
Towards a Noise-Tolerant, Representation-Independent Mechanism for
Argument Interpretation

�

Ingrid Zukerman and Sarah George
School of Computer Science and Software Engineering

Monash University
Clayton, VICTORIA 3800, AUSTRALIA

Abstract
We describe a mechanism for the interpretation of
arguments, which can cope with noisy conditions
in terms of wording, beliefs and argument struc-
ture. This is achieved through the application of
the Minimum Message Length Principle to evalu-
ate candidate interpretations. Our system receives
as input a quasi-Natural Language argument, where
propositions are presented in English, and gener-
ates an interpretation of the argument in the form
of a Bayesian network (BN). Performance was eval-
uated by distorting the system’s arguments (gener-
ated from a BN) and feeding them to the system for
interpretation. In 75% of the cases, the interpreta-
tions produced by the system matched precisely or
almost-precisely the representation of the original
arguments.

1 Introduction
In this paper, we focus on the interpretation of argu-
mentative discourse, which is composed of impli-
cations. We present a mechanism for the interpreta-
tion of NL arguments which is based on the applica-
tion of the Minimum Message Length (MML) Prin-
ciple for the evaluation of candidate interpretations
(Wallace and Boulton, 1968). The MML princi-
ple provides a uniform and incremental framework
for combining the uncertainty arising from different
stages of the interpretation process. This enables
our mechanism to cope with noisy input in terms of
wording, beliefs and argument structure, and to fac-
tor out the elements of an interpretation which rely
on a particular knowledge representation.

So far, our mechanism has been tested on one
knowledge representation – Bayesian Networks
(BNs) (Pearl, 1988); logic-based representations
will be tested in the future. Figure 1(a) shows a
simple argument, and Figure 1(d) shows a subset

�

This research was supported in part by Australian Research
Council grant A49927212.

of a BN which contains the preferred interpretation
of this argument (the nodes corresponding to the
original argument are shaded). In this example, the
argument is obtained through a web interface (the
uncertainty value of the consequent is entered us-
ing a drop-down menu). As seen in this example,
the input argument differs structurally from the sys-
tem’s interpretation. In addition, the belief value for
the consequent differs from that in the domain BN,
and the wording of the statements differs from the
canonical wording of the BN nodes. Still, the sys-
tem found a reasonable interpretation in the context
of its domain model.

The results obtained in this informal trial are val-
idated by our automated evaluation. This evalua-
tion, which assesses baseline performance, consists
of passing distorted versions of the system’s argu-
ments back to the system for interpretation. In 75%
of the cases, the interpretations produced by the sys-
tem matched the original arguments (in BN form)
precisely or almost-precisely.

In the next section, we review related research.
We then describe the application of the MML cri-
terion to the evaluation of interpretations. In Sec-
tion 4, we outline the argument interpretation pro-
cess. The results of our evaluation are reported in
Section 5, followed by concluding remarks.

2 Related Research
Our research integrates reasoning under uncertainty
for plan recognition in discourse understanding with
the application of the MML principle (Wallace and
Boulton, 1968).

BNs in particular have been used in several such
plan recognition tasks, e.g., (Charniak and Gold-
man, 1993; Horvitz and Paek, 1999; Zukerman,
2001). Charniak and Goldman’s system handled
complex narratives, using a BN and marker passing
for plan recognition. It automatically built and in-
crementally extended a BN from propositions read

ML(IG |IG)Arg SysInt

ML(Arg | IG)Arg

ML(IG |SysInt) = 0SysInt

(d) SysInt (Top
 Candidate)

N reported argument

N heard argument

G argued with B

G and B were enemies

G was in garden at 11

G was in garden
at time of death

G had motiveG had opportunity

G murdered B

N reported argument

N heard argument

G argued with B

G and B were enemies

G was in garden at 11

G was in garden
at time of death

G had motiveG had opportunity

G murdered B

(c) IG for best
 SysInt

SysInt

(b) Top-ranked IG
N reported argumentG was in garden at 11

G murdered B

(a) Original argument (Arg)

Arg

The neighbour reported a argument
 between Mr Green and Mr Body last week
Mr Green was in the garden at 11
Mr Body was murdered by Mr Green

AND
-> [likely]

heated

seen

Figure 1: Interpretation and MML evaluation

in a story, so that the BN represented hypotheses
that became plausible as the story unfolded. In
contrast, we use a BN to constrain our understand-
ing of the propositions in an argument, and apply
the MML principle to select a plausible interpreta-
tion. Both Horvitz and Paek’s system and Zuker-
man’s handled short dialogue contributions. Horvitz
and Paek used BNs at different levels of an abstrac-
tion hierarchy to infer a user’s goal in information-
seeking interactions with a Bayesian Receptionist.
Zukerman used a domain model and user model rep-
resented as a BN, together with linguistic and at-
tentional information to infer a user’s goal from a
short-form rejoinder. However, the combination of
these knowledge sources was based on heuristics.

The MML principle is a model selection tech-
nique which applies information-theoretic criteria
to trade data fit against model complexity. Se-
lected applications which use MML are listed
in http://www.csse.monash.edu.au/ � dld/
Snob.application.papers.

3 Argument Interpretation Using MML
According to the MML criterion, we imagine send-
ing to a receiver the shortest possible message that
describes an NL argument. When a good interpreta-
tion is found, a message which encodes the NL ar-
gument in terms of this interpretation will be shorter
than the message which transmits the words of the
argument directly.

A message that encodes an NL argument in terms
of an interpretation is composed of two parts: (1) in-
structions for building the interpretation, and (2) in-
structions for rebuilding the original argument from
this interpretation. These two parts balance the need
for a concise interpretation (Part 1) with the need
for an interpretation that matches closely the orig-
inal argument (Part 2). For instance, the message
for a concise interpretation that does not match well
the original argument will have a short first part
but a long second part. In contrast, a more com-
plex interpretation which better matches the orig-
inal argument may yield a shorter message over-
all. As a result, in finding the interpretation that
yields the shortest message for an NL argument, we
will have produced a plausible interpretation, which
hopefully is the intended interpretation. To find this
interpretation, we compare the message length of
the candidate interpretations. These candidates are
obtained as described in Section 4.

3.1 MML Encoding
The MML criterion is derived from Bayes Theorem:
Pr
�������	��

Pr
���	��

Pr
���	� ���

, where
�

is the
data and

�
is a hypothesis which explains the data.

An optimal code for an event � with probability
Pr
� � � has message length ML

� � ��
����������
Pr
� � �

(measured in bits). Hence, the message length for
the data and a hypothesis is:

ML
����������

ML
���	���

ML
����� �	� �

The hypothesis for which ML
���!�"�	�

is minimal is
considered the best hypothesis.

Now, in our context, Arg contains the argument,
and SysInt an interpretation generated by our sys-
tem. Thus, we are looking for the SysInt which
yields the shortest message length for

ML
�
Arg

�
SysInt

��

ML

�
SysInt

���
ML

�
Arg

�
SysInt

�
The first part of the message describes the in-

terpretation, and the second part describes how
to reconstruct the argument from the interpreta-
tion. To calculate the second part, we rely on
an intermediate representation called Implication
Graph (IG). An Implication Graph is a graphi-

cal representation of an argument, which repre-
sents a basic “understanding” of the argument.
It is composed of simple implications of the
form Antecedent � Antecedent

� � � �
Antecedent ���

Consequent (where � indicates that the antecedents
imply the consequent, without distinguishing be-
tween causal and evidential implications). ��� Arg
represents an understanding of the input argument.
It contains propositions from the underlying repre-
sentation, but retains the structure of the argument.
��� SysInt represents an understanding of a candidate
interpretation. It is directly obtained from SysInt.
Hence, both its structure and its propositions corre-
spond to the underlying representation. Since both
��� Arg and ��� SysInt use domain propositions and
have the same type of representation, they can be
compared with relative ease.

Figure 1 illustrates the interpretation of a small
argument, and the calculation of the message length
of the interpretation. The interpretation process
obtains ��� Arg from the input, and SysInt from
��� Arg (left-hand side of Figure 1). If a sentence in
Arg matches more than one domain proposition, the
system generates more than one ��� Arg from Arg
(Section 4.1). Each ��� Arg may in turn yield more
than one SysInt. This happens when the underlying
representation has several ways of connecting
between the nodes in ��� Arg (Section 4.2). The
message length calculation goes from SysInt to Arg
through the intermediate representations ��� SysInt
and ��� Arg (right-hand side of Figure 1). This calcu-
lation takes advantage of the fact that there can be
only one ��� Arg for each Arg–SysInt combination.
Hence,
Pr
�
Arg

�
SysInt

�

Pr
�
Arg �	��� Arg � SysInt

�

Pr
�
Arg

� ��� Arg � SysInt
�
Pr
� ��� Arg

�
SysInt

�
Pr
�
SysInt

�
cond. ind.

Pr
�
Arg

� ��� Arg
�
Pr
� ��� Arg

�
SysInt

�
Pr
�
SysInt

�
Thus, the length of the message required to trans-

mit the original argument from an interpretation is

ML
�
Arg

�
SysInt

�

(1)

ML
�
Arg

� ��� Arg
� �

ML
� ��� Arg

�
SysInt

� �
ML

�
SysInt

�
That is, for each candidate interpretation, we cal-

culate the length of the message which conveys:

 SysInt – the interpretation,

 ��� Arg

�
SysInt – how to obtain the belief and struc-

ture of ��� Arg from SysInt,1 and
1We use �� SysInt for this calculation, rather than SysInt.

This does not affect the message length because the receiver
can obtain �� SysInt directly from SysInt.

 Arg
� ��� Arg – how to obtain the sentences in Arg

from the corresponding nodes in ��� Arg.

The interpretation which yields the shortest mes-
sage is selected (the message-length equations for
each component are summarized in Table 1).

3.2 Calculating ML
�
SysInt

�
In order to transmit SysInt, we simply send its
propositions and the relations between them. A
standard MML assumption is that the sender and re-
ceiver share domain knowledge. Hence, one way to
send SysInt consists of transmitting how SysInt is
extracted from the domain representation. This in-
volves selecting its propositions from those in the
domain, and then choosing which of the possible
relations between these propositions are included in
the interpretation. In the case of a BN, the proposi-
tions are represented as nodes, and the relations be-
tween propositions as arcs. Thus the message length
for SysInt in the context of a BN is

����� � C# nodes(domainBN)
nodes(SysInt)

� ����� � C# incident arcs(SysInt)
arcs(SysInt)

(2)

3.3 Calculating ML
�
IGArg

�
SysInt

�
The message which describes ��� Arg in terms of
SysInt (or rather in terms of ��� SysInt) conveys how
��� Arg differs from the system’s interpretation in two
respects: (1) belief, and (2) argument structure.

3.3.1 Belief differences
For each proposition � in both ��� SysInt and ��� Arg,
we transmit any discrepancy between the belief
stated in the argument and the system’s belief in this
proposition (propositions that appear in only one IG
are handled by the message component which de-
scribes structural differences). The length of the
message required to convey this information is

�
�������

Arg � ��� SysInt

ML
������ � ���	��� Arg

� � ���� � � �	��� SysInt
� �

where
���!� � ���	���#" � is the belief in proposition �

in ��� " . Assuming an optimal message encoding,
we obtain�
�$�%���

Arg � ��� SysInt

� ����� �
Pr
�����!� � � �	��� Arg

� � ���!� � � �	��� SysInt
� �

(3)
which expresses discrepancies in belief as a proba-
bility that the argument will posit a particular belief
in a proposition, given the belief held by the system
in this proposition. We have modeled this probabil-
ity using a function which yields a maximum proba-

bility mass when the belief in proposition � accord-
ing to the argument agrees with the system’s belief.
This probability gradually falls as the discrepancy
between the belief stated in the argument and the
system’s belief increases, which in turn yields an
increased message length.

3.3.2 Structural differences
The message which transmits the structural discrep-
ancies between ��� SysInt and ��� Arg describes the
structural operations required to transform ��� SysInt
into ��� Arg. These operations are: node insertions
and deletions, and arc insertions and deletions. A
node is inserted in ��� SysInt when the system can-
not reconcile a proposition in the given argument
with any proposition in its domain representation.
In this case, the system proposes a special Escape
(wild card) node. Note that the system does not pre-
sume to understand this proposition, but still hopes
to achieve some understanding of the argument as a
whole. Similarly, an arc is inserted when the argu-
ment mentions a relationship which does not appear
in ��� SysInt. An arc (node) is deleted when the corre-
sponding relation (proposition) appears in ��� SysInt,
but is omitted from ��� Arg. When a node is deleted,
all the arcs incident upon it are rerouted to connect
its antecedents directly to its consequent. This oper-
ation, which models a small inferential leap, pre-
serves the structure of the implication around the
deleted node. If the arcs so rerouted are inconsis-
tent with ��� Arg they will be deleted separately.

For each of these operations, the message an-
nounces how many times the operation was per-
formed (e.g., how many nodes were deleted) and
then provides sufficient information to enable the
message receiver to identify the targets of the op-
eration (e.g., which nodes were deleted). Thus, the
length of the message which describes the structural
operations required to transform ��� SysInt into ��� Arg
comprises the following components:

ML
�
node insertions

� �
ML

�
node deletions

� �
ML

�
arc insertions

���
ML

�
arc deletions

�
(4)

 Node insertions = number of inserted nodes
plus the penalty for each insertion. Since a node
is inserted when no proposition in the domain
matches a statement in the argument, we use an
insertion penalty equal to ��� – the probability-
like score of the worst acceptable word-match
between a statement and a proposition (Sec-
tion 4.1). Thus the message length for node in-

sertions is����� � �
nodes ins

� �
nodes ins

� � � ����� �
���

�
(5)

 Node deletions = number of deleted nodes plus
their designations. To designate the nodes to be
deleted, we select them from the nodes in SysInt
(or ��� SysInt):����� � �

nodes del
� �"����� � C# nodes(�� SysInt)

nodes del (6)

 Arc insertions = number of inserted arcs plus

their designations plus the direction of each arc.
(This component also describes the arcs incident
upon newly inserted nodes.) To designate an arc,
we need to select a pair of nodes (head and tail)
from the nodes in ��� SysInt and the newly inserted
nodes. However, some nodes in ��� SysInt are al-
ready connected by arcs. These arcs must be
subtracted from the total number of arcs that can
be inserted, yielding

poss arc ins

 C# nodes(�� SysInt)+# nodes ins�

�
arcs(��� SysInt)

We also need to send 1 extra bit per inserted arc
to convey its direction. Hence, the length of the
message that conveys arc insertions is:
����� ���

arcs ins
� � ����� � C# poss arc ins

arcs ins
�

arcs ins
(7)
 Arc deletions = number of deleted arcs plus

their designations.����� � �
arcs del

� � � ��� � C# arcs(�� SysInt)
arcs del (8)

3.4 Calculating ML(Arg
�
IGArg)

The given argument is structurally equivalent to
��� Arg. Hence, in order to transmit Arg in terms of
��� Arg we only need to transmit how each statement
in Arg differs from the canonical statement gener-
ated for the matching node in ��� Arg (Section 4.1).
The length of the message which conveys this infor-
mation is �

�������
Arg

ML
�
Sentence � in Arg

� � �

where Sentence � in Arg is the sentence in the orig-
inal argument which matches the proposition for
node � in ��� Arg. Assuming an optimal message
encoding, we obtain�
�$�%���

Arg

������� �
Pr
�
Sentence � in Arg

� � � (9)

We approximate Pr
�
Sentence � in Arg

� � � using
the score returned by the comparison function de-
scribed in Section 4.1.

Table 1: Summary of Message Length Calculation

ML
�
Arg

�
SysInt

�
Equation 1

ML
�
SysInt

�
Equation 2

ML
� ��� Arg

�
SysInt

�
belief operations Equation 3
structural operations Equations 4, 5, 6, 7, 8

ML
�
Arg

� ��� Arg
�

Equation 9

4 Proposing Interpretations
Our system generates candidate interpretations for
an argument by first postulating propositions that
match the sentences in the argument, and then find-
ing different ways to connect these propositions –
each variant is a candidate interpretation.

4.1 Postulating propositions
We currently use a naive approach for postulating
propositions. For each sentence � Arg in the given
argument we generate candidate propositions as fol-
lows. For each proposition � in the domain, the
system proposes a canonical sentence ��� � (pro-
duced by a simple English generator). This sen-
tence is compared to � Arg, yielding a match-score
for the pair (� Arg, �). When a match-score is above
a threshold � � , we have found a candidate interpre-
tation for � Arg. For example, the proposition [G was
in garden at 11] in Figure 1(b) is a plausible interpre-
tation of the input sentence “Mr Green was seen in
the garden at 11” in Figure 1(a). Some sentences
may have no propositions with match-scores above
��� . This does not automatically invalidate the ar-
gument, as it may still be possible to interpret the
argument as a whole, even if a few sentences are
not understood (Section 3.3).

The match-score for a sentence � Arg and a propo-
sition � – a number in the [0,1] range – is cal-
culated using a function which compares words in
� Arg with words in ��� � . The goodness of a word-
match depends on the following factors: (1) level
of synonymy – the number of synonyms the words
have in common (according to WordNet, Miller et
al., 1990); (2) position in sentence; and (3) part-
of-speech (PoS) – obtained using MINIPAR (Lin,
1998). That is, a word ����� �
	�� in position in ��� �
matches perfectly a word ��� � 	 Arg in position � in
sentence � Arg, if both words are exactly the same,
they are in the same sentence position, and they have
the same PoS. The match-score between ����� �
	��
and ��� � 	 Arg is reduced as their level of synonymy
falls, and as the difference in their sentence position
increases. The match-score of two words is further

reduced if they have different PoS. In addition, the
PoS affects the penalty for a mismatch, so that mis-
matched non-content words are penalized less than
mismatched content words.

The match-scores between a sentence and its can-
didate propositions are normalized, and the result
used to approximate Pr

� � Arg
� � � , which is required

for the MML evaluation (Section 3.4).2

4.2 Connecting the propositions
Since more than one node may match each of the
sentences in an argument, there may be more than
one ��� Arg that is consistent with the argument. For
instance, the sentence “Mr Green was seen in the
garden at 11” in Figure 1(a) matches both [G was in
garden at 11] and [N saw G in garden] (although the
former has a higher probability). If the other sen-
tences in Figure 1(a) match only one proposition,
two IGs that match the argument will be generated
– one for each of the above alternatives.

Figure 2 illustrates the remainder of the
interpretation-generation process with respect to
one ��� Arg. This process consists of finding con-
nections between the nodes in ��� Arg; eliminat-
ing superfluous nodes; and generating sub-graphs
of the resulting graph, such that all the nodes in
��� Arg are connected (Figures 2(b), 2(c) and 2(d),
respectively). The connections between the nodes
in ��� Arg are found by applying two rounds of infer-
ences from these nodes (spreading outward). These
two rounds enable the system to “make sense” of an
argument with small inferential leaps (Zukerman,
2001). If upon completion of this process, some
nodes in ��� Arg are still unconnected, the system re-
jects ��� Arg. This process is currently implemented
in the context of a BN. However, any representa-
tion that supports the generation of a connected ar-
gument involving a given set of propositions would
be appropriate.

5 Evaluation
Our evaluation consisted of an automated experi-
ment where the system interpreted noisy versions
of its own arguments. These arguments were gener-
ated from different sub-nets of its domain BN, and
they were distorted at the BN level and at the NL
level. At the BN level, we changed the beliefs in
the nodes, and we inserted and deleted nodes and
arcs. At the NL level, we distorted the wording
of the propositions in the resultant arguments. All

2We are implementing a more principled model for sentence
comparison which yields more accurate probabilities.

(a) IG (b) Expand twice from the
 nodes in IG

(c) Eliminate nodes that
 aren’t in a shortest path

(d) Candidates are all the subgraphs of (c) that connect the nodes in IG
 (4 of the 9 candidates are shown)

a

b

c

a

d

e

b

f

c

i

j

m

n

p

s

tx

a

d

e

b

f

c

n

tx

a

d

e

b

f

c

m

n

p

s

tx

a

b

f

c

i

j

m
p

s

b

f

c

i

j

n

tx

a

a

d

e

b

f

c

i

j

k

l

m

n

o

p
q

s

tv x

Arg

Arg

Arg

Figure 2: Argument interpretation process

these distortions were performed for BNs of differ-
ent sizes (3, 5, 7 and 9 arcs). Our measure of perfor-
mance is the edit-distance between the original BN
used to generate an argument, and the BN produced
as the interpretation of this argument. For instance,
two BNs that differ by one arc have an edit-distance
of 2 (one addition and one deletion), while a perfect
match has an edit-distance of 0.

Overall, our results were as follows. Our system
produced an interpretation in 86% of the 5400 tri-
als. In 75% of the 5400 cases, the generated inter-
pretations had an edit-distance of 3 or less from the
original BN, and in 50% of the cases, the interpre-
tations matched perfectly the original BN. Figure 3
depicts the frequency of edit distances for the differ-
ent BN sizes under all noise conditions. We plotted
edit-distances of 0,

� � �
, 9 and ��� , plus the cate-

gory NI, which stands for “No Interpretation”. As
shown in Figure 3, the 0 edit-distance has the high-
est frequency, and performance deteriorates as BN
size increases. Still, for BNs of 7 arcs or less, the
vast majority of the interpretations have an edit dis-
tance of 3 or less. Only for BNs of 9 arcs the number
of NIs exceeds the number of perfect matches.

We also tested each kind of noise separately,
maintaining the other kinds of noise at 0%. All
the distortions were between 0 and 40%. We per-
formed 1560 trials for word noise, arc noise and
node insertions, and 2040 trials for belief noise,
which warranted additional observations. Figures 4,

Figure 3: Frequency of edit-distances for all noise
conditions (5400 trials)

5 and 6 show the recognition accuracy of our sys-
tem (in terms of average edit distance) as a func-
tion of arc, belief and word noise percentages, re-
spectively. The performance for the different BN
sizes (in arcs) is also shown. Our system’s perfor-
mance for node insertions is similar to that obtained
for belief noise (the graph was not included owing
to space limitations). Our results show that the two
main factors that affect recognition performance are
BN size and word noise, while the average edit dis-
tance remains stable for belief and arc noise, as well
as for node insertions (the only exception occurs for
40% arc noise and size 9 BNs). Specifically, for arc
noise, belief noise and node insertions, the average

Figure 4: Effect of arc noise on performance (1560
trials)

Figure 5: Effect of belief noise on performance
(2040 trials)

edit distance was 3 or less for all noise percentages,
while for word noise, the average edit distance was
higher for several word-noise and BN-size combi-
nations. Further, performance deteriorated as the
percentage of word noise increased.

The impact of word noise on performance rein-
forces our intention to implement a more principled
sentence comparison procedure (Section 4.1), with
the expectation that it will improve this aspect of our
system’s performance.

6 Conclusion
We have offered a mechanism which produces in-
terpretations of segmented NL arguments. Our ap-
plication of the MML principle enables our system
to handle noisy conditions in terms of wording, be-
liefs and argument structure, and allows us to isolate
the effect of the underlying knowledge representa-
tion on the interpretation process. The results of our
automated evaluation were encouraging, with inter-

Figure 6: Effect of word noise on performance
(1560 trials)

pretations that match perfectly or almost-perfectly
the source-BN being generated in 75% of the cases
under all noise conditions.

References

Eugene Charniak and Robert P. Goldman. 1993. A
Bayesian model of plan recognition. Artificial In-
telligence, 64(1):50–56.

Eric Horvitz and Tim Paek. 1999. A computa-
tional architecture for conversation. In UM99 –
Proceedings of the Seventh International Confer-
ence on User Modeling, pages 201–210, Banff,
Canada.

Dekang Lin. 1998. Dependency-based evaluation
of MINIPAR. In Workshop on the Evaluation of
Parsing Systems, Granada, Spain.

George Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine Miller. 1990.
Introduction to WordNet: An on-line lexical
database. Journal of Lexicography, 3(4):235–
244.

Judea Pearl. 1988. Probabilistic Reasoning in In-
telligent Systems. Morgan Kaufmann Publishers,
San Mateo, California.

C.S. Wallace and D.M. Boulton. 1968. An infor-
mation measure for classification. The Computer
Journal, 11:185–194.

Ingrid Zukerman. 2001. An integrated approach
for generating arguments and rebuttals and un-
derstanding rejoinders. In UM01 – Proceedings
of the Eighth International Conference on User
Modeling, pages 84–94, Sonthofen, Germany.

	Table of Content
	Topics
	Authors

