
Linear-Time Dependency Analysis for Japanese

Manabu Sassano
Fujitsu Laboratories, Ltd.

4-1-1, Kamikodanaka, Nakahara-ku,
Kawasaki 211-8588, Japan

sassano@jp.fujitsu.com

Abstract
We present a novel algorithm for Japanese dependency
analysis. The algorithm allows us to analyze dependency
structures of a sentence in linear-time while keeping a
state-of-the-art accuracy. In this paper, we show a formal
description of the algorithm and discuss it theoretically
with respect to time complexity. In addition, we eval-
uate its efficiency and performance empirically against
the Kyoto University Corpus. The proposed algorithm
with improved models for dependency yields the best ac-
curacy in the previously published results on the Kyoto
University Corpus.

1 Introduction
Efficiency in parsing as well as accuracy is one of
very important issues in natural languages process-
ing. Although we often focus much on parsing ac-
curacy, studies of its efficiency are also important,
especially for practical NLP applications. Improv-
ing efficiency without loss of accuracy is a really big
challenge.

The main purpose of this study is to propose an
efficient algorithm to analyze dependency structures
of head final languages such as Japanese and to
prove its efficiency both theoretically and empiri-
cally. In this paper, we present a novel efficient al-
gorithm for Japanese dependency analysis. The al-
gorithm allows us to analyze dependency structures
of a sentence in linear-time while keeping a state-
of-the-art accuracy. We show a formal description
of the algorithm and discuss it theoretically with
respect to time complexity. In addition to this,
we evaluate its efficiency and performance empir-
ically against the Kyoto University Corpus (Kuro-
hashi and Nagao, 1998), which is a parsed corpus
of news paper articles in Japanese.

The remainder of the paper is organized as fol-
lows. Section 2 describes the syntactic characteris-
tics of Japanese and the typical sentence processing
of Japanese. In Section 3 previous work of depen-
dency analysis of Japanese as well as of English is
briefly reviewed. After these introductory sections,
our proposed algorithm is described in Section 4.

Next, improved models for estimating dependency
of two syntactic chunks called bunsetsus are pro-
posed in Section 5. Section 6 describes experimen-
tal results and discussion. Finally, in Section 7 we
conclude this paper by summarizing our contribu-
tions and pointing out some future directions.

2 Parsing Japanese

2.1 Syntactic Properties of Japanese
The Japanese language is basically an SOV lan-
guage. Word order is relatively free. In English the
syntactic function of each word is represented with
word order, while in Japanese postpositions repre-
sent the syntactic function of each word. For ex-
ample, one or more postpositions following a noun
play a similar role to declension of nouns in Ger-
man, which indicates a grammatical case.

Based on such properties, a bunsetsu1 was de-
vised and has been used to analyze syntactically a
sentence in Japanese. A bunsetsu consists of one
or more content words followed by zero or more
function words. By defining a bunsetsu like that,
we can analyze a sentence in a similar way that is
used when analyzing a grammatical role of words
in inflecting languages like German.

Thus, strictly speaking, bunsetsu order rather
than word order is free except the bunsetsu that con-
tains a main verb of a sentence. Such bunsetsu must
be placed at the end of the sentence. For example,
the following two sentences have an identical mean-
ing: (1) Ken-ga kanojo-ni hon-wo age-ta. (2) Ken-
ga hon-wo kanojo-ni age-ta. (-ga: subject marker,
-ni: dative case particle, -wo: accusative case par-
ticle. English translation: Ken gave a book to her.)
Note that the rightmost bunsetsu ‘age-ta,’ which is
composed of a verb stem and a past tense marker,
has to be placed at the end of the sentence.

1‘Bunsetsu’ is composed of two Chinese characters, i.e.,
‘bun’ and ‘setsu.’ ‘Bun’ means a sentence and ’setsu’ means
a segment. A ‘bunsetsu’ is considered to be a small syntactic
segment in a sentence. A eojeol in Korean (Yoon et al., 1999)
is almost the same concept as a bunsetsu. Chunks defined in
(Abney, 1991) for English are also very similar to bunsetsus.



We here list the constraints of Japanese depen-
dency including ones mentioned above.

C1. Each bunsetsu has only one head except the
rightmost one.

C2. Each head bunsetsu is always placed at the
right hand side of its modifier.

C3. Dependencies do not cross one another.

These properties are basically shared also with Ko-
rean and Mongolian.

2.2 Typical Steps of Parsing Japanese
Since Japanese has the properties above, the follow-
ing steps are very common in parsing Japanese:

1. Break a sentence into morphemes (i.e. mor-
phological analysis).

2. Chunk them into bunsetsus.

3. Analyze dependencies between these bunset-
sus.

4. Label each dependency with a semantic role
such as agent, object, location, etc.

We focus on dependency analysis in Step 3.

3 Previous Work
We review here previous work, mainly focusing on
time complexity. In English as well as in Japanese,
dependency analysis has been studied (e.g., (Laf-
ferty et al., 1992; Collins, 1996; Eisner, 1996)). The
parsing algorithms in their papers require �����
time where � is the number of words.2

In dependency analysis of Japanese it is very
common to use probabilities of dependencies be-
tween each two bunsetsus in a sentence. Haruno
et al. (1998) used decision trees to estimate the
dependency probabilities. Fujio and Matsumoto
(1998) applied a modified version of Collins’ model
(Collins, 1996) to Japanese dependency analysis.
Both Haruno et al., and Fujio and Matsumoto used
the CYK algorithm, which requires ����� time,
where � is a sentence length, i.e., the number of
bunsetsus. Sekine et al. (2000) used Maximum
Entropy (ME) Modeling for dependency probabili-
ties and proposed a backward beam search to find
the best parse. This beam search algorithm re-
quires ����� time. Kudo and Matsumoto (2000)
also used the same backward beam search together
with SVMs rather than ME.

There are few statistical methods that do not use
dependency probabilities of each two bunsetsus.

2Nivre (2003) proposes a deterministic algorithm for pro-
jective dependency parsing, the running time of which is linear.
The algorithm has been evaluated on Swedish text.

Ken-ga kanojo-ni ano hon-wo age-ta.
Ken-subj to her that book-acc gave.

ID 0 1 2 3 4
Head 4 4 3 4 -

Figure 3: Sample Sentence

Sekine (2000) observed that 98.7% of the head lo-
cations are covered by five candidates in a sentence.
Maruyama and Ogino (Maruyama and Ogino, 1992)
also observed similar phenomena. Based on this ob-
servation, Sekine (2000) proposed an efficient anal-
ysis algorithm using deterministic finite state trans-
ducers. This algorithm, in which the limited num-
ber of bunsetsus are considered in order to avoid
exhaustive search, takes ���� time. However, his
parser achieved an accuracy of 77.97% on the Ky-
oto University Corpus, which is considerably lower
than the state-of-the-art accuracy around 89%.

Another interesting method that does not use de-
pendency probabilities between each two bunsetsus
is the cascaded chunking model by Kudo and Mat-
sumoto (2002) based on the idea in (Abney, 1991;
Ratnaparkhi, 1997). They used the model with
SVMs and achieved an accuracy of 89.29%, which
is the best result on the Kyoto University Corpus.
Although the number of dependencies that are es-
timated in parsing are significantly fewer than that
either in CYK or the backward beam search, the up-
per bound of time complexity is still �����.

Thus, it is still an open question as to how we an-
alyze dependencies for Japanese in linear time with
a state-of-the-art accuracy. The algorithm described
below will be an answer to this question.

4 Algorithm
4.1 Algorithm to Parse a Sentence
The pseudo code for our algorithm of dependency
analysis is shown in Figure 1. This algorithm is used
with any estimator that decides whether a bunsetsu
modifies another bunsetsu. A trainable classifier,
such as an SVM, a decision tree, etc., is a typical
choice for the estimator. We assume that we have
some classifier to estimate the dependency between
two bunsetsus in a sentence and the time complex-
ity of the classifier is not affected by the sentence
length.

Apart from the estimator, variables used for pars-
ing are only two data structures. One is for input
and the other is for output. The former is a stack for
keeping IDs of modifier bunsetsus to be checked.
The latter is an array of integers that stores head IDs
that have already been analyzed.

Following the presented algorithm, let us parse a



// Input: N: the number of bunsetsus in a sentence.
// w[]: an array that keeps a sequence of bunsetsus in the sentence.
// Output: outdep[]: an integer array that stores an analysis result, i.e., dependencies between
// the bunsetsus. For example, the head of w[j] is outdep[j].
//
// stack: a stack that holds IDs of modifier bunsetsus in the sentence. If it is empty, the pop
// method returns EMPTY (��).
// function estimate dependency(j, i, w[]):
// a function that returns non-zero when the j-th bunsetsu should
// modify the i-th bunsetsu. Otherwise returns zero.
function analyze(w[], N, outdep[])
stack.push(0); // Push 0 on the stack.
for (int i = 1; i � N; i++) � // Variable i for a head and j for a modifier.

int j = stack.pop(); // Pop a value off the stack.
while (j != EMPTY && (i == N � 1 �� estimate dependency(j, i, w))) �

outdep[j] = i; // The j-th bunsetsu modifies the i-th bunsetsu.
j = stack.pop(); // Pop a value off the stack to update j.

�
if (j != EMPTY)

stack.push(j);
stack.push(i);

�

Figure 1: Pseudo Code for Analyzing Dependencies. Note that “i == N - 1” means the i-th bunsetsu is the
rightmost one in the sentence.

// indep[]: an integer array that holds correct dependencies given in a training corpus.
//
// function estimate dependency(j, i, w[], indep[]):
// a function that returns non-zero if indep[j] == i, otherwise returns zero.
// It also prints a feature vector (i.e., an encoded example) with a label which is decided to be
// 1 (modify) or -1 (not modify) depending on whether the j-th bunsetsu modifies the i-th.
function generate examples(w[], N, indep[])
stack.push(0);
for (int i = 1; i � N; i++) �

int j = stack.pop();
while (j != EMPTY && (i == N � 1 �� estimate dependency(j, i, w, indep))) �

j = stack.pop();
�
if (j != EMPTY)

stack.push(j);
stack.push(i);

�

Figure 2: Pseudo Code for Generating Training Examples. Variables w[], N, and stack are the same as in
Figure 1.

sample sentence in Figure 3. For explanation, we
here assume that we have a perfect classifier as esti-
mate dependency() in Figure 1, which can return a
correct decision for the sample sentence.

First, we push 0 (Ken-ga) on the stack for the bun-
setsu ID at the top of the sentence. After this initial-
ization, let us see how analysis proceeds at each iter-
ation of the for loop. At the first iteration we check

the dependency between the zero-th bunsetsu and
the 1st (kanojo-ni). We push 0 and 1 because the
zero-th bunsetsu does not modify the 1st. Note that
the bottom of the stack is 0 rather than 1. Smaller
IDs are always stored at lower levels of the stack.
Due to this, we do not break the non-crossing con-
straint (C3. in Section 2.1).

At the second iteration we pop 1 off the stack and



check the dependency between the 1st bunsetsu and
the 2nd (ano). Since the 1st does not modify the
2nd, we again push 1 and 2.

At the third iteration we pop 2 off the stack and
check the dependency for the 2nd and the 3rd (hon-
wo). Since the 2nd modifies the 3rd, the dependency
is stored in outdep[]. The value of outdep[j] repre-
sents the head of the �-th bunsetsu. For example,
outdep[2] = 3 means the head of the 2nd bunsetsu
is the 3rd. Then we pop 1 off the stack and check the
dependency between the 1st and the 3rd. We push
again 1 since the 1st does not modify the 3rd. After
that, we push 3 on the stack. The stack now has 3, 1
and 0 in top-to-bottom order.

At the fourth iteration we pop 3 off the stack. We
do not have to check the dependency between the
3rd and the 4th (age-ta) because the 4th bunsetsu is
the last bunsetsu in the sentence. Now we set out-
dep[3] = 4. Next, we pop 1 off the stack. Also in
this case, we do not have to check the dependency
between the 1st and the 4th. Similarly the zero-th
bunsetsu modifies the 4th. As a result we set out-
dep[1] = 4 and outdep[0] = 4. Now the stack is
empty and we finish the analysis function. Finally,
we have obtained a dependency structure through
the array outdep[].
4.2 Time Complexity
At first glance, the upper bound of the time com-
plexity of this algorithm seems to be ����� because
it involves a double loop; however, it is not. We will
show that the upper bound is ���� by considering
how many times the condition part of the while loop
in Figure 1 is executed. The condition part of the
while loop fails � � � times because the outer for
loop will be executed from 1 to � ��. On the other
hand, the same condition part successes ��� times
because outdep[j] = i is executed � � � times. For
each bunsetsu ID �, outdep[j] = i is surely executed
once because by executing j = stack.pop() the value
of � is lost and it is never pushed on the stack again.
That is the body of the while loop will be executed
at most � � � times which is equal to the number
of the bunsetsus except the last one. Therefore the
total number of execution of the condition part of
the while loop is �� ��, which is obtained by sum-
ming up��� and ���. This means that the upper
bound of time complexity is ����.

4.3 Algorithm to Generate Training Examples
When we prepare training examples for the train-
able classifier used with this algorithm, we use the
algorithm shown in Figure 2. It is almost the same
as the algorithm for analyzing in Figure 1. The dif-
ferences are that we give correct dependencies to es-
timate dependency() through indep[] and we obvi-

ously do not have to store the head IDs to outdep[].
4.4 Summary and Theoretical Comparison

with Related Work
The algorithm presented here has the following fea-
tures:

F1. It is independent on specific machine learning
methodologies. Any trainable classifiers can
be used.

F2. It scans a sentence just once in a left-to-right
manner.

F3. The upper bound of time complexity is ����.
The number of the classifier call, which is most
time consuming, is at most �� � �.

F4. The flow and the used data structures are very
simple. Therefore, it is easy to implement.

One of the most related models is the cascaded
chunking model by (Kudo and Matsumoto, 2002).
Their model and our algorithm share many fea-
tures including F1.3 The big difference between
theirs and ours is how many times the input sen-
tence has to be scanned (F2). With their model we
have to scan it several times, which leads to some
computational inefficiency, i.e., at the worst case
����� computation is required. Our strict left-to-
right parsing is more suitable also for practical ap-
plications such as real time speech recognition. In
addition, the flow and the data strucutres are much
simpler (F4) than those of the cascaded chunking
model where an array for chunk tags is used and it
must be updated while scanning the sentence sev-
eral times.

Our parsing method can be considered to be one
of the simplest forms of shift-reduce parsing. The
difference from typical use of shift-reduce parsing
is that we do not need several types of actions and
only the top of the stack is inspected. The reason for
these simplicities is that Japanese has the C2 con-
straint (Sec. 2.1) and the target task is dependency
analysis rather than CFG parsing.

5 Models for Estimating Dependency
In order to evaluate the proposed algorithm empir-
ically, we use SVMs (Vapnik, 1995) for estimating
dependencies between two bunsetsus because they
have excellent properties. One of them is that com-
binations of features in an example are automati-
cally considered with polynomial kernels. Excellent
performances have been reported for many classifi-
cation tasks. Please see (Vapnik, 1995) for formal
descriptions of SVMs.

3Kudo and Matsumoto (2002) give more comprehensive
comparison with the probabilistic models as used in (Uchimoto
et al., 1999).



At estimate dependency() in Figure 1, we encode
an example with features described below. Then we
give it to the SVM and receive the estimated deci-
sion as to whether a bunsetsu modifies the other.
5.1 Standard Features
By the “standard features” here we mean the fea-
ture set commonly used in (Uchimoto et al., 1999;
Sekine et al., 2000; Kudo and Matsumoto, 2000;
Kudo and Matsumoto, 2002). We employ the fea-
tures below for each bunsetsu:

1. Rightmost Content Word - major POS, minor
POS, conjugation type, conjugation form, sur-
face form (lexicalized form)

2. Rightmost Function Word - major POS, minor
POS, conjugation type, conjugation form, sur-
face form (lexicalized form)

3. Punctuation (periods, and commas)

4. Open parentheses and close parentheses

5. Location - at the beginning of the sentence or
at the end of the sentence.

In addition, features as to the gap between two bun-
setsus are also used. They include: distance, parti-
cles, parentheses, and punctuation.
5.2 Local Contexts of the Current Bunsetsus
Local contexts of a modifier and its possible head
would be useful because they may represent fixed
expressions, case frames, or other collocational re-
lations. Assume that the �-th bunsetsu is a modifier
and the �-th one is a possible head. We consider
three bunsetsus in the local contexts of the �-th and
the �-th: the (� � �)-th bunsetsu if it modifies the
�-th, the (�� �)-th one, and the (�� �)-th one. Note
that in our algorithm the (� � �)-th always modifies
the �-th when checking the dependency between the
�-th bunsetsu and the �-th where � � �� �. In order
to keep the data structure simple in the proposed al-
gorithm, we did not consider more distant bunsetsus
from both the �-th and the �-th. It is easy to check
whether the (� � �)-th bunsetsus modifies the �-th
one through outdep[]. Note that this use of local
contexts is similar to the dynamic features in (Kudo
and Matsumoto, 2002)4.
5.3 Richer Features Inside a Bunsetsu
With the standard features we will miss some case
particles if the bunsetsu has two or more function
words. Suppose that a bunsetsu has a topic marker

4Their model extracts three types of dynamic features from
modifiers of the �-th bunsetsu (Type B), modifiers of the �-th
bunsetsu (Type A), and heads of the �-th bunsetsu (Type C).
Since in our proposed algorithm analysis proceeds in a left-to-
right manner, we have to use stacking (Wolpert, 1992) or other
techniques to employ the type C features.

as well as a case particle. In this case the case par-
ticle is followed by the topic marker. Thus we miss
the case particle since in the standard features only
the rightmost function word is employed. In order
to capture this information, we use as features also
all the particles in each bunsetsu.

Another important features missed in the stan-
dard are ones of the leftmost word of a possible
head bunsetsu, which often has a strong association,
e.g., an idiomatic fixed expression, with the right-
most word of its modifier. Furthermore, we use as a
feature the surface form of the leftmost word of the
bunsetsu that follows a possible head. This feature
is used with ones in Section 5.2.
5.4 Features for Conjunctive Structures
Detecting conjunctive structures is one of hard tasks
in parsing long sentences correctly. Kurohashi and
Nagao (1994) proposed a method to detect conjunc-
tive structures by calculating similarity scores be-
tween two sequences of bunsetsus.

So far few attempts have been made to explore
features for detecting conjunctive structures. As a
first step we tried two preliminary features for con-
junctive structures. If the current modifier bunsetsu
is a distinctive key bunsetsu (Kurohashi and Nagao,
1994, page 510), these features are triggered. One
is a feature which is activated when a modifier bun-
setsu is a distinctive key bunsetsu. The other is a
feature which is activated when a modifier is a dis-
tinctive key bunsetsu and the content words of both
the modifier and its possible head are equal to each
other. For simplicity, we limit the POS of these con-
tent words to nouns.

6 Experimental Results and Discussion
We implemented a parser and SVM tools in C++
and used them for experiments.
6.1 Corpus
We used the Kyoto University Corpus Version 2
(Kurohashi and Nagao, 1998) to evaluate the pro-
posed algorithm. Our parser was trained on the ar-
ticles on January 1st through 8th (7,958 sentences)
and tested on the article on January 9th (1,246 sen-
tences). The article on January 10th were used for
development. The usage of these articles is the same
as in (Uchimoto et al., 1999; Sekine et al., 2000;
Kudo and Matsumoto, 2002).
6.2 SVM setting
Polynomial kernels with the degree of 3 are used
and the misclassification cost is set to 1 unless stated
otherwise.
6.3 Results
Accuracy. Performances of our parser on the test
set is shown in Table 1. For comparison to pre-



Dependency Sentence
Acc.(%) Acc.(%)

Standard 88.72 45.88
Full 89.56 48.35
w/o Context 88.91 46.33
w/o Rich 89.19 47.05
w/o Conj 89.41 47.86

Table 1: Performance on Test Set. Context, Rich,
and Conj mean the features in Sec. 5.2, 5.3, and
5.4, respectively.

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45

S
ec

on
ds

Sentence Length (Number of Bunsetsus)

Figure 4: Observed Running Time

vious work we use the standard measures for the
Kyoto University Corpus: dependency accuracy and
sentence accuracy. The dependency accuracy is the
percentage of correct dependencies and the sentence
accuracy is the percentage of sentences, all the de-
pendencies in which are correctly analyzed.

The accuracy with the standard feature set is rel-
atively good. Actually, this accuracy is almost the
same as that of the cascaded chunking model with-
out dynamic features (Kudo and Matsumoto, 2002).
Our parser with the full feature set yields an accu-
racy of 89.56%, which is the best in the previously
published results.

Asymptotic Time Complexity. Figure 4 shows
the running time of our parser on the test set using
a workstation (Ultra SPARC II 450 MHz with 1GB
memory). It clearly shows that the running time is
proportional to the sentence length and this obser-
vation is consistent with our theoretical analysis in
Section 4.2.

One might think that although the upper bound
of time complexity is lower than those of previous
work, actual processing of our parser is not so fast.
Slowness of our parser is mainly due to a huge com-
putation of kernel evaluations in SVMs. The SVM

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 5 10 15 20 25 30 35 40 45

S
ec

on
ds

Sentence Length (Number of Bunsetsus)

Figure 5: Observed Running Time with Linear Ker-
nel. The misclassification cost is set to 0.0056.

classifiers in our experiments have about forty thou-
sand support vectors. Therefore, for every deci-
sion of dependency also a huge computation of dot
products is required. Fortunately, solutions to this
problem have already been given by Kudo and Mat-
sumoto (2003). They proposed methods to convert
a polynomial kernel with higher degrees to a simple
linear kernel and reported a new classifier with the
converted kernel was about 30 to 300 times faster
than the original one while keeping the accuracy. By
applying their methods to our parser, its processing
time would be enough practical.

In order to roughly estimate the improved speed
of our parser, we built a parser with a linear kernel
and ran it on the same test set. Figure 5 shows the
observed time of the parser with a linear kernel us-
ing the same machine. The parser runs fast enough.
It can parse a very long sentence within 0.02 sec-
onds. Furthermore, accuracy as well as speed of
this parser was much better than we expected. It
achieves a dependency accuracy of 87.36% and a
sentence accuracy of 40.60%. These accuracies are
slightly better than those in (Uchimoto et al., 1999),
where combinations of features are manually se-
lected.

6.4 Comparison to Related Work
We compare our parser to those in related work. A
summary of the comparison is shown in Table 2.
It clearly shows that our proposed algorithm with
SVMs has a good property with regard to time
complexity and in addition our parser successfully
achieves a state-of-the-art accuracy.

Theoretical comparison with (Kudo and Mat-
sumoto, 2002) is described in Section 4.4. Uchi-
moto et al. (1999) used the backward beam search
with ME. According to (Sekine et al., 2000), the an-
alyzing time followed a quadratic curve. In contrast,



Algorithm/Model Time Acc.(%)
Complexity

This paper Stack Dependency Analysis (SVMs) � 89.56
Stack Dependency Analysis (linear SVMs) � 87.36

KM02 Cascaded Chunking (SVMs) �� 89.29
KM00 Backward Beam Search (SVMs) �� 89.09
USI99 Backward Beam Search (ME) �� 87.14
Seki00 Deterministic Finite State Transducer � 77.97

Table 2: Comparison to Related Work. KM02 = Kudo and Matsumoto 2002, KM00 = Kudo and Matsumoto
2000, USI99 = Uchimoto et al. 1999, and Seki00 = Sekine 2000.

our parser analyzes a sentence in linear time keep-
ing a better accuracy. Sekine (2000) also proposed
a very fast parser that runs in linear time; however,
accuracy is greatly sacrificed.

7 Conclusion and Future Directions
We have presented a novel algorithm for Japanese
dependency analysis. The algorithm allows us
to analyze dependency structures of a sentence in
linear-time while keeping a state-of-the-art accu-
racy. We have shown a formal description of the
algorithm and discussed it theoretically in terms of
time complexity. In addition, we have evaluated its
efficiency and performance empirically against the
Kyoto University Corpus. Our parser gives the best
accuracy, 89.56%, in the previously published re-
sults.

In the future, it would be interesting to apply
this algorithm to speech recognition in which it is
more desirable to analyze a sentence in a left-to-
right manner. Another interesting direction would
be to explore features for conjunctive structures. Al-
though we found some useful features, they were
not enough to improve the performance much. We
expect stacking would be useful.

References
S. P. Abney. 1991. Parsing by chunks. In R. C. Berwick,

S. P. Abney, and C. Tenny, editors, Principle-Based
Parsing: Computation and Psycholinguistics, pages
257–278. Kluwer Academic Publishers.

M. Collins. 1996. A new statistical parser based on bi-
gram lexical dependencies. In Proc. of ACL-96, pages
184–191.

J. M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Proc. of
COLING-96, pages 340–345.

M. Fujio and Y. Matsumoto. 1998. Japanese depen-
dency structure analysis based on lexicalized statis-
tics. In Proc. of EMNLP-1998, pages 88–96.

M. Haruno, S. Shirai, and Y. Ooyama. 1998. Using de-
cision trees to construct a practical parser. In Proc. of
COLING/ACL-98, pages 505–511.

T. Kudo and Y. Matsumoto. 2000. Japanese dependency

structure analysis based on support vector machines.
In Proc. of EMNLP/VLC 2000, pages 18–25.

T. Kudo and Y. Matsumoto. 2002. Japanese depen-
dency analysis using cascaded chunking. In Proc. of
CoNLL-2002, pages 63–69.

T. Kudo and Y. Matsumoto. 2003. Fast methods for
kernel-based text analysis. In Proc. of ACL-03, pages
24–31.

S. Kurohashi and M. Nagao. 1994. A syntactic analysis
method of long Japanese sentences based on the de-
tection of conjunctive structures. Computational Lin-
guistics, 20(4):507–534.

S. Kurohashi and M. Nagao. 1998. Building a Japanese
parsed corpus while improving the parsing system. In
Proc. of the 1st LREC, pages 719–724.

J. Lafferty, D. Sleator, and D. Temperley. 1992. Gram-
matical trigrams: A probabilistic model of link gram-
mar. In Proc. of the AAAI Fall Symp. on Probabilistic
Approaches to Natural Language, pages 89–97.

H. Maruyama and S. Ogino. 1992. A statistical property
of Japanese phrase-to-phrase modifications. Mathe-
matical Linguistics, 18(7):348–352.

J. Nivre. 2003. An efficient algorithm for projective de-
pendency parsing. In Proc. of IWPT-03, pages 149–
160.

A. Ratnaparkhi. 1997. A linear observed time statistical
parser based on maximum entropy models. In Proc.
of EMNLP-1997, pages 1–10.

S. Sekine, K. Uchimoto, and H. Isahara. 2000. Back-
ward beam search algorithm for dependency analysis
of Japanese. In Proc. of COLING-00, pages 754–760.

S. Sekine. 2000. Japanese dependency analysis using
a deterministic finite state transducer. In Proc. of
COLING-00, pages 761–767.

K. Uchimoto, S. Sekine, and H. Isahara. 1999. Japanese
dependency structure analysis based on maximum en-
tropy models. In Proc. of EACL-99, pages 196–203.

V. N. Vapnik. 1995. The Nature of Statistical Learning
Theory. Springer-Verlag.

D. H. Wolpert. 1992. Stacked generalization. Neural
Networks, 5:241–259.

J. Yoon, K. Choi, and M. Song. 1999. Three types of
chunking in Korean and dependency analysis based on
lexical association. In Proc. of the 18th Int. Conf. on
Computer Processing of Oriental Languages, pages
59–65.


