
The Queen’s Agents: Using Collaborating Object-Based Dialogue Agents
in the Queen’s Communicator

Ian O’Neill, Philip Hanna, Xingkun Liu
School of Computer Science

Queen’s University
Belfast BT7 1NN, N. Ireland
{i.oneill, p.hanna,

xingkun.liu}@qub.ac.uk

Michael McTear
School of Computing and

Mathematics
University of Ulster

Jordanstown, BT37 0QB, N. Ireland
mf.mctear@ulster.ac.uk

Abstract
A dialogue manager provides the decision
making at the heart of a spoken dialogue
system. In an object-oriented approach to
dialogue management, generic behaviour, such
as confirming new or modified information that
has been supplied by the user, is inherited by
more specialised classes. These specialised
classes either encapsulate behaviour typical of a
particular business domain (service agents) or
make available dialogue abilities that may be
required in many business domains (support
agents). In this paper we consider the interplay
between the agents’ generic and specialised
behaviour and consider the manner in which
service and support agents collaborate within
and across their respective groups.

1 Object-orientation and cross-domain,
mixed initiative dialogue

Object-orientation provides an intuitive
separation of, on the one hand, inheritable generic
functionality and, on the other hand, domain-
specific, specialized functionality that is supported
by the generic elements of the system. Applied to
the area of natural language dialogue, this has
enabled us to create a generic, automated dialogue
confirmation strategy – based on confirmation
statuses and discourse pegs (see Section 3.3) –
which supports domain-specific strategies to gather
and provide information relating to particular
transactions – for example booking a hotel or
finding out about cinema times. Heuristics, or
expert rules, specific to each transaction domain,
prompt the user for significant missing information
or assist the user by providing choices from a
database (e.g. names of available hotels).

Thus, while our generic confirmation strategy
ensures that information newly supplied by the
user is confirmed, and information changed is
reconfirmed, and so on, the nature of that
information may differ significantly from domain
to domain. Likewise the system may respond to
confirmed information in quite different ways

depending on the domain – as it either completes a
domain-specific transaction or attempts to elicit
important missing information from the user.

In the Queen’s Communicator dialogue system,
expertise for different transaction domains is
encapsulated within corresponding expert classes
or ‘agents’. We have used this to our advantage by
enabling the system to transfer between domains
either at the user’s or the system’s initiative – in a
mixed initiative dialogue either the user or the
system may introduce new topics. Agents are able
to announce their abilities to the system at large, or
indeed to the user. Thus, when key words or
phrases uttered by the user indicate that the topic
of conversation has turned, for example, from
accommodation booking to payment, the system’s
DomainSpotter (see Section 4) can ask the agents
if any of them deal with payments. The most
suitable agent is then given the task of managing
the specialised subdialogue.

2 Spoken dialogue management
A spoken dialogue system typically comprises a

number of components: an automatic speech
recogniser, a semantic parser, a dialogue manager
(DM), a database ‘back-end’, a natural language
generator, and a text-to-speech engine. The focus
of our present research is the development of an
object-based DM that can support mixed initiative
dialogues that involve a number of business
domains.

Our DM operates within the DARPA1
Communicator architecture, which is based on the
Galaxy hub – a software router developed by the
Spoken Language Systems group at MIT
(www.sls.csail.mit.edu/sls/technologies/galaxy.shtml)
and subsequently released as an open source
package in collaboration with the MITRE
Corporation (fofoca.mitre.org). In the ‘Queen’s
Communicator’ dialogue system, our newly
developed DM interacts with a number of off-the-
shelf components. For semantic parsing we use
Phoenix (W. Ward, 1994), available from the

1 Defense Advanced Research Projects Agency

University of Colorado’s ‘CU Communicator’
download (communicator.colorado.edu). For
recognition we use the Microsoft English ASR
Version 5 Engine as supplied with Windows XP.
Synthesised speech is provided by Festival
(www.cstr.ed.ac.uk/projects/festival/), also taken
from the CU download. Figure 1 shows a typical
Communicator configuration.

 The DM itself embodies decision-making
similar to that of a human interlocutor as it queries,
responds to and informs the user. Moreover, in
mixed initiative dialogues that deal with more than
one domain (e.g. enquiries about accommodation
and events, and supporting exchanges about
payment and addresses), the system has the
additional task of identifying the (ongoing) topic of
the dialogue and applying appropriate dialogue
management expertise.

3 Object-based dialogue agents
3.1 A multi-agent approach to dialogue

management

In order to enable mixed initiative interactions
across domains, we model the system’s behaviour
as a collaboration between the cohort of
implemented agents. Other developers have also
adopted an agent-based approach to dialogue,
though sometimes dialogue agents each perform
very simple tasks rather than engage in extensive
discourse: in (Turunen and Hakulinen, 2001) for
example, simple generic error-handling agents,
based on Java and XML, ask the user to repeat
misunderstood input. In our case an agent is a
specialist in a particular transactional area – e.g.
booking accommodation or eliciting an address.
An agent uses its own domain-specific ‘expert-
rules’ to elicit information (e.g. information for
making a hotel booking) that is then stored in a
specialised dialogue frame. Each agent thus
encapsulates a skillset for a substantial dialogue or
subdialogue.

Like the Communicator team at Carnegie Mellon
University, we view the dialogue product (the
knowledge to be elicited) as a tree-like structure
(Rudnicky and Xu, 1999) – though for us the nodes

are complete dialogue frames rather than
individual data items. In the Queen’s
Communicator the discourse structure evolves
dynamically as agents are selected by a
DomainSpotter, in the light of the user’s utterances
or as a consequence of the agents’ own rules. It is
this process, rather than an overarching dialogue
plan or agenda, that drives the discourse forward,
sometimes across domain boundaries. We do,
however, maintain an ExpertFocusStack, which
contains, in sequence, the name of the agent that is
currently handling the dialogue and the names of
agents that have last handled the dialogue and have
unfinished business: this allows the system to
quickly identify the current handler and to pass
control back, once the current handling agent is
finished.

3.2 Inherited and domain-specific behaviour

Our dialogue manager is implemented as a suite
of Java classes (see Figure 2). The object-based
approach (Booch, 1994) (O’Neill and McTear,
2000) has afforded us certain advantages. The
domain specialists or ‘Experts’ within our system
– AccommodationExpert, TheatreExpert,
CinemaExpert, CreditCardExpert, etc. – all inherit
generic dialogue handling skills from a
DiscourseManager, whose role is to ensure that
new information provided by the user is at least
implicitly confirmed, and information that is
changed or negated is subjected to more detailed,
explicit confirmation (O’Neill and McTear, 2002)
(O’Neill et al. 2003). The domain experts
encapsulate specialised behaviour, which can be
readily extended by additional classes. There are
two families of domain experts:
 ‘service agents’ that provide front-line services

to the user – like AccommodationExpert,
whose behaviour emulates that of a human
booking clerk, and

 ‘support agents’ like CreditCardExpert that are
able to elicit information required to complete
one of the front-line service transactions.

We refer to the corresponding discourse
segments as ‘service’ and ‘support’ dialogues
respectively. By assigning the agents (and the
corresponding dialogues) to one of two families we
give ourselves the option of restricting user-led
transitions between main and ancillary
transactions. However, the overall objective of our
implementation is to maintain a high degree of
flexibility in the manner in which the system reacts
to unsolicited user utterances.

3.3 Using frames of information

The agents, whether they provide service or
support, collect and manipulate frames of

Speech Recogniser

Natural Language
Semantic Parser

Dialogue Manager

Natural Language
Generator

Speech synthesiser

Database

Galaxy
hub

Figure 1. DARPA Communicator architecture.

information related to their own sphere of
competence. The frames consist of Attribute
objects, each of which stores:
 the type and elicited value of a single piece of

information (datum);
 the confirmation status of the datum (e.g.

new_for_system);
 the level to which the datum has been

confirmed (through repetition, or by the user’s
affirmative response to a system prompt – the
level is represented by a simple numeric
‘peg’);

 and the system intention regarding the datum
(e.g. implicitly confirm new information;
explicitly confirm information that has been
negated; ask the user to specify information
that is still required) (Heisterkamp and
McGlashan, 1996).

The Attribute objects thus give a multi-facetted
view of each piece of information that it is being
considered by the system. The evolving domain-
specific (and thus generally agent-specific) frames
of Attributes are maintained on a DiscourseStack
within the DiscourseHistory object. The agents
use this stack to implement the inherited generic
confirmation strategy. The frames of information
are typically populated in the course of several
discourse turns, as new or additional information is
acquired from successive user-system interactions.
Once it is handling a particular discourse segment,
an agent uses its inherited confirmation strategy to
compare the latest values in its current dialogue
frame with the corresponding values and system
intentions in the previous iteration of that frame.
Thus the agent is able to determine which values
have been confirmed (e.g. the user has not

challenged an implicit confirmation request by the
system) and which have been modified or negated.

3.4 Applying expert rules

In addition to its inherited confirmation
strategies, each of the domain Experts, whether a
service agent or a support agent, has its own expert
rules, contained in one or more expert rule
sequences. Typically the expert rule sequences
will be of one of two kinds:

 ‘user-focussed rules’, which determine the
agent’s reaction to particular combinations of
information supplied by the user – must the
system now ask a follow-up question, must it
perform a database look-up, or can it conclude
a transaction ? – and

 ‘database-focussed rules’, which represent the
agent’s dialogue furthering strategy when
database queries based on user-supplied
combinations of information fail: because of
its access to database content, the system may
be able to modify a user-supplied constraint
and so formulate a database query that will
succeed (e.g. the system might suggest a four-
star hotel if it cannot meet the user’s request
for a five-star hotel in a particular locality.)

These rules, encapsulated within the appropriate
agent (e.g. AccommodationExpert), are applied to
information that the agent has ‘phrase-spotted’ and
placed in the appropriate dialogue frame (e.g. an
AccommodationDialogueFrame). Sequences of
rules, encapsulated within service and support
agents and tested to see which rule can fire in the
current discourse state, collectively embody the
kinds of domain-specific behaviour that
characterise a human expert.

DiscourseHistory

-- store generated dialog

 frames
-- contains

UtteranceStore,
InfoStore, and
DiscourseStack

*

DialogServer

-- provide Galaxy hub

 interface

DialogManager

-- contains a number of

 EnquiryExpert subclass
 instances

-- contains a DiscourseHistory
 instance shared between
 the instantiated experts.

-- contains a DomainSpotter
 instances to exercise high-
 level control over experts.

Discourse
Manager

-- implement generic
 confirmation strategy

EnquiryExpert

-- generic processing

 enquires
-- enables an expert to

 act as a service or
 support agent

DialogFrame

-- provide generic dialog

frame functionality

Event
DialogFrame

-- event-specific dialog
 frame

Acco
DialogFrame

-- accommodation-
 specific dialog frame

Attribute

-- individual dialog frame

 attribute
ExpertRuleSequence

-- collection of related

 expert rules

DBRequest

-- encapsulate expert

 initiated DB request

Accommodation
Expert

-- accommodation
 enquiry expertise

EventExpert

-- domain-specific
 processing for events

TheatreExpert

-- domain-specific theatre
 enquiry expertise

CinemaExpert

-- domain-specific cinema
 enquiry expertise

1 1

*

Creates

1 1 1 *

Invoice
PaymentExpert

-- domain-specific
 cheque processing

Cinema
DialogFrame

-- cinema-specific dialog
 frame

CreditCard
PaymentExpert

-- domain-specific credit-
 card processing

CreditCard
DialogFrame

-- credit-card specific
 dialog frame

Payment
DialogFrame

-- payment specific
dialog frame

PaymentExpert

-- generic-payment

 processing

Theatre
DialogFrame

-- theatre-specific dialog
 frame

ExpertRule

-- individual database-

 or user-focussed rule

1
1 1

*

1
* 1

1

Service Agent Hierarchy Support Agent Hierarchy Dialog Frame Hierarchy

DomainSpotter

-- determine and

 maintain enquiry
f

Figure 2: Class diagram of the dialogue manager.

4 Finding the right agent
4.1 Apppointing an initial handling agent

To begin the dialogue, in order to identify the
most appropriate ‘handling agent’, the
DomainSpotter supplies each service agent with
the output of the semantic parse that represents the
user’s utterance. As it attempts to find an initial
handling agent, the DomainSpotter considers only
service agents (like AccommodationExpert or
CinemaExpert) and not support agents (like
CreditCardExpert). The service agents represent
the primary transaction types (booking a hotel
room, enquiring about a movie, etc.) that the
system handles: the system is not, for example,
intended to allow the user to process their credit
account, though it may elicit credit card details in
support of a service (a hotel booking for instance).
Such restrictions help the system ground its
primary functions with the user. Each service
agent scores the parse of the initial user utterance
against the semantic categories that it can process
(each agent has a range of integer values – degrees
of relevance – that it will assign to different
domain-specific parse tags) and returns the score to
the DomainSpotter. The service agent that scores
highest is the one that the DialogManager asks to
apply its domain-specific heuristics to the more
detailed processing of the enquiry. For example,
an AccommodationExpert might score highest and
so become handling agent if the user has been
asking about hotels in Belfast. Specialised agents
give a higher score for specialised parser tags than
generic agents. For example, a user request “I’d
like to go to see Finding Nemo.” might parse as:
event_enquiry:[Event_type].[Movies].FINDING
NEMO. Although the EventExpert could award a
score for event_enquiry, the CinemaExpert, as a
child of EventExpert, would award a score not
only for event_enquiry, but for Movies as well, and
so would be the winner.

4.2 Finding out what the system can do

If the DomainSpotter is unable to identify a
winning agent, it will ask the user to choose
between the domains in closest contention.
Indeed, if the user’s enquiry is so vague as to give
no domain-related information (“I’d like to make
an enquiry.”), the DomainSpotter will ask the user
to choose from one of its highest level service
agents: “Please choose between event booking or
accommodation booking.” – the words in italics are
actually provided by the service agents. The
DomainSpotter is in effect relaying to the user
information that the system components know
about themselves: it is part of the system’s design
philosophy that higher level components are

largely ignorant of the precise capabilities of lower
level components. Similarly, if a service agent
needs to avail of a support agent in a particular
area, it tells the DomainSpotter to find it an expert
that handles the particular specialism (payments,
for instance): it does not name a specific expert
object. So that its area of expertise can be
identified, each agent has, as one of its attributes, a
vector of the specialisms it deals with. The
intention is that additional lower level expertise
can be added to the system in such a way that
higher level behaviour (i.e. requesting the
expertise) remains unchanged. Where more than
one expert (e.g. CreditCardExpert and
InvoiceExpert) can deal with the requested
specialism (e.g. payments), the DomainSpotter
asks the user to choose.

4.3 Transferring control between service and
support

In order to maintain the enquiry focus we use an
ExpertFocusStack in the DiscouseHistory. Once
an agent is selected to handle the current discourse
segment, it is pushed on to the top of the stack.
The agent then uses its expert rules to elicit all the
information needed to complete its discourse
segment: an AccommodationExpert, for example,
will be looking for all information needed to
complete an accommodation booking. Depending
on the rules it encapsulates, a service agent may
require help from a support agent. For example, if
an AccommodationExpert has confirmed sufficient
information to proceed with a reservation, it will
request help from an agent whose specialism is
payment, and the DomainSpotter will look for one

Let us pursue this example further. The
PaymentExpert is identified as an appropriate
payment handler, and is placed above
AccommodationExpert on the ExpertFocusStack.
However, let us suppose that eliciting payment
details first involves eliciting address details, and
so the PaymentExpert in its turn asks the
DomainSpotter to find it an agent specialising in
address processing – in this case the
AddressExpert. The AddressExpert now goes to
the top of the ExpertFocusStack, above the
PaymentExpert. Just like any other agent the
AddressExpert has its own rules that allow it to
accept typical combinations of information
supplied (prompted or unprompted) by the user
and to ask appropriate follow-up questions for
whatever information is still missing. Once a
support agent has all the information it needs, one
of its rules will fire to ‘pass control back’, along
with a ‘finished’ message, to whatever agent was
below it on the ExpertFocusStack. The ‘finished’
agent is removed from the stack. Thus

AddressExpert will pass control back to
PaymentExpert in this example, whose rules, if the
user does not introduce a new topic, will continue
to fire until all necessary payment information has
been elicited and the payment subdialogue can be
concluded – at which point control is passed back
to the AccommodationExpert.

4.4 Dialogue frames and user-led focus shifts

However, a mixed initiative dialogue manager
needs to be able to cope with user-initiated shifts
of discourse focus. For example, a user may supply
address information unprompted while the
system’s intention is first to elicit the information
shown on the user’s credit card. At present we
permit transfer of dialogue control between service
agents: a user may, for example, want to discuss an
event booking more or less in parallel with making
accommodation arrangements. In order to ground
the dialogue by eliciting information in a definite
context, we impose some restrictions on user-
initiated shifts of focus between support dialogues,
and between support and service dialogues.
Dialogue frames are instrumental in implementing
these policies.

Dialogue frames help identify the support
dialogues associated with each service dialogue:
the specification of each frame type (e.g. an
AccommodationDialogueFrame) indicates the type
of each of its Attributes, some of which may
themselves be links to other frames (e.g. a
PaymentDialogueFrame). Dialogue frames that
are associated with service dialogues can be
expanded into a tree-like structure by recursively
traversing the various support frames that are
linked to the service dialog frame. For those
frames which have already been in the discourse
focus (i.e. frames representing dialogue tasks that
have already been the subject of user-system
interaction), this is a straightforward task.
Additionally the frames of possible future handling
agents can be predicted and included within the
tree through the use of the DomainSpotter. For
example, at the outset of an accommodation
enquiry, the related service dialogue frame will not
generally contain an explicitly linked payment
frame. However, the DomainSpotter is able to
determine which agents can provide payment
support, and so the system generates a number of
potential discourse paths relating to payment. Key
words in the user’s utterances determine which
path is in fact used and which payment-related
frames are linked to the accommodation frame.

As the dialogue evolves, the DomainSpotter
tests which agents are best placed to handle the
user’s last utterance: the tree of dialogue frames
indicates to the DomainSpotter which support

agents have been or may be involved in the current
service enquiry, and should therefore be
considered; the DomainSpotter will poll service
agents as a matter of course. If the user’s utterance
is scored most highly by a support agent (relevant
to the current service) whose topic has already
been in the discourse focus, the user can return to
this topic (the shift may indicate the user’s
intention to add to or modify information that was
previously supplied). As a safeguard, the system
places on the ExpertFocusStack any support agents
whose rules fired on the previous path to the
revisited agent, and these support agents will be
allowed to test their rules again (new address
information, for instance, may affect a credit card
option – e.g. if the revised address is in UK, the
CreditCardExpert may mention UK cardholder
offers, etc.). The system uses the linked dialogue
frames of topics that have already been in the
discourse focus to determine the order in which
such support experts should be placed on to the
ExpertFocusStack

 Other requests for shifts of focus from and
between support agents are generally deferred
(“Thanks, I’ll take the address details in a
moment…”), until the rules of the current support
expert allow transfer. The system does not ignore
the contents of the utterance that led to the
deferral: the DiscourseHistory contains an
UtteranceStore, a stack of the parses of the user’s
utterances. When it takes control of the dialogue,
because one of the handling expert’s rules has
allowed it to, an agent first looks to the
UtteranceStore to see if there is any unprocessed
information that it can handle. If there is, it takes
the unprocessed parsed information and begins its
processing as usual with its inherited confirmation
strategy and its domain-specific expert rules (“So
you said the street address was 18 Malone Road.
Can I have the city please?”).

5 The Queen’s Communicator in action
The following portion of dialogue is typical of

the exchanges currently supported by the system.
User utterances are shown as U1, U2, etc. System
utterances (S1a,…, S2, etc.) are taken from our
new natural language generation (NLG) module,
which we are continuing to develop. The NLG
module takes as its input the semantic constructs
output from the DM. These constructs are shown
thus: MESSAGE: process…, etc. A brief
commentary, indicating which main features of the
DM are being called into play, is given at key
points in the dialogue and is printed in italics.

U1: I’d like to book a three-star hotel in Belfast
from the fifteenth of August to the twentieth of
August.

Key words like three-star and hotel fall within
the accommodation domain, and are scored by the
AccommodationExpert . Accordingly the Domain-
Spotter appoints the AccommodationExpert
‘handling agent’. The AccommodationExpert
populates its AccommodationDialogFrame with
whatever relevant information has been supplied
by the user.

S1a: OK, let's start a new accommodation
booking. OK, that's a three-star hotel in Belfast
from 2004-08-15 until 2004-08-20. Please wait...

MESSAGE: process accommodation
 booking

MESSAGE: GIVEN
 AccoType [HOTEL]
 AccoClass [three-star]
 Location [BELFAST]
 DateFrom [2004-08-15]
 DateTo [2004-08-20]
MESSAGE: database enquiry initiated

The AccommodationExpert uses the generic
confirmation strategies that it has inherited from
the DiscourseManager to implicitly confirm new
values, and it uses its own domain-specific rules to
initiate a database lookup that will retrieve names
of hotels that match the user’s criteria.

S1b: You can choose between the following: the
Jurys or Lisdara. Which would you prefer?

PROMPT: SPECIFY
AccoName [jurys]
 [lisdara]

U2: Could you make that a four-star?
Although the system in its utterance suggests

that the user should select one of the hotel names
retrieved from the database, the user may provide
information different to that which was requested,
since this is a mixed initiative system. In this case
the user changes the star-rating, instead of
selecting a hotel name.
 S2: Ok, got it. So that's a four-star?

MESSAGE: user changed value
 AccoClass [four-star]
QUERY: confirm changes

Again, using its inherited confirmation strategy,
the AccommodationExpert compares the value for
the star-rating in the previous frame with the star-
rating in the current frame and performs a ‘repair-
confirm’ on the changed value.

U3: Yes, that’s right.

S3a: Please wait...

MESSAGE: database enquiry initiated

 S3b: You can choose between the following: the
Europa, Malone Lodge, Stormont or Holiday Inn.
Which would you prefer?

PROMPT: SPECIFY
 AccoName [europa]
 [malone-lodge]
 [stormont]
 [holiday-inn]

U4: I’ll go for a double room at the Europa.

S4: So that's the four-star Europa hotel in
Belfast with a double room, from 2004-08-15 until
2004-08-20. Is that correct?

MESSAGE: explicit confirm values
 AccoName [europa]
 AccoType [HOTEL]
 AccoClass [four-star]
 Location [BELFAST]
 AccoRoomType [double]
 DateFrom [2004-08-15]
 DateTo [2004-08-20]
QUERY: CONFIRM values

In the current system implementation the
handling agent explicitly confirms all ‘key’ values
needed to conclude a major segment of the
discourse – once these have been supplied by the
user.

U5: Make that a single room.
In this case, however, the user again changes

his/her mind. The immediate next steps in the
dialogue (not shown here) would be to reconfirm
the ‘key’ values, including the newly changed
value; then ask if the user wishes to check
availability and reserve; and if so elicit payment
details with the aid of the PaymentExpert and
AddressExpert components...

6 Related work
Although some currently available dialogue

systems use object components in accordance with
the latest software engineering orthodoxy – (Allen
et al., 2000) – little published research addresses
the question of how established techniques of
object-oriented software engineering (Booch,
1994) (Booch et al., 1998) can contribute to the
dialogue management task.

Some research groups confirm the suitability of
Java for the development of interactive, agent-
based systems – for example COLLAGEN (Rich et
al. 2001). Indeed, the COLLAGEN architecture,
like that of the Queen’s Communicator, manages
discourse using a ‘focus stack’, a classical idea in
the theory of discourse structure (Grosz and
Sidner, 1986).

For dialogues that are not primarily transaction-
based or frame-based, and where the system must
establish the user’s broader objectives before

offering advice or presenting options, a discourse
management strategy based on problem-solving
(PS) objects (objectives, recipes, actions and
resources) is appropriate (Blaylock et al., 2003).
We are currently investigating means of using PS
objects to orient a dialogue, before using expertise
like that currently encapsulated in our domain
agents to complete those frame-filling tasks that
are needed to support the user’s objectives.

7 Conclusions
We have decomposed the cross-domain dialogue

management task intuitively into a number of sub-
dialogues, each conducted by an implemented
domain specialist with its own expert rules and
associated frame of information to collect. By
using inheritance we easily establish a common
approach to dialogue management, independent of
domain: all experts inherit the same confirmation
strategy. Through inheritance we ensure that
domain experts have common characteristics: they
all have sequences of ‘expert rules’ that they can
apply to user-supplied information to determine
what the system should do next. Domain spotting
enables us to identify appropriate dialogue
handling expertise for each of the user’s utterances.
Since our DomainSpotter actively looks for
relevant expertise amongst the cohort of service
and support agents, new expertise can readily be
added without disturbing the system’s fundamental
dialogue management strategies. Additionally,
division of the available experts into (front-line)
service agents and (ancillary) support experts helps
us maintain discourse context by deferring user-led
shifts of focus that interrupt coherent data
elicitation.

Future developments are likely to include:
addition of new dialogue domains (e.g. travel); and
incorporation of multiple dialogue strategies (using
frames for mixed initiative transactions, PS objects
for collaborative problem solving, and finite state
transition networks for system-led interaction).
Multimodal input will also be considered,
including input relating to the user’s emotional
state, as a factor for dynamically determining an
appropriate dialogue strategy for a particular
discourse segment.

8 Acknowledgements
This research is supported by the EPSRC under

grant number GR/R91632/01.

References
J. Allen, D. Byron, M. Dzikovska, G. Ferguson, L.

Galescu and A. Stent. 2000. An Architecture for
a Generic Dialogue Shell. Natural Language

Engineering 6 (3–4), pp. 1-16, Cambridge
University Press.

N. Blaylock, J. Allen and G. Ferguson. 2003.
Managing communicative intentions with
collaborative problem solving. Current and New
Directions in Discourse and Dialogue (eds. J.
van Kuppevelt and R. Smith), pp. 63 – 84,
Kluwer, Dordrecht.

G. Booch. 1994. Object-Oriented Analysis and
Design with Applications (2nd Edition).
Benjamin/Cummings, Redwood City, CA.

G. Booch, J. Rumbaugh and I. Jacobson. 1998. The
Unified Modeling Language User Guide.
Addison Wesley Longman, Reading, MA.

B. Grosz and C. Sidner. 1986. Attention,
Intentions, and the Structure of Discourse.
Computational Linguistics, 12:3, pp. 175 – 204,
Cambridge, MA.

P. Heisterkamp and S. McGlashan. 1996. Units of
Dialogue Management: An Example.
Proceedings of ICSLP96, pp. 200–203,
Philadelphia.

I. O’Neill and M. McTear. 2000. Object-Oriented
Modelling of Spoken Language Dialogue
Systems. Natural Language Engineering 6 (3–
4), pp. 341–362, Cambridge University Press.

I. O’Neill and M. McTear. 2002. A Pragmatic
Confirmation Mechanism for an Object-Based
Spoken Dialogue Manager. Proceedings of
ICSLP-2002, Vol. 3, pp. 2045–2048. Denver,
CO.

I. O’Neill, P. Hanna, X. Liu and M. McTear. 2003.
The Queen’s Communicator: an Object-Oriented
Dialogue Manager. Proceedings of Eurospeech
2003, pp. 593–596, Geneva.

C. Rich, C. Sidner and N. Lesh. 2001.
COLLAGEN: Applying Collaborative Discourse
Theory to Human-Computer Interaction.
Artificial Intelligence Magazine, Vol 22, Issue 4,
pp. 15-25, Menlo Park, CA.

A. Rudnicky and W. Xu. 1999. An agenda-based
dialog management architecture for spoken
language systems. Proceedings of IEEE
Automatic Speech Recognition and
Understanding Workshop, p. I–337.

M. Turunen and J. Hakulinen. 2001. Agent-Based
Adaptive Interaction and Dialogue Management
Architecture for Speech Applications. Text
Speech and Dialogue–Proceedings of the Fourth
International Conference TSD, pp. 357–364.

W. Ward. 1994. Extracting information in
spontaneous speech. Proceedings of ICSLP 94,
pp. 83–86, Yokohama.

