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Abstract

A Cantonese Chinese transcription system to
automatically convert stenograph code to
Chinese characters is reported. The major
challenge in developing such a system is the
critical homocode problem because of
homonymy. The statistical N-gram model is
used to compute the best combination of
characters. Supplemented with a 0.85 million
character corpus of domain-specific training
data and enhancement measures, the bigram
and trigram implementations achieve 95%
and 96% accuracy respectively, as compared
with 78% accuracy in the baseline model. The
system performance is comparable with other
advanced Chinese Speech-to-Text input
applications under development. The system
meets an urgent need of the Judiciary of post-
1997 Hong Kong.
Keyword: Speech to Text, Statistical
Modelling, Cantonese, Chinese, Language
Engineering

1. Introduction
British rule in Hong Kong made English the only
official language in the legal domain for over a
Century. After the reversion of Hong Kong
sovereignty to China in 1997, legal bilingualism
has brought on an urgent need to create a
Computer-Aided Transcription (CAT) system for
Cantonese Chinese to produce and maintain the
massive legally tenable records of court
proceedings conducted in the local majority
language (T’sou, 1993, Sin and T’sou, 1994, Lun
et al., 1995). With the support from the Hong
Kong Judiciary, we have developed a
transcription system for converting stenograph
code to Chinese characters.

CAT has been widely used for English for

many years and available for Mandarin Chinese,
but none has existed for Cantonese. Although
Cantonese is a Chinese dialect, Cantonese and
Mandarin differ considerably in terms of
phonological structure, phonotactics, word
morphology, vocabulary and orthography. Mutual
intelligibility between the two dialects is generally
very low. For example, while Cantonese has more
than 700 distinct syllables, Mandarin has only
about 400. Cantonese has 6 tone contours and
Mandarin only 4. As for vocabulary, 16.5% of the
words in a 1 million character corpus of court
proceedings in Cantonese cannot be found in a
corpus consisting of 30 million character
newspaper texts in Modern Written Chinese
(T’sou et al, 1997). For orthography, Mainland
China uses the Simplified Chinese character set,
and Hong Kong uses the Traditional set plus
4,702 special local Cantonese Chinese characters
(Hong Kong Government, 1999). Such
differences between Cantonese and Mandarin
necessitate the Jurilinguistic Engineering
undertaking to develop an independent Cantonese
CAT system for the local language environment.

The major challenge in developing a
Cantonese CAT system lies in the conversion of
phonologically-based stenograph code into
Chinese text. Chinese is a logographic language.
Each character or logograph represents a syllable.
While the total inventory of Cantonese syllable
types is about 720, there are at least 14,000
Chinese character types. The limited syllabary
creates many homophones in the language (T’sou,
1976). In a one million character corpus of court
proceedings, 565 distinct syllable types were
found, representing 2,922 distinct character types.
Of the 565 syllable types, 470 have 2 or more
homophonous characters. In the extreme case, zi
represents 35 homophonous character types.



Figure 1. Coverage of Homonymous Characters
These 470 syllables represent 2,810 homophonous
character types which account for 94.7% of the
text, as shown in Figure 1. The homocode
problem must be properly resolved to ensure
successful conversion.

2. Computer-Aided Transcription (CAT)

Figure 2. Automatic Transcription Process
Figure 2 outlines the transcription process in the
Cantonese CAT system. Following typical
courtroom CAT systems, our process is divided
into three major stages. In Stage 1, simultaneous
to a litigant speaking, a stenographer inputs
speech, i.e. a sequence of transcribed syllables or
stenograph codes, via a stenograph code generator.
Each stenograph code basically stands for a
syllable. In Stage 2, the transcription software
converts the sequence of stenograph codes {s1, … ,
sn} into the original character text {c1, … , cn}.
This procedure requires the conversion

component to be tightly bound to the phonology
and orthography of a specific language. To
specifically address homonymy in Cantonese, the
conversion procedure in our system is supported
by bigram and trigram statistical data derived
from domain-specific training. In Stage 3, manual
editing of the transcribed texts corrects errors
from typing mistakes or mis-transcription.

3. System Architecture

3.1 Statistical Formulation

To resolve massive ambiguity in speech to text
conversion, the N-gram model is used to
determine the most probable character sequence
{ c1, … , ck} given the input stenograph code
sequence {s1, … , sk}. The conditional probability
(1) is to be maximized.
(1) P(c1, … , ck | s1, … , sk)
where {c1, … , ck}  stands for a sequence of N
characters, and {s1, … , sk} for a sequence of k
input stenograph codes.

The co-occurrence frequencies necessary for
computation are acquired through training.
However, a huge amount of data is needed to
generate reliable statistical estimates for (1) if
N > 3. Consequently, N-gram probability is
approximated by bigram or trigram estimates.
First, rewrite (1) as (2) using Bayes’ rule.
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As the value of P(s1, … , sk) remains unchanged
for any choice of {c1, …, ck}, one needs only to
maximize the numerator in (2), i.e. (3).
(3) P(c1,…, ck) × P(s1 ,…, sk|c1,…,ck)
(3) can then be approximated by (4) or (5) using
bigram and trigram models respectively.
(4) ∏i=1,…,k (P(ci|ci-1) × P(si|ci))
(5) ∏i=1,…,k (P(ci |ci - 2ci - 1)  × P(si |ci ))
The transcription program is to compute the best
sequence of {c1, … ,ck} so as to maximize (4) or
(5). The advantage of the approximations in (4)
and (5) is that P(si|ci), P(ci|ci-1) and P(ci |ci - 2ci - 1)
can be readily estimated using a training corpus of
manageable size.

3.2 Viterbi Algorithm

The Viterbi algorithm (Viterbi, 1967) is
implemented to efficiently compute the maximum
value of (4) and (5) for different choices of
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character sequences. Instead of exhaustively
computing the values for all possible character
sequences, the algorithm only keeps track of the
probability of the best character sequence
terminating in each possible character candidate
for a stenograph code.

In the trigram implementation, size limitation
in the training corpus makes it impossible to
estimate all possible P(ci |ci - 2ci - 1) because some
{ ci-2, ci-1, ci} may never occur there. Following
Jelinek (1990), P(ci |ci - 2ci - 1) is approximated by
the summation of weighted trigram, bigram and
unigram estimates in (6).
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where (i) w1, w2, w3 ≥ 0 are weights, (ii)
w1+w2+w3 = 1, and (iii) Σ f(cj) is the sum of
frequencies of all characters. Typically the best
results can be obtained if w3, the weight for
trigram, is significantly greater than the other two
weights so that the trigram probability has
dominant effect in the probability expression. In
our tests, we set w1=0.01, w2=0.09, and w3=0.9.

The Viterbi algorithm substantially reduces the
computational complexity from O(mn) to O(m2n)
and O(m3n) using bigram and trigram estimation
respectively where n is the number of stenograph
code tokens in a sentence, and m is the upper
bound of the number of homophonous characters
for a stenograph code.

To maximize the transcription accuracy, we
also refine the training corpus to ensure that the
bigram and trigram statistical models reflect the
courtroom language closely. This is done by
enlarging the size of the training corpus and by
compiling domain-specific text corpora.

3.3 Special Encoding

After some initial trial tests, error analysis was
conducted to investigate the causes of the mis-
transcribed characters. It showed that a noticeable
amount of errors were due to high failure rate in
the retrieval of some characters in the
transcription. The main reason is that high
frequency characters are more likely to interfere
with the correct retrieval of other relatively lower
frequency homophonous characters. For example,
Cantonese, hai (‘to be’) and hai (‘at’) are
homophonous in terms of segmental makeup.

Their absolute frequencies in our training corpus
are 8,695 and 1,614 respectively. Because of the
large frequency discrepancy, the latter was mis-
transcribed as the former 44% of the times in a
trial test. 32 such high frequency characters were
found to contribute to about 25% of all
transcription errors. To minimize the interference,
special encoding, which resulted from shallow
linguistic processing, is applied to the 32
characters so that each of them is assigned a
unique stenograph code. This was readily
accepted by the court stenographers.

4. Implementation and Results

4.1 Compilation of Corpora

In our expreriments, authentic Chinese court
proceedings from the Hong Kong Judiciary were
used for the compilation of the training and
testing corpora for the CAT prototypes. To ensure
that the training data is comparable with the data
to be transcribed, the training corpus should be
large enough to obtain reliable estimates for
P(si|ci), P(ci|ci-1) and P(ci |ci - 2ci - 1). In our trials,
we quickly approached the point of diminishing
return when the size of the training corpus reaches
about 0.85 million characters. (See Section 4.2.2.)
To further enhance training, the system also
exploited stylistic and lexical variations across
different legal domains, e.g. traffic, assault, and
fraud offences. Since different case types show
distinct domain-specific legal vocabulary or usage,
simply integrating all texts in a single training
corpus may obscure the characteristics of specific
language domains, thus degrading the modelling.
Hence domain-specific training corpora were also
compiled to enhance performance.

Two sets of data were created for testing and
comparison: Generic Corpus (GC) and Domain-
specific Corpus (DC). Whereas GC consists of
texts representing various legal case types, DC is
restricted to traffic offence cases. Each set
consists of a training corpus of 0.85 million
characters and a testing corpus of 0.2 million
characters. The training corpus consists of
Chinese characters along with the corresponding
stenograph codes, and the testing corpus consists
solely of stenograph codes of the Chinese texts.

4.2 Experimental Results

For evaluation, several prototypes were set up to



test how different factors affected transcription
accuracy. They included (i) use of bigram vs.
trigram models, (ii) the size of the training
corpora, (iii) domain-specific training, and (iv)
special encoding. To measure conversion
accuracy, the output text was compared with the
original Chinese text in each test on a character by
character basis, and the percentage of correctly
transcribed characters was computed. Five sets of
experiments are reported below.

4.2.1 Bigram vs. Trigram
Three prototypes were developed: the Bigram
Prototype, CATVA2, the Trigram Prototype, CATVA3,
and the Baseline Prototype, CAT0. CATVA2 and
CATVA3 implement the conversion engines using
the bigram and trigram Viterbi algorithm
respectively. CAT0, was set up to serve as an
experimental control. Instead of implementing the
N-gram model, conversion is accomplished by
selecting the highest frequency item out of the
homophonous character set for each stenograph
code. GC was used throughout the three
experiments. The training and testing data sets are
0.85 and 0.20 million characters respectively. The
results are summarized in Table 1.
Prototypes CAT0 CATVA2 CATVA3

Corpus GC GC GC
Accuracy 78.0% 92.4% 93.6%

Table 1.  Different N-gram Models
The application of the bigram and trigram models
offers about 14% and 15% improvement in
accuracy over Control Prototype, CAT0.

4.2.2 Size of Training Corpora
In this set of tests, the size of the training corpora
was varied to determine the impact of the training
corpus size on accuracy. The sizes tested are 0.20,
0.35, 0.50, 0.63, 0.73 and 0.85 million characters.
Each corpus is a proper subset of the immediately
larger corpus so as to ensure the comparability of
the training texts. CATVA2 was used in the tests.
Training Size 0.20 0.35 0.50
Training Corpus GC GC GC
Accuracy 89.5% 91.2% 91.8%

Training Size 0.63 0.73 0.85
Training Corpus GC GC GC
Accuracy 92.1% 92.3% 92.4%

Table 2.  Variable Training Data Size
The results in Table 2 show that increasing the
size of the training corpus enhances the accuracy
incrementally. However, the point of diminishing

return is reached when the size reaches 0.85
million characters. We also tried doubling the
corpus size to 1.50 million characters. It only
yields 0.8% gain over the 0.85 million character
corpus.

4.2.3 Use of Domain-specific Training
This set of tests evaluates the effectiveness of
domain-specific training. Data from the two
corpora, GC and DC, are utilized in the training of
the bigram and trigram prototypes. The size of
each training set is 0.85 million characters. The
same set of 0.2 million character testing data from
DC is used in all four conversion tests. Without
increasing the size of the training data, setups with
domain-specific training consistently yield about
2% improvement. A more comprehensive set of
corpora including Traffic, Assault, and Robbery is
being compiled and will be reported in future.
Domain-specific Not Applied Applied
Prototypes CATVA2 CATVA3 CATVA2 CATVA3

Training Data GC GC DC DC
Testing Data DC DC DC DC
Accuracy 92.6% 92.8% 94.7% 94.8%

Table 3.  Application of Domain-Specificity

4.2.4 Special Encoding
Following shallow linguistic processing, special
encoding assigns unique codes to 32 characters to
reduce confusion with other characters. Another
round of tests was repeated, identical to the
CATVA2 and CATVA3 tests in Section 4.2.1, except
for the use of special encoding. The use of
training and testing corpora have 0.85 and 0.20
million characters respectively.
S. Encoding Not Applied Applied
Prototypes CATVA2 CATVA3 CATVA2 CATVA3

Corpus GC GC GC GC
Accuracy 92.4% 93.6% 94.7% 95.6%

Table 4.  Application of Special Encoding
Table 4 shows that the addition of special
encoding consistently offers about 2% increase in
accuracy. Special encoding and hence shallow
linguistic processing provide the most significant
improvement in accuracy.

4.2.5 Incorporation of Domain–Specificity and
Special Encoding
As discussed above, both domain-specific training
and special encoding raise the accuracy of
transcription. The last set of tests deals with the
integration of the two features. Special encoding



is utilized in the training and testing data of DC
which have 0.85 and 0.20 million characters
respectively.
Prototypes CATVA2 CATVA3

Training/Testing Data DC DC
S. Encoding Applied Applied
Accuracy 95.4% 96.2%
Table 5. Integration of D. Specificity and S. Encoding

Recall that Domain-Specificity and Special
Encoding each offers 2% improvement. Table 5
shows that combining BOTH features offer about
3% improvement over tests without them. (See
non-domain-specific tests in Section 4.2.3)

The 96.2% accuracy achieved by CATVA3

represents the best performance of our system.
The result is comparable with other relevant
advanced systems for speech to text conversion.
For example, Lee (1999) reported 94% accuracy
in a Chinese speech to text transcription system
under development with very large training
corpus.

5. Conclusion
We have created a Cantonese Chinese CAT
system which uses the phonologically-based
stenograph machine. The system delivers
encouragingly accurate transcription in a language
which has many homophonous characters. To
resolve problematic ambiguity in the conversion
from a phonologically-based code to the
logographic Chinese characters, we made use of
the N-gram statistical model. The Viterbi
algorithm has enabled us to identify the most
probable sequence of characters from the sets of
possible homophonous characters. With the
additional use of special encoding and domain-
specific training, the Cantonese CAT system has
attained 96% transcription accuracy. The success
of the Jurilinguistic Engineering project can
further enhance the efforts by the Hong Kong
Judiciary to conduct trials in the language of the
majority population. Further improvement to the
system will include (i) more domain-specific
training and testing across different case types, (2)
fine-tuning for the optimal weights in the trigram
formula, and (3) optimizing the balance between
training corpus size and shallow linguistic
processing.
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