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Abstract

This paper focuses on the issue of named entity
chunking in Japanese named entity recognition.
We apply the supervised decision list learn-
ing method to Japanese named entity recogni-
tion. We also investigate and incorporate sev-
eral named-entity noun phrase chunking tech-
niques and experimentally evaluate and com-
pare their performance. In addition, we propose
a method for incorporating richer contextual
information as well as patterns of constituent
morphemes within a named entity, which have
not been considered in previous research, and
show that the proposed method outperforms
these previous approaches.

1 Introduction

It is widely agreed that named entity recog-
nition is an important step for various appli-
cations of natural language processing such as
information retrieval, machine translation, in-
formation extraction and natural language un-
derstanding. In the English language, the
task of named entity recognition is one of the
tasks of the Message Understanding Confer-
ence (MUC) (e.g., MUC-7 (1998)) and has
been studied intensively. In the Japanese lan-
guage, several recent conferences, such as MET
(Multilingual Entity Task, MET-1 (Maiorano,
1996) and MET-2 (MUC, 1998)) and IREX (In-
formation Retrieval and Extraction Exercise)
Workshop (IREX Committee, 1999), focused on
named entity recognition as one of their con-
test tasks, thus promoting research on Japanese
named entity recognition.
In Japanese named entity recognition, it is

quite common to apply morphological analy-
sis as a preprocessing step and to segment
the sentence string into a sequence of mor-
phemes. Then, hand-crafted pattern matching

rules and/or statistical named entity recognizer
are applied to recognize named entities. It is
often the case that named entities to be rec-
ognized have di�erent segmentation boundaries
from those of morphemes obtained by the mor-
phological analysis. For example, in our anal-
ysis of the IREX workshop's training corpus of
named entities, about half of the named enti-
ties have segmentation boundaries that are dif-
ferent from the result of morphological analysis
by a Japanese morphological analyzer break-
fast (Sassano et al., 1997) (section 2). Thus, in
Japanese named entity recognition, among the
most diÆcult problems is how to recognize such
named entities that have segmentation bound-
ary mismatch against the morphemes obtained
by morphological analysis. Furthermore, in al-
most 90% of cases of those segmentation bound-
ary mismatches, named entities to be recognized
can be decomposed into several morphemes as
their constituents. This means that the problem
of recognizing named entities in those cases can
be solved by incorporating techniques of base
noun phrase chunking (Ramshaw and Marcus,
1995).

In this paper, we focus on the issue of named
entity chunking in Japanese named entity recog-
nition. First, we take a supervised learning ap-
proach rather than a hand-crafted rule based
approach, because the former is more promis-
ing than the latter with respect to the amount
of human labor if requires, as well as its adapt-
ability to a new domain or a new de�nition of
named entities. In general, creating training
data for supervised learning is somewhat easier
than creating pattern matching rules by hand.
Next, we apply Yarowsky's method for super-
vised decision list learning1 (Yarowsky, 1994) to

1We choose the decision list learning method as the



Table 1: Statistics of NE Types of IREX
frequency (%)

NE Type Training Test
ORGANIZATION 3676 (19.7) 361 (23.9)

PERSON 3840 (20.6) 338 (22.4)
LOCATION 5463 (29.2) 413 (27.4)
ARTIFACT 747 (4.0) 48 (3.2)

DATE 3567 (19.1) 260 (17.2)
TIME 502 (2.7) 54 (3.5)

MONEY 390 (2.1) 15 (1.0)
PERCENT 492 (2.6) 21 (1.4)

Total 18677 1510

Japanese named entity recognition, into which
we incorporate several noun phrase chunking
techniques (sections 3 and 4) and experimen-
tally evaluate their performance on the IREX
workshop's training and test data (section 5).
As one of those noun phrase chunking tech-
niques, we propose a method for incorporating
richer contextual information as well as patterns
of constituent morphemes within a named en-
tity, compared with those considered in the pre-
vious research (Sekine et al., 1998; Borthwick,
1999), and show that the proposed method out-
performs these approaches.

2 Japanese Named Entity
Recognition

2.1 Task of the IREX Workshop

The task of named entity recognition of the
IREX workshop is to recognize eight named en-
tity types in Table 1 (IREX Committee, 1999).
The organizer of the IREX workshop provided
1,174 newspaper articles which include 18,677
named entities as the training data. In the for-
mal run (general domain) of the workshop, the
participating systems were requested to recog-
nize 1,510 named entities included in the held-
out 71 newspaper articles.

2.2 Segmentation Boundaries of
Morphemes and Named Entities

In the work presented here, we compare the seg-
mentation boundaries of named entities in the
IREX workshop's training corpus with those of

supervised learning technique mainly because it is easy
to implement and quite straightforward to extend a su-
pervised learning version to a minimally supervised ver-
sion (Collins and Singer, 1999; Cucerzan and Yarowsky,
1999). We also reported in (Utsuro and Sassano, 2000)
the experimental results of a minimally supervised ver-
sion of Japanese named entity recognition.

Table 2: Statistics of Boundary Match vs. Mis-
match of Morphemes (M) and Named Entities
(NE)

Match/Mismatch freq. of NE Tags (%)

1 M to 1 NE 10480 (56.1)
n(� 2) Ms n = 2 4557 (24.4)

to n = 3 1658 (8.9) 7175
1 NE n � 4 960 (5.1) (38.4)

other boundary mismatch 1022 (5.5)

Total 18677

morphemes which were obtained through mor-
phological analysis by a Japanese morphologi-
cal analyzer breakfast (Sassano et al., 1997).2

Detailed statistics of the comparison are pro-
vided in Table 2. Nearly half of the named
entities have boundary mismatches against the
morphemes and also almost 90% of the named
entities with boundary mismatches can be de-
composed into more than one morpheme. Fig-
ure 1 shows some examples of such cases.3

3 Chunking and Tagging Named
Entities

In this section, we formalize the problem of
named entity chunking in Japanese named en-
tity recognition. We describe a novel tech-
nique as well as those proposed in the previous
works on named entity recognition. The novel
technique incorporates richer contextual infor-
mation as well as patterns of constituent mor-
phemes within a named entity, compared with
the techniques proposed in previous research on
named entity recognition and base noun phrase
chunking.

3.1 Task De�nition

First, we will provide our de�nition of the task
of Japanese named entity chunking. Suppose

2The set of part-of-speech tags of breakfast consists
of about 300 tags. breakfast achieves 99.6% part-of-
speech accuracy against newspaper articles.

3In most cases of the \other boundary mismatch" in
Table 2, one or more named entities have to be rec-
ognized as a part of a correctly analyzed morpheme
and those cases are not caused by errors of morpholog-
ical analysis. One frequent example of this type is a
Japanese verbal noun \hou-bei (visiting United States)"
which consists of two characters \hou (visiting)" and \bei
(United States)", where \bei (United States)" has to be
recognized as <LOCATION>. We believe that boundary
mismatches of this type can be easily solved by employ-
ing a supervised learning technique such as the decision
list learning method.



Table 3: Encoding Schemes of Named Entity Chunking States
Named Entity Tag <ORG> <LOC> <LOC>

Morpheme Sequence � � � M M M M M M M M � � �

Inside/Outside Encoding O ORG I O LOC I LOC I LOC I LOC B O

Start/End Encoding O ORG U O LOC S LOC C LOC E LOC U O

2 Morphemes to 1 Named Entity

<ORGANIZATION>

� � � Roshia gun � � �
(Russian) (army)

<PERSON>

� � � Murayama Tomiichi shushou � � �

(last name) (�rst name) (
prime

minister
)

3 Morphemes to 1 Named Entity

<TIME>

� � � gozen ku ji � � �
(AM) (nine) (o'clock)

<ARTIFACT>

� � � hokubei jiyuu-boueki kyoutei � � �

(
North

America
) (free trade) (treaty)

Figure 1: Examples of Boundary Mismatch of
Morphemes and Named Entities

that a sequence of morphemes is given as be-
low:

(
Left

Context
) (Named Entity) (

Right
Context

)

� � �ML
�k � � �M

L
�1 M

NE
1 � � �MNE

i � � �MNE
m M

R
1 � � �MR

l � � �

"

(Current Position)

Then, given that the current position is at
the morpheme MNE

i , the task of named entity
chunking is to assign a chunking state (to be de-
scribed in Section 3.2) as well as a named entity
type to the morpheme MNE

i at the current po-
sition, considering the patterns of surrounding
morphemes. Note that in the supervised learn-
ing phase we can use the chunking information
on which morphemes constitute a named entity,
and which morphemes are in the left/right con-
texts of the named entity.

3.2 Encoding Schemes of Named
Entity Chunking States

In this paper, we evaluate the following two
schemes of encoding chunking states of named
entities. Examples of these encoding schemes
are shown in Table 3.

3.2.1 Inside/Outside Encoding

The Inside/Outside scheme of encoding chunk-
ing states of base noun phrases was studied in
Ramshaw and Marcus (1995). This scheme dis-
tinguishes the following three states: O { the
word at the current position is outside any base
noun phrase. I { the word at the current po-
sition is inside some base noun phrase. B { the
word at the current position marks the begin-
ning of a base noun phrase that immediately fol-
lows another base noun phrase. We extend this
scheme to named entity chunking by further dis-
tinguishing each of the states I and B into eight
named entity types.4 Thus, this scheme distin-
guishes 2� 8 + 1 = 17 states.

3.2.2 Start/End Encoding

The Start/End scheme of encoding chunking
states of named entities was employed in Sekine
et al. (1998) and Borthwick (1999). This
scheme distinguishes the following four states
for each named entity type: S { the morpheme
at the current position marks the beginning of a
named entity consisting of more than one mor-
pheme. C { the morpheme at the current posi-
tion marks the middle of a named entity consist-
ing of more than one morpheme. E { the mor-
pheme at the current position marks the ending
of a named entity consisting of more than one
morpheme. U { the morpheme at the current
position is a named entity consisting of only one
morpheme. The scheme also considers one addi-
tional state for the position outside any named
entity: O { the morpheme at the current posi-
tion is outside any named entity. Thus, in our
setting, this scheme distinguishes 4�8+1 = 33
states.

3.3 Preceding/Subsequent Morphemes
as Contextual Clues

In this paper, we evaluate the following two
models of considering preceding/subsequent

4We allow the state x B for a named entity type x
only when the morpheme at the current position marks
the beginning of a named entity of the type x that im-
mediately follows a named entity of the same type x.



morphemes as contextual clues to named entity
chunking/tagging. Here we provide a basic out-
line of these models, and the details of how to
incorporate them into the decision list learning
framework will be described in Section 4.2.2.

3.3.1 3-gram Model

In this paper, we refer to the model used in
Sekine et al. (1998) and Borthwick (1999) as a
3-gram model. Suppose that the current posi-
tion is at the morpheme M0, as illustrated be-
low. Then, when assigning a chunking state as
well as a named entity type to the morpheme
M0, the 3-gram model considers the preceding
single morphemeM�1 as well as the subsequent
single morpheme M1 as the contextual clue.

(
Left

Context
) (

Current
Position

) (
Right
Context

)

� � � M
�1 M0 M1 � � � (1)

The major disadvantage of the 3-gram model
is that in the training phase it does not
take into account whether or not the pre-
ceding/subsequent morphemes constitute one
named entity together with the morpheme at
the current position.

3.3.2 Variable Length Model

In order to overcome this disadvantage of the 3-
gram model, we propose a novel model, namely
the \Variable Length Model", which incorpo-
rates richer contextual information as well as
patterns of constituent morphemes within a
named entity. In principle, as part of the train-
ing phase this model considers which of the pre-
ceding/subsequent morphemes constitute one
named entity together with the morpheme at
the current position. It also considers sev-
eral morphemes in the left/right contexts of the
named entity. Here we restrict this model to ex-
plicitly considering the cases of named entities
of the length up to three morphemes and only
implicitly considering those longer than three
morphemes. We also restrict it to considering
two morphemes in both left and right contexts
of the named entity.

(
Left

Context
) (Named Entity) (

Right
Context

)

� � � M
L
�2M

L
�1 M

NE
1 � � �MNE

i � � �MNE
m(�3) M

R
1 M

R
2 � � �

" (2)

(Current Position)

4 Supervised Learning for Japanese
Named Entity Recognition

This section describes how to apply the deci-
sion list learning method to chunking/tagging
named entities.

4.1 Decision List Learning

A decision list (Rivest, 1987; Yarowsky, 1994)
is a sorted list of decision rules, each of which
decides the value of a decision D given some ev-

idence E. Each decision rule in a decision list is
sorted in descending order with respect to some
preference value, and rules with higher prefer-
ence values are applied �rst when applying the
decision list to some new test data.
First, the random variable D representing a

decision varies over several possible values, and
the random variable E representing some evi-
dence varies over `1' and `0' (where `1' denotes
the presence of the corresponding piece of evi-
dence, `0' its absence). Then, given some train-
ing data in which the correct value of the deci-
sion D is annotated to each instance, the con-
ditional probabilities P (D = x j E = 1) of ob-
serving the decision D=x under the condition
of the presence of the evidence E (E = 1) are
calculated and the decision list is constructed
by the following procedure.

1. For each piece of evidence, we calculate the
log of likelihood ratio of the largest condi-
tional probability of the decision D = x1
(given the presence of that piece of ev-
idence) to the second largest conditional
probability of the decision D=x2:

log2
P (D=x1 j E=1)

P (D=x2 j E=1)

Then, a decision list is constructed with
pieces of evidence sorted in descending or-
der with respect to their log of likelihood
ratios, where the decision of the rule at each
line is D= x1 with the largest conditional
probability.5

5Yarowsky (1994) discusses several techniques for
avoiding the problems which arise when an observed
count is 0. From among those techniques, we employ
the simplest one, i.e., adding a small constant � (0:1 �
� � 0:25) to the numerator and denominator. With
this modi�cation, more frequent evidence is preferred
when several evidence candidates exist with the same



2. The �nal line of a decision list is de�ned as
`a default', where the log of likelihood ratio
is calculated from the ratio of the largest
marginal probability of the decision D=x1
to the second largest marginal probability
of the decision D=x2:

log2
P (D=x1)

P (D=x2)

The `default' decision of this �nal line is
D=x1 with the largest marginal probabil-
ity.

4.2 Decision List Learning for
Chunking/Tagging Named Entities

4.2.1 Decision

For each of the two schemes of encoding chunk-
ing states of named entities described in Sec-
tion 3.2, as the possible values of the deci-
sion D, we consider exactly the same categories
of chunking states as those described in Sec-
tion 3.2.

4.2.2 Evidence

The evidence E used in the decision list learn-
ing is a combination of the features of preced-
ing/subsequent morphemes as well as the mor-
pheme at the current position. The following
describes how to form the evidence E for both
the 3-gram model and variable length model.

3-gram Model
The evidence E represents a tuple (F�1; F0; F1),
where F�1 and F1 denote the features of imme-
diately preceding/subsequent morphemes M�1
andM1, respectively, F0 the feature of the mor-
pheme M0 at the current position (see Formula
(1) in Section 3.3.1). The de�nition of the pos-
sible values of those features F�1, F0, and F1
are given below, where Mi denotes the mor-
pheme itself (i.e., including its lexical form as
well as part-of-speech), Ci the character type
(i.e., Japanese (hiragana or katakana), Chinese
(kanji), numbers, English alphabets, symbols,
and all possible combinations of these) of Mi,
Ti the part-of-speech of Mi:

F
�1 ::= M

�1 j (C
�1; T�1) j T�1 j null

unsmoothed conditional probability P (D = x j E = 1).
Yarowsky's training algorithm also di�ers somewhat in

his use of the ratio P (D=xijE=j)

P (:D=xijE=j)
, which is equivalent in

the case of binary classi�cations, and also by the interpo-
lation between the global probabilities (used here) and
the residual probabilities further conditional on higher-
ranked patterns failing to match in the list.

F1 ::= M1 j (C1; T1) j T1 j null

F0 ::= M0 j (C0; T0) j T0

As the evidence E, we consider each possible
combination of the values of those three fea-
tures.

Variable Length Model
The evidence E represents a tuple
(FL; FNE ; FR), where FL and FR denote
the features of the morphemes ML

�2M
L
�1 and

MR
1 M

R
2 in the left/right contexts of the current

named entity, respectively, FNE the features
of the morphemes MNE

1 � � �MNE
i � � �MNE

m(�3)

constituting the current named entity (see
Formula (2) in Section 3.3.2). The de�nition of
the possible values of those features FL, FNE ,
and FR are given below, where FNEj denotes
the feature of the j-th constituent morpheme
MNE
j within the current named entity, and

MNE
i is the morpheme at the current position:

FL ::= ML

�2M
L

�1 j ML

�1 j null

FR ::= MR

1 M
R

2 j MR

1 j null

FNE ::= FNEi FNEi+1 F
NE

i+2 j FNEi�1 F
NE

i FNEi+1

j FNE
i�2 F

NE

i�1 F
NE

i
j FNE

i
FNE
i+1

j FNE
i�1 F

NE

i
j FNE

i
(3)

FNEx ::= MNE

x j (CNEx ; TNEx ) j TNEx

As the evidence E, we consider each possible
combination of the values of those three fea-
tures, except that the following three restric-
tions are applied.

1. In the cases where the current named en-
tity consists of up to three morphemes, as
the possible values of the feature FNE in
the de�nition (3), we consider only those
which are consistent with the requirement
that each morpheme MNE

j is a constituent
of the current named entity. For example,
suppose that the current named entity con-
sists of three morphemes, where the cur-
rent position is at the middle of those con-
stituent morphemes as below:

(
Left

Context
) (Named Entity) (

Right
Context

)

� � � M
L
�2M

L
�1 M

NE
1 M

NE
2 M

NE
3 M

R
1 M

R
2 � � �

" (4)

(Current Position)

Then, as the possible values of the feature
FNE , we consider only the following four:

FNE ::= FNE1 FNE2 FNE3 j FNE2 FNE3



j FNE1 FNE2 j FNE2

2. In the cases where the current named entity
consists of more than three morphemes,
only the three constituent morphemes are
regarded as within the current named en-
tity and the rest are treated as if they
were outside the named entity. For exam-
ple, suppose that the current named en-
tity consists of four morphemes as below:

(
Left

Context
) (Named Entity) (

Right
Context

)

� � � M
L
�2M

L
�1 M

NE
1 M

NE
2 M

NE
3 M

NE
4 M

R
1 M

R
2 � � �

"

(Current Position)

In this case, the fourth constituent mor-
pheme MNE

4 is treated as if it were in the
right context of the current named entity
as below:

(
Left

Context
) (Named Entity) (

Right
Context

)

� � � M
L
�2M

L
�1 M

NE
1 M

NE
2 M

NE
3 M

NE
4 M

R
1 � � �

"

(Current Position)

3. As the evidence E, among the possible
combination of the values of three fea-
tures FL, FNE , and FR, we only accept
those in which the positions of the mor-
phemes are continuous, and reject those
discontinuous combinations. For example,
in the case of Formula (4) above, as the
evidence E, we accept the combination
(ML

�1; M
NE
1 MNE

2 ; null), while we reject

(ML
�1; M

NE
2 MNE

3 ; null).

4.3 Procedures for Training and
Testing

Next we will briey describe the entire pro-
cesses of learning the decision list for chunk-
ing/tagging named entities as well as applying
it to chunking/tagging unseen named entities.

4.3.1 Training

In the training phase, at the positions where
the corresponding morpheme is a constituent of
a named entity, as described in Section 4.2, each
allowable combination of features is considered
as the evidence E. On the other hand, at the
positions where the corresponding morpheme is
outside any named entity, the way the combi-
nation of features is considered is di�erent in
the variable length model, in that the exception

1 in the previous section is no longer applied.
Therefore, all the possible values of the feature
FNE in De�nition (3) are accepted. Finally, the
frequency of each decision D and evidence E is
counted and the decision list is learned as de-
scribed in Section 4.1.

4.3.2 Testing

When applying the decision list to chunk-
ing/tagging unseen named entities, �rst, at each
morpheme position, the combination of features
is considered as in the case of the non-entity po-
sition in the training phase. Then, the decision
list is consulted and all the decisions of the rules
with a log of likelihood ratio above a certain
threshold are recorded. Finally, as in the case
of previous research (Sekine et al., 1998; Borth-
wick, 1999), the most appropriate sequence of
the decisions that are consistent throughout the
whole sequence is searched for. By consistency
of the decisions, we mean requirements such as
that the decision representing the beginning of
some named entity type has to be followed by
that representing the middle of the same entity
type (in the case of Start/End encoding). Also,
in our case, the appropriateness of the sequence
of the decisions is measured by the sum of the
log of likelihood ratios of the corresponding de-
cision rules.

5 Experimental Evaluation

We experimentally evaluate the performance
of the supervised learning for Japanese named
entity recognition on the IREX workshop's
training and test data. We compare the re-
sults of the combinations of the two encod-
ing schemes of named entity chunking states
(the Inside/Outside and the Start/End encod-
ing schemes) and the two approaches to contex-
tual feature design (the 3-gram and the Variable
Length models). For each of those combina-
tions, we search for an optimal threshold of the
log of likelihood ratio in the decision list. The
performance of each combination measured by
F-measure (� = 1) is given in Table 4.
In this evaluation, we exclude the named

entities with \other boundary mismatch" in
Table 2. We also classify the system
output according to the number of con-
stituent morphemes of each named entity
and evaluate the performance for each sub-
set of the system output. For each sub-



Table 4: Evaluation Results Measured by F-measure (� = 1)
n Morphemes to 1 Named Entity

n � 1 n = 1 n = 2 n = 3 n � 2 n � 3 n � 4

3-gram Inside/Outside 72.9 75.9 79.7 51.4 69.4 42.5 29.2
Start/End 72.7 76.6 79.6 43.7 68.1 37.8 29.6

Variable Inside/Outside 74.3 77.6 80.0 55.5 70.9 49.9 41.0
Length Start/End 72.1 77.0 75.6 51.5 67.2 48.6 43.6

set, we compare the performance of the four
combinations of f3-gram, Variable Lengthg �
fInside/Outside, Start/Endg and show the
highest performance with bold-faced font.
Several remarkable points of these results of

performance comparison can be stated as below:

� Among the four combinations, the Variable
Length Model with Inside/Outside Encod-
ing performs best in total (n � 1) as well
as in the recognition of named entities con-
sisting of more than one morpheme (n =
2; 3; n � 2; 3).

� In the recognition of named entities con-
sisting of more than two morphemes (n =
3; n � 3; 4), the Variable Length Model
performs signi�cantly better than the 3-
gram model. This result clearly supports
the claim that our modeling of the Vari-
able Length Model has an advantage in the
recognition of long named entities.

� In general, the Inside/Outside encoding
scheme performs slightly better than the
Start/End encoding scheme, even though
the former distinguishes considerably fewer
states than the latter.

6 Conclusion

In this paper, we applied the supervised deci-
sion list learning method to Japanese named en-
tity recognition, into which we incorporated sev-
eral noun phrase chunking techniques and ex-
perimentally evaluated their performance. We
showed that a novel technique that we proposed
outperformed those using previously considered
contextual features.
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