
Automatic Learning of Language Model Structure

Kevin Duh and Katrin Kirchhoff
Department of Electrical Engineering

University of Washington, Seattle, USA
{duh,katrin}@ee.washington.edu

Abstract

Statistical language modeling remains a challeng-

ing task, in particular for morphologically rich lan-

guages. Recently, new approaches based on factored

language models have been developed to address

this problem. These models provide principled ways

of including additional conditioning variables other

than the preceding words, such as morphological or

syntactic features. However, the number of possible

choices for model parameters creates a large space of

models that cannot be searched exhaustively. This

paper presents an entirely data-driven model selec-

tion procedure based on genetic search, which is

shown to outperform both knowledge-based and ran-

dom selection procedures on two different language

modeling tasks (Arabic and Turkish).

1 Introduction

In spite of novel algorithmic developments and
the increased availability of large text corpora,
statistical language modeling remains a diffi-
cult problem, particularly for languages with
rich morphology. Such languages typically ex-
hibit a large number of word types in relation
to word tokens in a given text, which leads
to high perplexity and a large number of un-
seen word contexts. As a result, probability es-
timates are often unreliable, even when using
standard smoothing and parameter reduction
techniques. Recently, a new language model-
ing approach, called factored language models
(FLMs), has been developed. FLMs are a gen-
eralization of standard language models in that
they allow a larger set of conditioning variables
for predicting the current word. In addition to
the preceding words, any number of additional
variables can be included (e.g. morphological,
syntactic, or semantic word features). Since
such features are typically shared across mul-
tiple words, they can be used to obtained bet-
ter smoothed probability estimates when train-
ing data is sparse. However, the space of pos-
sible models is extremely large, due to many

different ways of choosing subsets of condition-
ing word features, backoff procedures, and dis-
counting methods. Usually, this space cannot
be searched exhaustively, and optimizing mod-
els by a knowledge-inspired manual search pro-
cedure often leads to suboptimal results since
only a small portion of the search space can
be explored. In this paper we investigate the
possibility of determining the structure of fac-
tored language models (i.e. the set of condition-
ing variables, the backoff procedure and the dis-
counting parameters) by a data-driven search
procedure, viz. Genetic Algorithms (GAs). We
apply this technique to two different tasks (lan-
guage modeling for Arabic and Turkish) and
show that GAs lead to better models than ei-
ther knowledge-inspired manual search or ran-
dom search. The remainder of this paper is
structured as follows: Section 2 describes the
details of the factored language modeling ap-
proach. The application of GAs to the problem
of determining language model structure is ex-
plained in Section 3. The corpora used in the
present study are described in Section 4 and ex-
periments and results are presented in Section 5.
Section 6 compares the present study to related
work and Section 7 concludes.

2 Factored Language Models

A standard statistical language model com-
putes the probability of a word sequence W =
w1, w2, ..., wT as a product of conditional prob-
abilities of each word wi given its history, which
is typically approximated by just one or two pre-
ceding words (leading to bigrams, and trigrams,
respectively). Thus, a trigram language model
is described by

p(w1, ..., wT) ≈
T

∏

i=3

p(wi|wi−1, wi−2) (1)

Even with this limitation, the estimation of
the required probabilities is challenging: many

word contexts may be observed infrequently
or not at all, leading to unreliable probabil-
ity estimates under maximum likelihood estima-
tion. Several techniques have been developed
to address this problem, in particular smooth-
ing techniques (Chen and Goodman, 1998) and
class-based language models (Brown and oth-
ers, 1992). In spite of such parameter reduc-
tion techniques, language modeling remains a
difficult task, in particular for morphologically
rich languages, e.g. Turkish, Russian, or Arabic.
Such languages have a large number of word
types in relation to the number of word tokens
in a given text, as has been demonstrated in
a number of previous studies (Geutner, 1995;
Kiecza et al., 1999; Hakkani-Tür et al., 2002;
Kirchhoff et al., 2003). This in turn results
in a high perplexity and in a large number of
out-of-vocabulary (OOV) words when applying
a trained language model to a new unseen text.

2.1 Factored Word Representations

A recently developed approach that addresses
this problem is that of Factored Language Mod-
els (FLMs) (Kirchhoff et al., 2002; Bilmes and
Kirchhoff, 2003), whose basic idea is to decom-
pose words into sets of features (or factors) in-
stead of viewing them as unanalyzable wholes.
Probabilistic language models can then be con-
structed over (sub)sets of word features instead
of, or in addition to, the word variables them-
selves. For instance, words can be decomposed
into stems/lexemes and POS tags indicating
their morphological features, as shown below:

Word: Stock prices are rising
Stem: Stock price be rise
Tag: Nsg N3pl V3pl Vpart

Such a representation serves to express lexical
and syntactic generalizations, which would oth-
erwise remain obscured. It is comparable to
class-based representations employed in stan-
dard class-based language models; however, in
FLMs several simultaneous class assignments
are allowed instead of a single one. In general,
we assume that a word is equivalent to a fixed
number (K) of factors, i.e. W ≡ f1:K . The task
then is to produce a statistical model over the
resulting representation - using a trigram ap-
proximation, the resulting probability model is
as follows:

p(f1:K
1 , f1:K

2 , ..., f1:K
T) ≈

T
∏

t=3

p(f1:K
t |f1:K

t−1 , f1:K
t−2)

(2)

Thus, each word is dependent not only on a sin-
gle stream of temporally ordered word variables,
but also on additional parallel (i.e. simultane-
ously occurring) features. This factored repre-
sentation can be used in two different ways to
improve over standard LMs: by using a product
model or a backoff model. In a product model,
Equation 2 can be simplified by finding con-
ditional independence assumptions among sub-
sets of conditioning factors and computing the
desired probability as a product of individual
models over those subsets. In this paper we
only consider the second option, viz. using the
factors in a backoff procedure when the word
n-gram is not observed in the training data.
For instance, a word trigram that is found in
an unseen test set may not have any counts in
the training set, but its corresponding factors
(e.g. stems and morphological tags) may have
been observed since they also occur in other
words.

2.2 Generalized parallel backoff

Backoff is a common smoothing technique in
language modeling. It is applied whenever
the count for a given n-gram in the training
data falls below a certain threshold τ . In that
case, the maximum-likelihood estimate of the
n-gram probability is replaced with a probabil-
ity derived from the probability of the lower-
order (n − 1)-gram and a backoff weight. N-
grams whose counts are above the threshold re-
tain their maximum-likelihood estimates, dis-
counted by a factor that re-distributes proba-
bility mass to the lower-order distribution:

pBO(wt|wt−1, wt−2) (3)

=

{

dcpML(wt|wt−1, wt−2) if c > τ3

α(wt−1, wt−2)pBO(wt|wt−1) otherwise

where c is the count of (wt, wt−1, wt−2), pML

denotes the maximum-likelihood estimate and
dc is a discounting factor that is applied to the
higher-order distribution. The way in which the
discounting factor is estimated determines the
actual smoothing method (e.g. Good-Turing,
Kneser-Ney, etc.) The normalization factor
α(wt−1, wt−2) ensures that the entire distribu-
tion sums to one. During standard backoff, the
most distant conditioning variable (in this case
wt−2) is dropped first, then the second most dis-
tant variable etc. until the unigram is reached.
This can be visualized as a backoff path (Fig-
ure 1(a)). If the only variables in the model are
words, such a backoff procedure is reasonable.

t
W

1t
W

− 2t
W

− 3t
W

−

t
W

1t
W

− 2t
W

−

t
W

1t
W

−

t
W

(a)

F
1
F

2
F

3
F

F

F
1
F

2
F F

1
F

3
F F

2
F

3
F

F
1
F F

3
FF

2
F

(b)

Figure 1: Standard backoff path for a 4-gram lan-

guage model over words (left) and backoff graph for

4-gram over factors (right).

However, if variables occur in parallel, i.e. do
not form a temporal sequence, it is not imme-
diately obvious in which order they should be
dropped. In this case, several backoff paths are
possible, which can be summarized in a backoff
graph (Figure 1(b)). In principle, there are sev-
eral different ways of choosing among different
paths in this graph:

1. Choose a fixed, predetermined backoff path
based on linguistic knowledge, e.g. always drop
syntactic before morphological variables.
2. Choose the path at run-time based on statis-
tical criteria.
3. Choose multiple paths and combine their
probability estimates.

The last option, referred to as parallel backoff,
is implemented via a new, generalized backoff
function (here shown for a 4-gram):

pGBO(f |f1, f2, f3) (4)

=

{

dcpML(f |f1, f2, f3) if c > τ4

α(f1, f2, f3)g(f, f1, f2, f3) otherwise

where c is the count of (f, f1, f2, f3),
pML(f |f1, f2, f3) is the maximum likeli-
hood distribution, τ4 is the count threshold,
and α(f1, f2, f3) is the normalization factor.
The function g(f, f1, f2, f3) determines the
backoff strategy. In a typical backoff proce-
dure g(f, f1, f2, f3) equals pBO(f |f1, f2). In
generalized parallel backoff, however, g can be
any non-negative function of f, f1, f2, f3. In
our implementation of FLMs (Kirchhoff et al.,
2003) we consider several different g functions,
including the mean, weighted mean, product,
and maximum of the smoothed probability
distributions over all subsets of the conditioning

factors. In addition to different choices for g,
different discounting parameters can be chosen
at different levels in the backoff graph. For
instance, at the topmost node, Kneser-Ney
discounting might be chosen whereas at a
lower node Good-Turing might be applied.
FLMs have been implemented as an add-on
to the widely-used SRILM toolkit1 and have
been used successfully for the purpose of
morpheme-based language modeling (Bilmes
and Kirchhoff, 2003), multi-speaker language
modeling (Ji and Bilmes, 2004), and speech
recognition (Kirchhoff et al., 2003).

3 Learning FLM Structure

In order to use an FLM, three types of para-
meters need to be specified: the initial con-
ditioning factors, the backoff graph, and the
smoothing options. The goal of structure learn-
ing is to find the parameter combinations that
create FLMs that achieve a low perplexity on
unseen test data. The resulting model space
is extremely large: given a factored word rep-
resentation with a total of k factors, there are
∑

k

n=1

(

k

n

)

possible subsets of initial condition-
ing factors. For a set of m conditioning factors,
there are up to m! backoff paths, each with its
own smoothing options. Unless m is very small,
exhaustive search is infeasible. Moreover, non-
linear interactions between parameters make it
difficult to guide the search into a particular
direction, and parameter sets that work well
for one corpus cannot necessarily be expected
to perform well on another. We therefore need
an automatic way of identifying the best model
structure. In the following section, we describe
the application of genetic-based search to this
problem.

3.1 Genetic Algorithms

Genetic Algorithms (GAs) (Holland, 1975) are a
class of evolution-inspired search/optimization
techniques. They perform particularly well
in problems with complex, poorly understood
search spaces. The fundamental idea of GAs is
to encode problem solutions as (usually binary)
strings (genes), and to evolve and test successive
populations of solutions through the use of ge-
netic operators applied to the encoded strings.
Solutions are evaluated according to a fitness
function which represents the desired optimiza-
tion criterion. The individual steps are as fol-

1We would like to thank Jeff Bilmes for providing and
supporting the software.

lows:

Initialize: Randomly generate a set (popula-
tion) of strings.
While fitness improves by a certain threshold:
Evaluate fitness: calculate each string’s fitness
Apply operators: apply the genetic operators
to create a new population.

The genetic operators include the probabilis-
tic selection of strings for the next genera-
tion, crossover (exchanging subparts of differ-
ent strings to create new strings), and muta-
tion (randomly altering individual elements in
strings). Although GAs provide no guarantee
of finding the optimal solution, they often find
good solutions quickly. By maintaining a pop-
ulation of solutions rather than a single solu-
tion, GA search is robust against premature
convergence to local optima. Furthermore, solu-
tions are optimized based on a task-specific fit-
ness function, and the probabilistic nature of ge-
netic operators helps direct the search towards
promising regions of the search space.

3.2 Structure Search Using GA

In order to use GAs for searching over FLM
structures (i.e. combinations of conditioning
variables, backoff paths, and discounting op-
tions), we need to find an appropriate encoding
of the problem.

Conditioning factors

The initial set of conditioning factors F are
encoded as binary strings. For instance, a
trigram for a word representation with three
factors (A,B,C) has six conditioning variables:
{A

−1, B−1, C−1, A−2, B−2, C−2} which can be
represented as a 6-bit binary string, with a bit
set to 1 indicating presence and 0 indicating ab-
sence of a factor in F . The string 10011 would
correspond to F = {A

−1, B−2, C−2}.

Backoff graph

The encoding of the backoff graph is more dif-
ficult because of the large number of possible
paths. A direct approach encoding every edge
as a bit would result in overly long strings, ren-
dering the search inefficient. Our solution is to
encode a binary string in terms of graph gram-
mar rules (similar to (Kitano, 1990)), which
can be used to describe common regularities in
backoff graphs. For instance, a node with m
factors can only back off to children nodes with
m − 1 factors. For m = 3, the choices for pro-
ceeding to the next-lower level in the backoff

1. {X1 X2 X3} −> {X1 X2}
2. {X1 X2 X3} −> {X1 X3}
3. {X1 X2 X3} −> {X2 X3}
4. {X1 X2} −> {X1}
5. {X1 X2} −> {X2}

PRODUCTION RULES:

AB

ABC

AB

ABC

BC AB

ABC

BC

A B

AB

ABC

BC

A B

���
�

���
�

���
�

0

1

4 4

10110

3

(b) Generation of Backoff Graph by rules 1, 3, and 4

(a) Gene activates production rules

GENE:

Figure 2: Generation of Backoff Graph from pro-

duction rules selected by the gene 10110.

graph can thus be described by the following
grammar rules:

RULE 1: {x1, x2, x3} → {x1, x2}
RULE 2: {x1, x2, x3} → {x1, x3}
RULE 3: {x1, x2, x3} → {x2, x3}

Here xi corresponds to the factor at the ith
position in the parent node. Rule 1 indicates
a backoff that drops the third factor, Rule 2
drops the second factor, etc. The choice of
rules used to generate the backoff graph is en-
coded in a binary string, with 1 indicating the
use and 0 indicating the non-use of a rule, as
shown schematically in Figure 2. The presence
of two different rules at the same level in the
backoff graph corresponds to parallel backoff;
the absence of any rule (strings consisting only
of 0 bits) implies that the corresponding backoff
graph level is skipped and two conditioning vari-
ables are dropped simultaneously. This allows
us to encode a graph using few bits but does not
represent all possible graphs. We cannot selec-
tively apply different rules to different nodes at
the same level – this would essentially require
a context-sensitive grammar, which would in
turn increase the length of the encoded strings.
This is a fundamental tradeoff between the most
general representation and an encoding that is
tractable. Our experimental results described
below confirm, however, that sufficiently good
results can be obtained in spite of the above
limitation.

Smoothing options

Smoothing options are encoded as tuples of in-
tegers. The first integer specifies the discount-

ing method while second indicates the minimum
count required for the n-gram to be included in
the FLM. The integer string consists of succes-
sive concatenated tuples, each representing the
smoothing option at a node in the graph. The
GA operators are applied to concatenations of
all three substrings describing the set of factors,
backoff graph, and smoothing options, such that
all parameters are optimized jointly.

4 Data

We tested our language modeling algorithms on
two different data sets from two different lan-
guages, Arabic and Turkish.

The Arabic data set was drawn from the
CallHome Egyptian Conversational Arabic
(ECA) corpus (LDC, 1996). The training,
development, and evaluation sets contain
approximately 170K, 32K, and 18K words,
respectively. The corpus was collected for the
purpose of speech recognizer development for
conversational Arabic, which is mostly dialectal
and does not have a written standard. No
additional text material beyond transcriptions
is available in this case; it is therefore im-
portant to use language models that perform
well in sparse data conditions. The factored
representation was constructed using linguistic
information from the corpus lexicon, in combi-
nation with automatic morphological analysis
tools. It includes, in addition to the word, the
stem, a morphological tag, the root, and the
pattern. The latter two are components which
when combined form the stem. An example
of this factored word representation is shown
below:

Word:il+dOr/Morph:noun+masc-sg+article/
Stem:dOr/Root:dwr/Pattern:CCC

For our Turkish experiments we used a mor-
phologically annotated corpus of Turkish
(Hakkani-Tür et al., 2000). The annotation
was performed by applying a morphological
analyzer, followed by automatic morphological
disambiguation as described in (Hakkani-Tür
et al., 2002). The morphological tags consist
of the initial root, followed by a sequence of
inflectional groups delimited by derivation
boundaries (ˆDB). A sample annotation (for
the word yararlanmak, consisting of the root
yarar plus three inflectional groups) is shown
below:

yararmanlak:
yarar+Noun+A3sg+Pnon+Nom

ˆDB+Verb+Acquire+Pos
ˆDB+Noun+Inf+A3sg+Pnon+Nom

We removed segmentation marks (for titles
and paragraph boundaries) from the corpus
but included punctuation. Words may have
different numbers of inflectional groups, but
the FLM representation requires the same
number of factors for each word; we therefore
had to map the original morphological tags to
a fixed-length factored representation. This
was done using linguistic knowledge: according
to (Oflazer, 1999), the final inflectional group
in each dependent word has a special status
since it determines inflectional markings on
head words following the dependent word.
The final inflectional group was therefore
analyzed into separate factors indicating the
number (N), case (C), part-of-speech (P) and
all other information (O). Additional factors
for the word are the root (R) and all remaining
information in the original tag not subsumed
by the other factors (G). The word itself is
used as another factor (W). Thus, the above
example would be factorized as follows:

W:yararlanmak/R:yarar/P:NounInf-N:A3sg/
C:Nom/O:Pnon/G:NounA3sgPnonNom+Verb
+Acquire+Pos

Other factorizations are certainly possible;
however, our primary goal is not to find the
best possible encoding for our data but to
demonstrate the effectiveness of the FLM
approach, which is largely independent of the
choice of factors. For our experiments we used
subsets of 400K words for training, 102K words
for development and 90K words for evaluation.

5 Experiments and Results

In our application of GAs to language model
structure search, the perplexity of models with
respect to the development data was used as
an optimization criterion. The perplexity of
the best models found by the GA were com-
pared to the best models identified by a lengthy
manual search procedure using linguistic knowl-
edge about dependencies between the word fac-
tors involved, and to a random search procedure
which evaluated the same number of strings as
the GA. The following GA options gave good
results: population size 30-50, crossover proba-
bility 0.9, mutation probability 0.01, Stochastic
Universal Sampling as the selection operator, 2-
point crossover. We also experimented with re-
initializing the GA search with the best model

found in previous runs. This method consis-
tently improved the performance of normal GA
search and we used it as the basis for the results
reported below. Due to the large number of fac-

N Word Hand Rand GA ∆ (%)

Dev Set
2 593.8 555.0 556.4 539.2 -2.9
3 534.9 533.5 497.1 444.5 -10.6
4 534.8 549.7 566.5 522.2 -5.0

Eval Set
2 609.8 558.7 525.5 487.8 -7.2
3 545.4 583.5 509.8 452.7 -11.2
4 543.9 559.8 574.6 527.6 -5.8

Table 1: Perplexity for Turkish language models. N

= n-gram order, Word = word-based models, Hand

= manual search, Rand = random search, GA =

genetic search.

tors in the Turkish word representation, models
were only optimized for conditioning variables
and backoff paths, but not for smoothing op-
tions. Table 1 compares the best perplexity re-
sults for standard word-based models and for
FLMs obtained using manual search (Hand),
random search (Rand), and GA search (GA).
The last column shows the relative change in
perplexity for the GA compared to the better
of the manual or random search models. For
tests on both the development set and evalu-
ation set, GA search gave the lowest perplex-
ity. In the case of Arabic, the GA search was

N Word Hand Rand GA ∆ (%)

Dev Set
2 229.9 229.6 229.9 222.9 -2.9
3 229.3 226.1 230.3 212.6 -6.0

Eval Set
2 249.9 230.1 239.2 223.6 -2.8
3 285.4 217.1 224.3 206.2 -5.0

Table 2: Perplexity for Arabic language models

(w/o unknown words).

performed over conditioning factors, the back-
off graph, and smoothing options. The results
in Table 2 were obtained by training and test-
ing without consideration of out-of-vocabulary
(OOV) words. Our ultimate goal is to use these
language models in a speech recognizer with a
fixed vocabulary, which cannot recognize OOV
words but requires a low perplexity for other

N Word Hand Rand GA ∆ (%)

Dev Set
2 236.0 195.5 198.5 193.3 -1.1
3 237.0 199.0 202.0 188.1 -5.5

Eval Set
2 235.2 234.1 247.7 233.4 -0.7
3 253.9 229.2 219.0 212.2 -3.1

Table 3: Perplexity for Arabic language models

(with unknown words).

word combinations. In a second experiment,
we trained the same FLMs from Table 2 with
OOV words included as the unknown word to-
ken. Table 3 shows the results. Again, we see
that the GA outperforms other search methods.
The best language models all used parallel back-
off and different smoothing options at different
backoff graph nodes. The Arabic models made
use of all conditioning variables (Word, Stem,
Root, Pattern, and Morph) whereas the Turkish
models used only the W, P, C, and R variables
(see above Section 4).

6 Related Work

Various previous studies have investigated the
feasibility of using units other than words for
language modeling (e.g. (Geutner, 1995; Çarki
et al., 2000; Kiecza et al., 1999)). However,
in all of these studies words were decomposed
into linear sequences of morphs or morph-like
units, using either linguistic knowledge or data-
driven techniques. Standard language models
were then trained on the decomposed represen-
tations. The resulting models essentially ex-
press statistical relationships between morphs,
such as stems and affixes. For this reason, a
context larger than that provided by a trigram
is typically required, which quickly leads to
data-sparsity. In contrast to these approaches,
factored language models encode morphological
knowledge not by altering the linear segmenta-
tion of words but by encoding words as parallel
bundles of features.

The general possibility of using multiple con-
ditioning variables (including variables other
than words) has also been investigated by
(Dupont and Rosenfeld, 1997; Gildea, 2001;
Wang, 2003; Zitouni et al., 2003). Mostly, the
additional variables were general word classes
derived by data-driven clustering procedures,
which were then arranged in a backoff lattice
or graph similar to the present procedure. All

of these studies assume a fixed path through
the graph, which is usually obtained by an
ordering from more specific probability distri-
butions to more general distributions. Some
schemes also allow two or more paths to be
combined by weighted interpolation. FLMs, by
contrast, allow different paths to be chosen at
run-time, they support a wider range of combi-
nation methods for probability estimates from
different paths, and they offer a choice of dif-
ferent discounting options at every node in the
backoff graph. Most importantly, however, the
present study is to our knowledge the first to
describe an entirely data-driven procedure for
identifying the best combination of parameter
choices. The success of this method will facili-
tate the rapid development of FLMs for differ-
ent tasks in the future.

7 Conclusions

We have presented a data-driven approach to
the selection of parameters determining the
structure and performance of factored language
models, a class of models which generalizes
standard language models by including addi-
tional conditioning variables in a principled
way. In addition to reductions in perplexity ob-
tained by FLMs vs. standard language models,
the data-driven model section method further
improved perplexity and outperformed both
knowledge-based manual search and random
search.

Acknowledgments
We would like to thank Sonia Parandekar for the ini-
tial version of the GA code. This material is based
upon work supported by the NSF and the CIA un-
der NSF Grant No. IIS-0326276. Any opinions, find-
ings, and conclusions expressed in this material are
those of the authors and do not necessarily reflect
the views of these agencies.

References

Jeff A. Bilmes and Katrin Kirchhoff. 2003. Factored
language models and generalized parallel backoff.
In Proceedings of HLT/NACCL, pages 4–6.

P.F. Brown et al. 1992. Class-based n-gram models
of natural language. Computational Linguistics,
18(4):467–479.

K. Çarki, P. Geutner, and T. Schultz. 2000. Turkish
LVCSR: towards better speech recognition for ag-
glutinative languages. In Proceedings of ICASSP.

S. F. Chen and J. Goodman. 1998. An empirical
study of smoothing techniques for language mod-
eling. Technical Report Tr-10-98, Center for Re-

search in Computing Technology, Harvard Uni-
versity.

P. Dupont and R. Rosenfeld. 1997. Lattice based
language models. Technical Report CMU-CS-97-
173, Department of Computer Science, CMU.

P. Geutner. 1995. Using morphology towards better
large-vocabulary speech recognition systems. In
Proceedings of ICASSP, pages 445–448.

D. Gildea. 2001. Statistical Language Understand-
ing Using Frame Semantics. Ph.D. thesis, Uni-
versity of California, Berkeley.

D. Hakkani-Tür, K. Oflazer, and Gökhan Tür. 2000.
Statistical morphological disambiguation for ag-
glutinative languages. In Proceedings of COL-
ING.

D. Hakkani-Tür, K. Oflazer, and Gökhan Tür. 2002.
Statistical morphological disambiguation for ag-
glutinative languages. Journal of Computers and
Humanities, 36(4).

J.H. Holland. 1975. Adaptation in Natural and Ar-
tificial Systems. University of Michigan Press.

Gand Ji and Jeff Bilmes. 2004. Multi-speaker lan-
guage modeling. In Proceedings of HLT/NAACL,
pages 137–140.

D. Kiecza, T. Schultz, and A. Waibel. 1999. Data-
driven determination of appropriate dictionary
units for Korean LVCSR. In Proceedings of
ICASSP, pages 323–327.

K. Kirchhoff et al. 2002. Novel speech recognition
models for Arabic. Technical report, Johns Hop-
kins University.

K. Kirchhoff et al. 2003. Novel approaches to Ara-
bic speech recognition: Report from 2002 Johns-
Hopkins summer workshop. In Proceedings of
ICASSP, pages I–344–I–347.

Hiroaki Kitano. 1990. Designing neural networks
using genetic algorithms with graph generation
system. Complex Systems, pages 461–476.

LDC. 1996. http://www.ldc.upenn.edu/Catalog/-
LDC99L22.html.

K. Oflazer. 1999. Dependency parsing with an ex-
tended finite state approach. In Proceedings of the
37th ACL.

W. Wang. 2003. Factorization of language
models through backing off lattices. Com-
putation and Language E-print Archive,
oai:arXiv.org/cs/0305041.

I. Zitouni, O. Siohan, and C.-H. Lee. 2003. Hierar-
chical class n-gram language models: towards bet-
ter estimation of unseen events in speech recogni-
tion. In Proceedings of Eurospeech - Interspeech,
pages 237–240.

