
Extending A Broad-Coverage Parser for a General NLP Toolkit

Hassan Alam, Hua Cheng, Rachmat Hartono, Aman Kumar, Paul Llido, Crystal Nakatsu, Fuad
Rahman, Yuliya Tarnikova, Timotius Tjahjadi and Che Wilcox

BCL Technologies Inc.

Santa Clara, CA 95050 U.S.A.
fuad@bcltechnologies.com

Abstract
With the rapid growth of real world
applications for NLP systems, there
is a genuine demand for a general
toolkit from which programmers
with no linguistic knowledge can
build specific NLP systems. Such a
toolkit should have a parser that is
general enough to be used across
domains, and yet accurate enough for
each specific application. In this
paper, we describe a parser that
extends a broad-coverage parser,
Minipar (Lin, 2001), with an
adaptable shallow parser so as to
achieve both generality and accuracy
in handling domain specific NL
problems. We test this parser on our
corpus and the results show that the
accuracy is significantly higher than
a system that uses Minipar alone.

1 Introduction

With the improvement of natural language
processing (NLP) techniques, domains for
NLP systems, especially those handling speech
input, are rapidly growing. However, most
computer programmers do not have enough
linguistic knowledge to develop NLP systems.
There is a genuine demand for a general toolkit
from which programmers with no linguistic
knowledge can rapidly build NLP systems that
handle domain specific problems more
accurately (Alam, 2000). The toolkit will allow
programmers to generate natural language
front ends for new and existing applications
using, for example, a program-through-
example method. In this methodology, the
programmer will specify a set of sample input
sentences or a domain corpus for each task.
The toolkit will then organize the sentences by

similarity and generate a large set of syntactic
variations of a given sentence. It will also
generate the code that takes a user’s natural
language request and executes a command on
an application. Currently this is an active
research area, and the Advanced Technology
Program (ATP) of the National Institute of
Standards and Technology (NIST) is funding
part of the work.

In order to handle natural language input,
an NLP toolkit must have a parser that maps a
sentence string to a syntactic structure. The
parser must be both general and accurate. It
has to be general because programmers from
different domains will use the toolkit to
generate their specific parsers. It has to be
accurate because the toolkit targets commercial
domains, which usually require high accuracy.
The accuracy of the parser directly affects the
accuracy of the generated NL interface. In the
program-through-example approach, the
toolkit should convert the example sentences
into semantic representations so as to capture
their meanings. In a real world application, this
process will involve a large quantity of data. If
the programmers have to check each syntactic
or semantic form by hand in order to decide if
the corresponding sentence is parsed correctly,
they are likely to be overwhelmed by the
workload imposed by the large number of
sentences, not to mention that they do not have
the necessary linguistic knowledge to do this.
Therefore the toolkit should have a broad-
coverage parser that has the accuracy of a
parser designed specifically for a domain.

One solution is to use an existing parser
with relatively high accuracy. Using existing
parsers such as (Charniak, 2000; Collins,
1999) would eliminate the need to build a
parser from scratch. However, there are two
problems with such an approach. First, many
parsers claim high precision in terms of the
number of correctly parsed syntactic relations

rather than sentences, whereas in commercial
applications, the users are often concerned
with the number of complete sentences that are
parsed correctly. The precision might drop
considerably using this standard. In addition,
although many parsers are domain
independent, they actually perform much
better in the domains they are trained on or
implemented in. Therefore, relying solely on a
general parser would not satisfy the accuracy
needs for a particular domain.

Second, since each domain has its own
problems, which cannot be foreseen in the
design of the toolkit, customization of the
parser might be needed. Unfortunately, using
an existing parser does not normally allow this
option. One solution is to build another parser
on top of the general parser that can be
customized to address domain specific parsing
problems such as ungrammatical sentences.
This domain specific parser can be built
relatively fast because it only needs to handle a
small set of natural language phenomena. In
this way, the toolkit will have a parser that
covers wider applications and in the mean time
can be customized to handle domain specific
phenomena with high accuracy. In this paper
we adopt this methodology.

The paper is organized into 6 sections. In
Section 2, we briefly describe the NLP toolkit
for which the parser is proposed and
implemented. Section 3 introduces Minipar,
the broad-coverage parser we choose for our
toolkit, and the problems this parser has when
parsing a corpus we collected in an IT domain.
In Section 4, we present the design of the
shallow parser and its disadvantages. We
describe how we combine the strength of the
two parsers and the testing result in Section 5.
Finally, in Section 6, we draw conclusions and
propose some future work.

2 NLP Toolkit

In the previous section, we mentioned a
Natural Language Processing Toolkit
(NLPTK) that allows programmers with no
linguistic knowledge to rapidly develop natural
language user interfaces for their applications.
The toolkit should incorporate the major
components of an NLP system, such as a spell
checker, a parser and a semantic representation
generator. Using the toolkit, a software

engineer will be able to create a system that
incorporates complex NLP techniques such as
syntactic parsing and semantic understanding.

In order to provide NL control to an
application, the NLPTK needs to generate
semantic representations for input sentences.
We refer to each of these semantic forms as a
frame, which is basically a predicate-argument
representation of a sentence.

The NLPTK is implemented using the
following steps:

1. NLPTK begins to create an NLP front end

by generating semantic representations of
sample input sentences provided by the
programmer.

2. These representations are expanded using
synonym sets and stored in a Semantic
Frame Table (SFT), which becomes a
comprehensive database of all the
possible commands a user could request
the system to do.

3. The toolkit then creates methods for
attaching the NLP front end to the back
end applications.

4. When the NLP front end is released, a user
may enter an NL sentence, which is
translated into a semantic frame by the
system. The SFT is then searched for an
equivalent frame. If a match is found, the
action or command linked to this frame is
executed.

In order to generate semantic
representations in Step 1, the parser has to
parse the input sentences into syntactic trees.
During the process of building an NLP system,
the programmer needs to customize the parser
of the toolkit for their specific domain. For
example, the toolkit provides an interface to
highlight the domain specific words that are
not in the lexicon. The toolkit then asks the
programmer for information that helps the
system insert the correct lexical item into the
lexicon. The NLPTK development team must
handle complicated customizations for the
programmer. For example, we might need to
change the rules behind the domain specific
parser to handle certain natural language input.
In Step 4, when the programmer finishes
building an NLP application, the system will
implement a domain specific parser. The
toolkit has been completely implemented and
tested.

We use a corpus of email messages from
our customers for developing the system.
These emails contain questions, comments and
general inquiries regarding our document-
conversion products. We modified the raw
email programmatically to delete the
attachments, HTML tags, headers and sender
information. In addition, we manually deleted
salutations, greetings and any information not
directly related to customer support. The
corpus contains around 34,640 lines and
170,000 words. We constantly update it with
new emails from our customers.

From this corpus, we created a test corpus
of 1000 inquiries to test existing broad-
coverage parsers and the parser of the toolkit.

3 Minipar in NLPTK

We choose to use Minipar (Lin, 2001), a
widely known parser in commercial domains,
as the general parser of NLPTK. It is worth
pointing out that our methodology does not
depend on any individual parser, and we can
use any other available parser.

3.1 Introduction to Minipar
Minipar is a principle-based, broad-coverage
parser for English (Lin, 2001). It represents its
grammar as a network of nodes and links,
where the nodes represent grammatical
categories and the links represent types of
dependency relationships. The grammar is
manually constructed, based on the Minimalist
Program (Chomsky, 1995).

Minipar constructs all possible parses of an
input sentence. It makes use of the frequency
counts of the grammatical dependency
relationships extracted by a collocation
extractor (Lin, 1998b) from a 1GB corpus
parsed with Minipar to resolve syntactic
ambiguities and rank candidate parse trees.
The dependency tree with the highest ranking
is returned as the parse of the sentence.

The Minipar lexicon contains about
130,000 entries, derived from WordNet
(Fellbaum, 1998) with additional proper
names. The lexicon entry of a word lists all
possible parts of speech of the word and its
subcategorization frames (if any).

Minipar achieves about 88% precision and
80% recall with respect to dependency
relationships (Lin, 1998a), evaluated on the

SUSANNE corpus (Sampson, 1995), a subset
of the Brown Corpus of American English.

3.2 Disadvantages of Minipar
In order to see how well Minipar performs in
our domain, we tested it on 584 sentences from
our corpus. Instead of checking the parse trees,
we checked the frames corresponding to the
sentences, since the accuracy of the frames is
what we are most concerned with. If any part
of a frame was wrong, we treated it as an error
of the module that contributed to the error. We
counted all the errors caused by Minipar and
its accuracy in terms of correctly parsed
sentences is 77.6%. Note that the accuracy is
actually lower because later processes fix some
errors in order to generate correct frames.

The majority of Minipar errors fall in the
following categories:

1. Tagging errors: some nouns are mis-

tagged as verbs. For example, in Can I get
a copy of the batch product guide?, guide
is tagged as a verb.

2. Attachment errors: some prepositional
phrases (PP) that should be attached to
their immediate preceding nouns are
attached to the verbs. For example, in Can
Drake convert the PDF documents in
Japanese?, in Japanese is attached to
convert.

3. Missing lexical entries: some domain
specific words such as download and their
usages are not in the Minipar lexicon.
This introduces parsing errors because
such words are tagged as nouns by
default.

4. Inability to handle ungrammatical
sentences: in a real world application, it is
unrealistic to expect the user to enter only
grammatical sentences. Although Minipar
still produces a syntactic tree for an
ungrammatical sentence, the tree is ill
formed and cannot be used to extract the
semantic information being expressed.

In addition, Minipar, like other broad-

coverage parsers, cannot be adapted to specific
applications. Its accuracy does not satisfy the
needs of our toolkit. We have to build another
parser on top of Minipar to enable domain
specific customizations to increase the parsing
accuracy.

4 The Shallow Parser

Our NLPTK maps input sentences to action
requests. In order to perform an accurate
mapping the toolkit needs to get information
such as the sentence type, the main predicate,
the arguments of the predicate, and the
modifications of the predicate and arguments
from a sentence. In other words, it mostly
needs local dependency relationships.
Therefore we decided to build a shallow parser
instead of a full parser. A parser that captures
the most frequent verb argument structures in a
domain can be built relatively fast. It takes less
space, which can be an important issue for
certain applications. For example, when
building an NLP system for a handheld
platform, a light parser is needed because the
memory cannot accommodate a full parser.

4.1 Introduction
We built a KWIC (keyword in context) verb
shallow parser. It captures only verb predicates
with their arguments, verb argument modifiers
and verb adjuncts in a sentence. The resulting
trees contain local and subjacent dependencies
between these elements.

The shallow parser depends on three levels
of information processing: the verb list,
subcategorization (in short, subcat) and
syntactic rules. The verb subcat system is
derived from Levin’s taxonomy of verbs and
their classes (Levin, 1993). We have 24 verb
files containing 3200 verbs, which include all
the Levin verbs and the most frequent verbs in
our corpus. A verb is indexed to one or more
subcat files and each file represents a particular
alternation semantico-syntactic sense. We have
272 syntactic subcat files derived from the
Levin verb semantic classes. The syntactic
rules are marked for argument types and
constituency, using the Penn Treebank tagset
(Marcus, 1993). They contain both generalized
rules, e.g., .../NN, and specified rules, e.g.,
purchase/VBP. An example subcat rule for the
verb purchase looks like this: .../DT .../JJ
.../NN, .../DT .../NN from/RP .../NN for/RP
.../NN. The first element says that purchase
takes an NP argument, and the second says that
it takes an NP argument and two PP adjuncts.

We also encoded specific PP head class
information based on the WordNet concepts in
the rules for some attachment disambiguation.

The shallow parser works like this: it first
tags an incoming sentence with Brill tagger
(Brill, 1995) and matches verbs in the tagged
sentence with the verb list. If a match is found,
the parser will open the subcat files indexed to
that verb and gather all the syntactic rules in
these specific subcat files. It then matches the
verb arguments with these syntactic rules and
outputs the results into a tree. The parser can
control over-generation for any verb because
the syntactic structures are limited to that
particular verb's syntactic structure set from
the Levin classes.

4.2 Disadvantages of Shallow Parser
The disadvantages of the shallow parser are
mainly due to its simplified design, including:
1. It cannot handle sentences whose main

verb is be or phrasal sentences without a
verb because the shallow parser mainly
targets command-and-control verb
argument structures.

2. It cannot handle structures that appear
before the verb. Subjects will not appear
in the parse tree even though it might
contain important information.

3. It cannot detect sentence type, for
example, whether a sentence is a question
or a request.

4. It cannot handle negative or passive
sentences.

We tested the shallow parser on 500
sentences from our corpus and compared the
results with the output of Minipar. We
separated the sentences into five sets of 100
sentences. After running the parser on each set,
we fixed the problems that we could identify.
This was our process of training the parser.
Table 1 shows the data obtained from one such
cycle. Since the shallow parser cannot handle
sentences with the main verb be, these
sentences are excluded from the statistics. So
the test set actually contains 85 sentences.

In Table 1, the first column and the first
row show the statistics for the shallow parser
and Minipar respectively. The upper half of the
table is for the unseen data, where 55.3% of
the sentences are parsed correctly and 11.8%
incorrectly (judged by humans) by both
parsers. 18.9% of the sentences are parsed
correctly by Minipar, but incorrectly by the
shallow parser, and 14.1% vise versa. The
lower half of the table shows the result after

fixing some shallow parser problems, for
example, adding a new syntactic rule. The
accuracy of the parser is significantly
improved, from 69.4% to 81.2%. This shows
the importance of adaptation to specific
domain needs, and that in our domain, the
shallow parser outperforms Minipar.

SP/MP Correct
(74.1%)

Wrong
(25.9%)

Correct (69.4%) 47 (55.3%) 12 (14.1%)
Wrong (30.6%) 16 (18.9%) 10 (11.8%)

SP/MP Correct
(74.1%)

Wrong
(25.9%)

Correct (81.2%) 53 (62.4%) 16 (18.8%)
Wrong (18.8%) 10 (11.8%) 6 (7.1%)

Table 1: Comparison of the shallow
parser with Minipar on 85 sentences

The parsers do not perform equally well on
all sets of sentences. For some sets, the
accuracies of Minipar and the shallow parser
drop to 60.9% and 67.8% respectively.

5 Extending Minipar with the
Shallow Parser

Each parser has pros and cons. The advantage
of Minipar is that it is a broad-coverage parser
with relatively high accuracy, and the
advantage of the shallow parser is that it is
adaptable. For this reason, we intend to use
Minipar as our primary parser and the shallow
parser a backup. Table 1 shows only a small
percentage of sentences parsed incorrectly by
both parsers (about 7%). If we always choose
the correct tree between the two outputs, we
will have a parser with much higher accuracy.
Therefore, combining the advantages of the
two parsers will achieve better performance in
both coverage and accuracy. Now the question
is how to decide if a tree is correct or not.

5.1 Detecting Parsing Errors
In an ideal situation, each parser should
provide a confidence level for a tree that is
comparable to each other. We would choose
the tree with higher confidence. However, this
is not possible in our case because weightings
of the Minipar trees are not publicly available,
and the shallow parser is a rule-based system
without confidence information.

Instead, we use a few simple heuristics to
decide if a tree is right or wrong, based on an
analysis of the trees generated for our test
sentences. For example, given a sentence, the
Minipar tree is incorrect if it has more than one
subtree connected by a top-level node whose
syntactic category is U (unknown). A shallow
parser tree is wrong if there are unparsed
words at the end of the sentence after the main
verb (except for interjections). We have three
heuristics identifying a wrong Minipar tree and
two identifying a wrong shallow parser tree. If
a tree passes these heuristics, we must label the
tree as a good parse. This may not be true, but
we will compensate for this simplification
later. The module implementing these
heuristics is called the error detector.

We tested the three heuristics for Minipar
trees on a combination of 84 requestive,
interrogative and declarative sentences. The
results are given in the upper part of Table 2.
The table shows that 45 correct Minipar trees
(judged by humans) are identified as correct by
the error detector and 18 wrong trees are
identified as wrong, so the accuracy is 75%.
Tagging errors and some attachment errors
cannot be detected.

MP/ED Correct

(76.2%)
Wrong

(23.8%)
Correct (56%) 45 (53.6%) 2 (2.4%)
Wrong (44%) 19 (22.6%) 18 (21.4%)

SP/ED Correct
(73%)

Wrong
(26%)

Correct (59%) 58 (58%) 1 (1%)
Wrong (40%) 15 (15%) 25 (25%)

Table 2: The performance of the parse
tree error detector

We tested the two heuristics for shallow
parser trees on 100 sentences from our corpus
and the result is given in the lower part of
Table 2. The accuracy is about 83%. We did
not use the same set of sentences to test the
two sets of heuristics because the coverage of
the two parsers is different.

5.2 Choosing the Better Parse Trees
We run the two parsers in parallel to generate
two parse trees for an input sentence, but we
cannot depend only on the error detector to
decide which tree to choose because it is not
accurate enough. Table 2 shows that the error

detector mistakenly judges some wrong trees
as correct, but not the other way round. In
other words, when the detector says a tree is
wrong, we have high confidence that it is
indeed wrong, but when it says a tree is
correct, there is some chance that the tree is
actually wrong. This motivates us to
distinguish three cases:
1. When only one of the two parse trees is

detected as wrong, we choose the correct
tree, because no matter what the correct
tree actually is, the other tree is definitely
wrong so we cannot choose it.

2. When both trees are detected as wrong, we
choose the Minipar tree because it handles
more syntactic structures.

3. When both trees are detected as correct,
we need more analysis because either
might be wrong.

We have mentioned in the previous sections
the problems with both parsers. By comparing
their pros and cons, we come up with
heuristics for determining which tree is better
for the third case above.

The decision flow for selecting the better
parse is given in Figure 1. Since the shallow
parser cannot handle negative and passive
sentences as well as sentences with the main
verb be, we choose the Minipar trees for such
sentences. The shallow parser outperforms
Minipar on tagging and some PP attachment
because it checks the WordNet concepts. So,
when we detect differences concerning part-of-
speech tags and PP attachment in the parse
trees, we choose the shallow parser tree as the
output. In addition, we prefer the parse with
bigger NP chunks.

We tested these heuristics on 200 sentences
and the result is shown in Table 3. The first
row specifies whether a Minipar tree or a
shallow parser tree is chosen as the final
output. The first column gives whether the
final tree is correct or incorrect according to
human judgment. 88% of the time, Minipar
trees are chosen and they are 82.5% accurate.
The overall contribution of Minipar to the
accuracy is 73.5%. The improvement from just
using Minipar is about 7%, from about 75.5%
to 82.5%. This is a significant improvement.

The main computational expense of
running two parsers in parallel is time. Since
our shallow parser has not been optimized, the
extended parser is about 2.5 times slower than

Minipar alone. We hope that with some
optimization, the speed of the system will
increase considerably. Even in the current time
frame, it takes less than 0.6 second to parse a
15 word sentence.

Final tree MP tree

(88%)
SP tree
(11%)

Correct (82.5%) 73.5% 9%
Wrong (16.5%) 14.5% 2%

Table 3: Results for the extended parser

6 Conclusions and Future Work

In this paper we described a parser that extends
a broad-coverage parser, Minipar, with a
domain adaptable shallow parser in order to
achieve generality and higher accuracy at the
same time. This parser is an important
component of a general NLP Toolkit, which
helps programmers quickly develop an NLP
front end that handles natural language input
from their end users. We tested the parser on
200 sentences from our corpus and the result
shows significant improvement over using
Minipar alone.

Future work includes improving the
efficiency and accuracy of the shallow parser.
Also, we will test the parser on a different
domain to see how much work is required to
switch to a new domain.

References
Alam H. (2000) Spoken Language Generic

User Interface (SLGUI). Technical Report
AFRL-IF-RS-TR-2000-58, Air Force Research
Laboratory, Rome.

Brill E. (1992) A Simple Rule-based Part of
Speech Tagger. In Proceedings of the 3rd
Conference on Applied Natural Language
Processing.

Charniak E. (2000) A Maximum-Entropy-
Inspired Parser. In Proceedings of the 1st
Meeting of NAACL. Washington.

Chomsky N. (1995) Minimalist Program.
MIT Press.

Collins M. (1999) Head-Driven Statistical
Models for Natural Language Parsing. PhD
Dissertation, University of Pennsylvania.

Is the sentence
passive?

Is the SP tree empty?

Is the SP tree correct?

Adding the sentence type
and subject of the M P tree to

the SP tree

No

No

Yes

Accept M P tree

M inipar (M P) tree Shallow Parser (SP) tree

Final parse tree

Yes

No

Is the sentence
negative?

No

Yes

Yes

Yes

No

No

Yes

No

Is the M P tree correct?
No

Is the size of the M P
tree bigger than or
equal to that of the

SP tree?

Is the length of an
NP chunk in the M P

tree longer?

Yes

Does the M P tree
have less verb tags?

Yes

No

No

Yes

Yes

No

Yes Does SP finds a verb
when M P assigns a

sentence type as NP?

Are the verb tags in
the two trees
inconsistent?

Are there unequal
number of verb tags

in the trees?

Figure 1: Decision flow for parse tree selection

Levin B. (1993) English Verb Classes and

Alternations: A Preliminary Investigation.
University of Chicago Press, Chicago.

Lin D. (1998a) Dependency-based
Evaluation of Minipar. In Workshop on the
Evaluation of Parsing Systems, Spain.

Lin D. (1998b) Extracting Collocations
from Text Corpora. In Workshop on
Computational Terminology, Montreal,
Canada, pp. 57-63.

Lin D. (2001) Latat: Language and Text
Analysis Tools. In Proceedings of Human
Language Technology Conference, CA, USA.

Marcus M., Santorini B. and Marcinkiewicz
M. (1993) Building a Large Annotated Corpus
of English: The Penn Treebank, Computational
Linguistics, vol. 19, no. 2, pp. 313-330.

Sampson G. (1995) English for the
Computer. Oxford University Press.

	Table of Content
	Topics
	Authors

