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Abstract
Most of the studies in the framework of Lambek
calculus have considered the parsing process and
ignored the generation process. This paper wants
to rely on the close link between Lambek calculus
and linear logic to present a method for the genera-
tion process with semantic proof nets. We express
the process as a proof search procedure based on a
graph calculus and the solutions appear as a matrix
computation preserving the decidability properties,
and we characterize a polynomial time case.

1 Introduction
From the type logical grammars point of view, the
parametric part of the language analysis is the lexi-
con, and the constant one is the logical rules. This
should of course hold both for parsing and genera-
tion, hence we can consider thereversibilityproper-
ties of such grammars. And a relevant problem is to
compare the complexity of the two cases.

For Lambek calculus (Lambek, 1958), the pars-
ing complexity is still an open problem. But the
question arises to knowhow to generate in this
framework, andhow difficult(on the computational
side) it is. (Merenciano and Morrill, 1997) an-
swered with a labelled deductive system guided
with �-term unification. But a drawback of this lat-
ter mechanism consists in its algorithmic undecid-
ability (from second order unification).

Relying on the linear logic (Girard, 1987) (which
provides a powerful framework to express Lam-
bek calculus, specially with proof nets for the lat-
ter (Roorda, 1991; Lamarche and Retor´e, 1996)),
this paper wants to adress the problem of finding
the way we can associate given lexical entries to fit
a given semantic expression and generate a syntacti-
cally correct expression (for the moment, we do not
care to the choice of the lexical items). For this pur-
pose, we express our problem as a proof search one
in (multiplicative) linear logic which is decidable.

Moreover, we characterize the semantic recipes of
lexical items that provide a polynomial solution for
the syntactic realization process. Then we give an
example of this process.

2 Proof Nets for Linear Logic
Linear logic (Girard, 1987) proposes for proofs a
more compact and accurate syntax than sequent cal-
culus: proof nets (they group distinct sequential
proofs that only have inessential differences). They
have both a related to sequential proof definition
and a geometrical definition: they can be defined
as a class of graphs (proof structures) satisfying a
geometrical property so that every proof net corre-
sponds to a sequential proof and every proof struc-
ture built from a sequential proof has this prop-
erty (Retoré, 1998).

In this paper, we only consider proof nets of the
intuitionistic implicative linear logic: sequents are
made of several antecedent formulas, but only one
succedent formula. To deal with the intuitionis-
tic notion for proof nets (since we consider one-
sided sequents), we use the notion of polarities with
the input (�: negative)and theoutput (�: posi-
tive) (Danos, 1990; Lamarche, 1995) to decorate
formulas. Positive ones correspond to succedent
formulas and negative ones to antecedent formulas.

Given the links of table 1, we defineproof struc-
tures(we consider implicative fragment) as graphs
made of these links such that:

1. any premise of any link is connected to exactly
one conclusion of some other link;

2. any conclusion of any link is connected to at
most one premise of some other link;

3. input (resp. output) premises are connected to
input (resp. output) conclusions of the same
type.

Proof netsare proof structures that respect the cor-
rectness criterion.



Table 1: Links

Name Axiom Tensor Par Cut

Link c1 c2

c

p2p1

c

p2p1
p2p1

Premises none p1; p2 p1; p2 p1; p2
Conclusions c1; c2 c c none

Types
c1 : A

+

c2 : A
�

p1 : A
+

p2 : B
�

c : (A( B)�

p1 : A
�

p2 : B
+

c : (A( B)+

p1 : A
�

p2 : A
+

The last link of table 1, the Cut link, allows the
combination of proofs of� ` A and ofA;� ` B
into a single proof of�;� ` B. In sequential cal-
culs, the cut-elimination property states that there
exists a normal (not using the Cut rule) proof for
the same sequent only from premises of� and�
(and builds it).

Of course, this property holds for proof nets too.
And to enforce the intrinsic definition of these latter,
a simple rewriting process (described in table 2) ac-
tually performs the cut-elimination (in case of com-
plex formulas as in the third rewriting rule, those
rules can apply again on the result and propagate
until reaching atoms).

2.1 Proof Nets for Lambek Calculus
As Lambek calculus is an intuitionistic fragment of
non commutative linar logic (with two linear impli-
cations: “n” on the left and “=” on the right), proof
nets for it naturally appeared in (Roorda, 1991).
They slightly differ from those of table 1:

� we get two tensor links: one for the formula
(B=A)� (the one in table 1) and one for the
formula(BnA)� (just inverse the polarities of
the premises). And two par links: one for the
formula(AnB)+ and one for(A=B)+ (idem);

� formulas in Lambek’s sequents are ordered, so
that conclusions of the proof nets are cyclically
ordered and axiom links may not cross.

From a syntactic category, we can unfold the for-
mula to obtain a graph which only lacks axiom links
to become a proof structure. So that the parsing pro-
cess in this framework is, given the syntactic cate-
gories of the items and their order, to put non cross-
ing axiom links such that the proof structure is a
proof net. It means there is a proof ofS given types

in a certain order. Proving thatJohn lives in Paris
is a correct sentence w.r.t. the lexicon of table 3
(the two first columns) is finding axiom links be-
tween the atoms in the figure 1(a) so that the proof
structure is correct. Figure 1(b) shows it actually
happens (for technical reasons, in the proof net, the
order of the syntactic categories is the inverse of the
order of the words in the sentence to be analysed.
Figure 1(c) showsJohn lives Paris incannot be suc-
cessfully parsed).

2.2 Proof Nets for Montague’s Semantics
Capitalizing on the fact that both�-terms (with the
Curry-Howard isomorphism) and proof nets repre-
sent proofs of intuitionistic implicative linear logic,
(de Groote and Retor´e, 1996) propose to use proof
nets as semantic recipes: since proof nets encode
linear�-terms, instead of associating a�-term in the
Montagovian style to a lexical entry, they associate
a proof net (decorated with typed constants). An ex-
ample of such a lexicon is given in table 31(par links
encode abstraction, and tensor links encode applica-
tion).

Of course, to respect semantic types based on
Montagovian basic typese and t, they use the fol-
lowing homomorphism:

H(NP ) = e H(S) = t H(AnB) = H(A)( H(B)
H(N ) = e( t H(A=B) = H(B)( H(A)

Let us illustrate the process in parsing the sen-
tenceJohn lives in Paris. First we have to find
the syntactic proof net of figure 1(b) as explained
in 2.1. It provides the way syntactic componants
combine, hence how semantic recipes of each lexi-
cal item combine: we take its homomorphic image

1Unlike in (de Groote and Retor´e, 1996), we restrict our-
selves for the moment to linear�-terms.



Table 2: Cut-elimination rewriting rules
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Figure 1: Parsing ofJohn lives in Paris

as in figure 3(a). The substitution of every input
with its semantic definition we would like to per-
form on the�-calculus side appears on the logical
side as plugging semantic proof nets with cut-links.

Then, the�-reduction we would like to perform
has its logical counterpart in the cut-elimination on
the resulting proof net. It gives a new proof net (on
figure 3(b)) we can use as thesemantic analysisof
John lives in Paris. If necessary, we can come back
to the�-term expression:(in p )(live j ).

In other words, the syntactic proof net yields a
termt expressing how the elementary parts combine
(in this caset = (ab)(cd)). Then the resulting proof
net of figure 3(b) corresponds to the�-normal form
of t[�x:�y:(in x)y=a; p=b; �x:live x=c; j=d].

3 What is Generation?
We can now state the problem we are dealing with:
given a semantic proof net (like the one in fig-
ure 3(b)), we want to put together syntactic entries
with axiom links such that:

1. this yields a correct (syntactic) proof net;
2. the meaning of the resulting proof net matches

the given semantic expression.

Thus, if we define:

� �0 the semantic proof net of the expression we
want to generate;

� �i the semantic proof nets associated to the
given lexical entriesi we use;

� Ti the unfolding in proof structure of the syn-
tactic formula of the lexical itemi (as in fig-
ure 1(a));

� F the forest made of the syntactic trees (Ti) of
all the considered lexical entries plus the out-
put (the type we want to derive),

the generation problem (see figure 4) is to find a
matchingM of atomic formulas ofF such that:

1. F endowed withM (let us call this proof struc-
tureF 0) is a correct proof net;

2. when cut-linkingH(F 0) with the�i, and elim-
inating these cuts, we obtain�0.

We note that the problem is intrinsically decidable
(because the finitness of the number of the match-
ings)without making any assumption on the form
of the semantic entries. Of course, we want to keep
these good properties in our algorithm.



Table 3: Lexicon

lexical entry syntaxic category associated�-term semantic proof net
John NP j �John(cf. figure 2(a))
Mary NP m �Mary (cf. figure 2(b))
Paris NP p �Paris(cf. figure 2(c))
Lives NPnS �x:live x �live (cf. figure 2(d))

In (SnS)=NP �x:�y:(in x)y �in (cf. figure 2(e))

j
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t� t� t+t+

e+

(e)�in

Figure 2: Semantic proof nets of the lexicon of table 3

4 Cut-elimination as Matrix Computation
Using proof netsresulting from a cut-elimination
to guide a proof search on proof netsbeforecut-
elimination relies on the algebraic representation of
cut-elimination on proof nets expressed in (Girard,
1989) and reformulated in (Retor´e, 1990; Girard,
1995). Due to lack of space, we can not developp
it, but the principle is to express cut-elimination be-
tween axioms with incidence matrices and paths in
graphs.

Let us consider a proof netU . We can define
U the incidence matrix ofaxiom links, � the inci-
dence matrix ofcut links(we assume without loss
of generality that they happen only between axiom
links), and� the incidence matrix of axiom links of
�where� is the proof net resulting from all the cut-
eliminations onU . Then we have (Girard, 1989):

� = (1� �2)U(1� �U)�1(1� �2) (1)

We want to give an equivalent relation to (1) fo-
cusing on some axiom links we are interested in.
Without loss of generality, we assume the lack of
any axiom link inU such that none of its conclu-
sions are involved in cut links.

Then we can choose an order for the atoms (from
the proof net before the cut-elimination, there is
three subsets of atoms: those not involved in a cut
link, those involved in a cut link and whose dual is

not involved in a cut link, and those involved in a
cut link and their dual as well) such that:

U =

"
0 U1 0

tU1 0 0
0 0 U3

#
� =

�
�1 0 0
0 0 0
0 0 0

�
� =

�
0 0 0
0 �1�2
0 �3�4

�

Note that all the atoms belonging to the matching
we are looking for in the generation process (see
figure 4) are inU3.

If we defineA = ( tU1�1 � �1
tU1)U1 andX =

U3(1� �4U3)
�1, we can state the theorem:

Theorem 1 Let U be a correct proof net reducing
in Res(�; U) after cut-elimination. These relations
are equivalent:

� Res(�; U) = (1� �2)U(1� �U)�1(1� �2)
� ( tU1�1 � �1

tU1)U1 = �2U3(1� �4U3)�1 t�2
� A = t�2X�2 andU3 = X�1 + �4.

Of course, all the terms are defined.

We base the proof search algorithm corresponding
to the generation process we are dealing with on this
third relation.

Indeed, the axiom links we are looking for are
those whose two conclusions are involved in cut
links. That is we want to completeU3 (knowing
all the other matrices). The previous theorem states
that solving the equation (1) correponds to solving
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Figure 3: Semantic proof nets for (in p )(live j )
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Figure 4: The generation problem

the equationA = �2X
t�2 in X with X inversible.

Then, we have to solveU3 = X�1 + �4 such that
tU3 = U3 andU2

3 = 1.

Theorem 2 If �4 = 0 and there exists a solution,
then the latter is unique and completely defined (as
matrices product) fromA and�2.

If �4 6= 0 we generally have many solutions, and we
have to investigate this case to obtain good compu-
tational properties for example in adding word order
constraints.

Nevertheless, we can decide the case we are han-
dling as soon as we are given the lexical entries.

5 Example
Let us process on an example the previous results.
We still use the lexicon of table 3, and we want to
generate (if possible) a sentence whose meaning is
given by the proof net of figure 3(b).

We first need to associate every atom with an in-
dex (in the figures, we indicate a numberi beside
the atom). Of course, we have to know how to rec-
ognize the atoms that are the same inU (figure 5(b))
and in� (figure 5(a)). This can be done by looking
at the typed constants decorating the input conclu-
sions (for the moment, we don’t have a general pro-
cedure).

We also assume in this numbering that we know
which of the atoms inH(F ) is linked to t+ (the
unique output). In our case where�4 = 0, it is
not a problem to make such a statement. In other
cases, the complexity would increase at most poly-
nomially.

Then, the given matrices are:

U1 =

2
6666664

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

3
7777775
�1 =

2
6666664

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0

3
7777775

�1 =

2
6666664

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

3
7777775
�2 =

2
6666664

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

3
7777775

And the unique solution is:

X = U3 =

2
6664
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

3
7775



We can add this matching to the syntactic forest of
figure 6(a) (do not forget that the link betweenS+

andS� is inU1 and not inU3, and thatU3 represents
edges between atoms withi 2 [17; 22]) and obtain
onF the matching of figure 6(b).

We still have to ensure the correctness of this
proof net (because we add all the tensor and par
links), but it has a quadratic complexity (less than
the matricial computation). In this case, it is cor-
rect.

Actually, this only gives us the axiom links. It
still requires to compute the word order to have no
crossing axiom link. This can be done from the ax-
iom links easier than quadratic time (it is a bracket-
ing problem).

6 Conclusion

We showed that the problem of generation in the
Lambek calculus framework is decidable, and we
relied on semantic proof nets to express it as a
guided proof search. On top of keeping the decid-
ability property of this framework, we characterized
the semantic proof nets that enable a polynomial
time processing.

Nevertheless, some work remains: we should
soon work on the atom numbering and the choice
of the lexical items to enable a practical implemen-
tation of this work. Moreover, we want to benefit
from the power of linear logic (and modalities) to
deal with non linear�-terms.

Finally, since different extensions of Lambek cal-
culus based on proof nets (Moortgat, 1996; Lecomte
and Retor´e, 1995) have been considered, we hope
our proposal and its good properties to apply to
other linguistic approaches.
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