TP collection, and the Relevant Pages are grouped as 
supportive materials into clusters, which are based 
on distinct Topic Page. Nevertheless, the perform-
ance of web page classification will influence the 
later clustering and answer finding task. Table 4 
shows that we could achieve an overall classification 
average precision of 0.897 and average recall of 
0.851. This performance is adequate to support the 
subsequent steps of finding complete answers. 

 
 

 
 
 
 

Table 4: Performance of Web Page Classification 

7.2 Performance and Effects of Web Page 
Clustering 

Relevant Pages are put into clusters to provide sup-
portive material for a certain answer instance. The 
performance of Relevant Page dispatch/clustering is 
54.1%. We also test different clustering thresholds 
for our web page clustering as defined in Section 5. 
We use the F1 measure of the TREC-12 list QA re-
sults as the basis to compare the performance of dif-
ferent clustering threshold combinations as shown in 
xx. We obtain the best performance of F1 = 0.464 
when τ=0.55 and Θ=0.75. 

 

 Θ(0.55) Θ(0.65) Θ(0.75) Θ=0.85
τ=0.25 0.130 0.234 0. 324 0.236 
τ=0.35 0.136 0.244 0. 338 0.232 
τ=0.45 0.148 0.332 0. 428 0.146 
τ=0.55 0.166 0.408 0. 464 0.244 
τ=0.65 0.200 0.322 0. 432 0.236 

Table 5: Clustering Threshold Effects 

7.3 Overall Performance 
Table 6 compares a baseline list question answering 
system with FADA. The baseline is based on a sys-
tem which we used in participation in the TREC-12 
QA task (Yang et al., 2003).  It extends the tradi-
tional IR/NLP approach for factoid QA to perform 
list QA, as is done in most other TREC-12 systems. 
It achieves an average F1 of 0.319, and is ranked 2nd 
in the list QA task.   

We test two variants of FADA – one without in-
troducing the outgoing pages from CPs as potential 
TPs (FADA1), and one with (FADA2). The two 
variants are used to evaluate the effects of CPs in the 
list QA task. The results of these two variants of 
FADA on the TREC-12 list task are presented in 
Table 6.  

Table 6: Performance on TREC-12 Test Set 

Without the benefit of the outgoing pages from 
CPs to find potential answers, FADA1 could boost 
the average recall by 30% and average F1 by 16.6% 
as compared to the baseline. The great improvement 
in recall is rather encouraging because it is crucial 
for a list QA system to find a complete set of an-
swers, which is how list QA differ from factoid QA. 

By taking advantage of the outgoing pages from 
CPs, FADA2 further improves performance to an 
average recall of 0.422 and average F1 of 0.464. It 
outperforms the best TREC-12 QA system (Voorhees, 
2003) by 19.6% in average F1 score. 

From Table 6, we found that the outgoing pages 
from the Collection Pages (or resource pages) con-
tribute much to answer finding task. It gives rise to 
an improvement in recall of 22.7% as compared to 
the variant of FADA1 that does not take advantage 
of outgoing pages. We think this is mainly due to the 
characteristics of the TREC-12 questions. Most 
questions ask for well-known things, and famous 
events, people, and organization. For this kind of 
questions, we can easily find a Collection Page that 
contains tabulated answers since there are web sites 
that host and maintain such information. For in-
stance, “Westminster Dog Show” has an official 

 Avg P Avg R Avg F1
Baseline 0.568 0.264 0.319 
FADA1 (w/o outgoing pages) 0.406 0.344 0.372 
FADA2 (w/ outgoing pages) 0.516 0.422 0.464 
TREC-12 best run - - 0.396 

Page Class Avg Prec. Avg Rec. 
Collection 91.1% 89.5% 
Topic 92.0% 88.4% 
Relevant 86.5% 83.4% 
Overall 89.7% 85.1% 
 



web site5. However, for those questions that lack 
Collection Pages, such as “Which countries did the 
first lady Hillary Clinton visit?”, we still need to rely 
more on Topic Pages and Relevant Pages. 

With the emphasis on answer completeness and 
uniqueness, FADA uses a large set of documents 
obtained from the Web to find answers. As com-
pared to the baseline system, this results in a drop in 
average answer precision although both recall and F1 
are significantly improved. This is due to the fact 
that we seek most answers from the noisy Web di-
rectly, whereas in the baseline system, the Web is 
merely used to form new queries and the answers are 
found from the TREC AQUAINT corpus.  We are 
still working to find a good balance between preci-
sion and recall. 

The idea behind FADA system is simple: Since 
Web knowledge helps in answering factoid ques-
tions, why not list questions? Our approach in 
FADA demonstrates that this is possible. We believe 
that list QA should benefit even more than factoid 
QA from using Web knowledge. 

8 Conclusion 
We have presented the techniques used in FADA, 

a system which aims to find complete and distinct 
answers on the Web using question parsing, web 
page classification/clustering and content extraction. 
By using the novel approach, we can achieve a recall 
of 0.422 and F1 of 0.464, which is significantly bet-
ter than the top performing systems in the TREC-12 
List QA task. The method has been found to be ef-
fective. Our future work includes discovering an-
swers on non-text web information, such as images. 
Much text information is stored as images on the 
web, and hence, cannot be accessed by our approach, 
and some do contain valuable information. 
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