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Abstract

In this paper we present an integrated system for
tagging and chunking texts from a certain language.
The approach is based on stochastic �nite-state
models that are learnt automatically. This includes
bigram models or �nite-state automata learnt using
grammatical inference techniques. As the models in-
volved in our system are learnt automatically, this
is a very exible and portable system.
In order to show the viability of our approach we

present results for tagging and chunking using bi-
gram models on the Wall Street Journal corpus. We
have achieved an accuracy rate for tagging of 96.8%,
and a precision rate for NP chunks of 94.6% with a
recall rate of 93.6%.

1 Introduction

Part of Speech Tagging and Shallow Parsing are two
well-known problems in Natural Language Process-
ing. A Tagger can be considered as a translator that
reads sentences from a certain language and outputs
the corresponding sequences of part of speech (POS)
tags, taking into account the context in which each
word of the sentence appears. A Shallow Parser in-
volves dividing sentences into non-overlapping seg-
ments on the basis of very super�cial analysis. It
includes discovering the main constituents of the
sentences (NPs, VPs, PPs, ...) and their heads.
Shallow Parsing usually identi�es non-recursive con-
stituents, also called chunks (Abney, 1991) (such as
non-recursive Noun Phrases or base NP, base VP,
and so on). It can include determining syntactical
relationships such as subject-verb, verb-object, etc.,
Shallow parsing which always follows the tagging
process, is used as a fast and reliable pre-processing
phase for full or partial parsing. It can be used for
Information Retrieval Systems, Information Extrac-
tion, Text Summarization and Bilingual Alignment.
In addition, it is also used to solve computational
linguistics tasks such as disambiguation problems.

1.1 POS Tagging Approaches

The di�erent approaches for solving this problem
can be classi�ed into two main classes depending

on the tendencies followed for establishing the Lan-
guage Model (LM): the linguistic approach, based
on hand-coded linguistic rules and the learning ap-
proach derived from a corpora (labelled or non-
labelled). Other approximations that use hybrid
methods have also been proposed (Voutilainen and
Padr�o, 1997).

In the linguistic approach, an expert linguist is
needed to formalise the restrictions of the language.
This implies a very high cost and it is very depen-
dent on each particular language. We can �nd an
important contribution (Voutilainen, 1995) that uses
Constraint Grammar formalism. Supervised learn-
ing methods were proposed in (Brill, 1995) to learn
a set of transformation rules that repair the error
committed by a probabilistic tagger. The main ad-
vantage of the linguistic approach is that the model
is constructed from a linguistic point of view and
contains many and complex kinds of knowledge.

In the learning approach, the most extended
formalism is based on n-grams or HMM. In this
case, the language model can be estimated from
a labelled corpus (supervised methods) (Church,
1988)(Weischedel et al., 1993) or from a non-
labelled corpus (unsupervised methods) (Cutting et
al., 1992). In the �rst case, the model is trained from
the relative observed frequencies. In the second one,
the model is learned using the Baum-Welch algo-
rithm from an initial model which is estimated using
labelled corpora (Merialdo, 1994). The advantages
of the unsupervised approach are the facility to build
language models, the exibility of choice of cate-
gories and the ease of application to other languages.
We can �nd some other machine-learning approaches
that use more sophisticated LMs, such as Decision
Trees (M�arquez and Rodr��guez, 1998)(Magerman,
1996), memory-based approaches to learn special de-
cision trees (Daelemans et al., 1996), maximum en-
tropy approaches that combine statistical informa-
tion from di�erent sources (Ratnaparkhi, 1996), �-
nite state automata inferred using Grammatical In-
ference (Pla and Prieto, 1998), etc.

The comparison among di�erent approaches is dif-
�cult due to the multiple factors that can be consid-



ered: the language, the number and type of the tags,
the size of the vocabulary, the ambiguity, the diÆ-
culty of the test set, etc. The best results reported
on the Wall Street Journal (WSJ) Treebank (Marcus
et al., 1993), using statistical language models, have
an accuracy ratio between 95% and 97% (depending
on the di�erent factors mentioned above). For the
linguistic approach the results are better. For exam-
ple, in (Voutilainen, 1995) an accuracy of 99.7% is
reported, but certain ambiguities in the output re-
main unsolved. Some works have recently been pub-
lished (Brill and Wu, 1998) in which a set of taggers
are combined in order to improve their performance.
In some cases, these methods achieve an accuracy of
97.9% (Halteren et al., 1998).

1.2 Shallow Parsing Approaches

Since the early 90's, several techniques for carry-
ing out shallow parsing have been developed. These
techniques can also be classi�ed into two main
groups: based on hand-coded linguistic rules and
based on learning algorithms. These approaches
have a common characteristic: they take the se-
quence of lexical tags proposed by a POS tagger as
input, for both the learning and the chunking pro-
cesses.

1.2.1 Techniques based on hand-coded
linguistic rules

These methods use a hand-written set of rules that
are de�ned using POS as terminals of the gram-
mar. Most of these works use �nite state methods
for detecting chunks or for accomplishing other lin-
guistic tasks (Ejerhed, 1988), (Abney, 1996), (At-
Mokhtar and Chanod, 1997). Other works use dif-
ferent grammatical formalisms, such as constraint
grammars (Voutilainen, 1993), or combine the gram-
mar rules with a set of heuristics (Bourigault, 1992).
These works usually use a small test set that is man-
ually evaluated, so the achieved results are not sig-
ni�cant. The regular expressions de�ned in (Ejer-
hed, 1988) identi�ed both non-recursive clauses and
non-recursive NPs in English text. The experimen-
tation on the Brown corpus achieved a precision rate
of 87% (for clauses) and 97.8 % (for NPs). Ab-
ney introduced the concept of chunk (Abney, 1991)
and presented an incremental partial parser (Abney,
1996). This parser identi�es chunks base on the
parts of speech, and it then chooses how to com-
bine them for higher level analysis using lexical in-
formation. The average precision and recall rates for
chunks were 87.9% and 87.1%, respectively, on a test
set of 1000 sentences. An incremental architecture
of �nite-state transducers for French is presented in
(At-Mokhtar and Chanod, 1997). Each transducer
performs a linguistic task such as identifying seg-
ments or syntactic structures and detecting subjects
and objects. The system was evaluated on various

corpora for subject and object detection. The pre-
cision rate varied between 99.2% and 92.6%. The
recall rate varied between 97.8% and 82.6%.
The NPTool parser described in (Voutilainen,

1993) identi�ed maximal-length noun phrases.
NPtool gave a precision rate of 95-98% and a re-
call rate of 98.5-100%. These results were criticised
in (Ramshaw and Marcus, 1995) due to some in-
consistencies and apparent mistakes which appeared
on the sample given in (Voutilainen, 1993). Bouri-
gault developed the LECTER parser for French us-
ing grammatical rules and some heuristics (Bouri-
gault, 1992). It achieved a recall rate of 95% iden-
tifying maximal length terminological noun phrases,
but he did not give a precision rate, so it is diÆcult
to evaluate the actual performance of the parser.

1.2.2 Learning Techniques

These approaches automatically construct a lan-
guage model from a labelled and bracketed corpus.
The �rst probabilistic approach was proposed in
(Church, 1988). This method learnt a bigram model
for detecting simple noun phrases on the Brown cor-
pus. Given a sequence of parts of speech as input,
the Church program inserts the most probable open-
ings and endings of NPs, using a Viterbi-like dy-
namic programming algorithm. Church did not give
precision and recall rates. He showed that 5 out of
243 NP were omitted, but in a very small test with
a POS tagging accuracy of 99.5%.
Transformation-based learning (TBL) was used in

(Ramshaw and Marcus, 1995) to detect base NP.
In this work chunking was considered as a tagging
technique, so that each POS could be tagged with
I (inside baseNP), O (outside baseNP) or B (inside
a baseNP, but the preceding word was in another
baseNP). This approach resulted in a precision rate
of 91.8% and a recall rate of 92.3%. This result
was automatically evaluated on a test set (200,000
words) extracted from the WSJ Treebank. The main
drawback to this approach are the high requirements
for time and space which are needed to train the sys-
tem; it needs to train 100 templates of combinations
of words.
There are several works that use a memory-based

learning algorithm. These approaches construct a
classi�er for a task by storing a set of examples in
memory. Each example is de�ned by a set of features
that have to be learnt from a bracketed corpus. The
Memory-Based Learning (MBL) algorithm (Daele-
mans et al., 1999) takes into account lexical and POS
information. It stores the following features: the
word form and POS tag of the two words to the left,
the focus word and one word to the right. This sys-
tem achieved a precision rate of 93.7% and a recall
rate of 94.0% on the WSJ Treebank. However, when
only POS information was used the performance de-
creased achieving a precision rate of 90.3% and a



recall rate of 90.1%. The Memory-Based Sequence
Learning (MBSL) algorithm (Argamon et al., 1998)
learns substrings or sequences of POS and brackets.
Precision and recall rates were 92.4% on the same
data used in (Ramshaw and Marcus, 1995).
A simple approach is presented in (Cardie and

Pierce, 1998) called Treebank Approach (TA). This
technique matches POS sequences from an initial
noun phrase grammar which was extracted from an
annotated corpus. The precision achieved for each
rule is used to rank and prune the rules, discarding
those rules whose score is lower than a prede�ned
threshold. It uses a longest match heuristic to de-
termine base NP. Precision and recall on the WSJ
Treebank was 89.4% and 90.0%, respectively.
It is diÆcult to compare the di�erent approaches

due for various reasons. Each one uses a di�erent
de�nition of base NP. Each one is evaluated on a
di�erent corpus or on di�erent parts of the same
corpus. Some systems have even been evaluated by
hand on a very small test set. Table 1 summarizes
the precision and recall rates for learning approaches
that use data extracted from the WSJ Treebank.

Method NP-Precision NP-Recall

TBL 91.8 92.3

MBSL 92.4 92.4

TA 89.4 90.9

MBL 93.7 94.0

MBL (only POS) 90.3 90.1

Table 1: Precision and recall rates for di�erent NP
parsers.

2 General Description of our
Integrated approach to Tagging
and Chunking

We propose an integrated system (Figure 1) that
combines di�erent knowledge sources (lexical prob-
abilities, LM for chunks and Contextual LM for
the sentences) in order to obtain the correspond-
ing sequence of POS tags and the shallow parsing
([SU W1=C1W2=C2 SU ]W3=C3 ::: [SU Wn=Cn SU ])
from a certain input string (W1;W2; :::;Wn). Our
system is a transducer composed by two levels: the
upper one represents the Contextual LM for the
sentences, and the lower one modelize the chunks
considered. The formalism that we have used in all
levels are �nite-state automata. To be exact, we
have used models of bigrams which are smoothed
using the backo� technique (Katz, 1987) in order to
achieve full coverage of the language. The bigrams
LMs (bigram probabilities) was obtained by means
of the SLM TOOLKIT (Clarksond and Ronsenfeld,

TAGGING
and

CHUNKING

Lexical ProbabilitiesContextual LM

W1 W2 ... Wn [SU W1/C1 W2/C2 SU] ... Wn/Cn
DECODING

LEARNING

CORPUS

LM for Chunks

Learning LM

Figure 1: Overview of the System.

1997) from the sequences of categories in the
training set. Then, they have been represented like
�nite-state automata.

2.1 The learning phase.

The models have been estimated from labelled and
bracketed corpora. The training set is composed by
sentences like:

[SU W1=C1W2=C2 SU ] W3=C3 ::: [SU Wn=Cn SU ] :=:

where Wi are the words, Ci are part-of-speech tags
and SU are the chunks considered.

The models learnt are:

� Contextual LM: it is a smoothed bigram model
learnt from the sequences of part-of-speech tags
(Ci) and chunk descriptors (SU) present in the
training corpus (see Figure 2a).

� Models for the chunks: they are smoothed bi-
gram models learnt from the sequences of part-
of-speech tags corresponding to each chunk of
the training corpus (see Figure 2b).

� Lexical Probabilities: they are estimated from
the word frequencies, the tag frequencies and
the word per tag frequencies. A tag dictio-
nary is used which is built from the full cor-
pus which gives us the possible lexical categories
(POS tags) for each word; this is equivalent to
having an ideal morphological analyzer. The
probabilities for each possible tag are assigned
from this information taking into account the
obtained statistics. Due to the fact that the
word cannot have been seen at training, or it
has only been seen in some of the possible cat-
egories, it is compulsory to apply a smoothing
mechanism. In our case, if the word has not
previously been seen, the same probability is
assigned to all the categories given by the dic-
tionary; if it has been seen, but not in all the
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Figure 2: Integrated Language Model for Tagging and Chunking.

categories, the smoothing called "add one" is
applied. Afterwards, a renormalization process
is carried out.

Once the LMs have been learnt, a regular substi-
tution of the lower model(s) into the upper one is
made. In this way, we get a single Integrated LM
which shows the possible concatenations of lexical
tags and syntactical units, with their own transition
probabilities which also include the lexical probabil-
ities as well (see Figure 2c). Note that the models
in Figure 2 are not smoothed).

2.2 The Decoding Process: Tagging and
Parsing

The tagging and shallow parsing process consists of
�nding out the sequence of states of maximum prob-
ability on the Integrated LM for an input sentence.
Therefore, this sequence must be compatible with
the contextual, syntactical and lexical constraints.
This process can be carried out by Dynamic Pro-
gramming using the Viterbi algorithm, which is con-
veniently modi�ed to allow for transitions between
certain states of the automata without consuming
any symbols (epsilon transitions). A portion of the
Dynamic Programming trellis for a generic sentence
using the Integrated LM shown in Figure 2c can be
seen in Figure 3. The states of the automata that
can be reached and that are compatible with the
lexical constraints are marked with a black circle
(i.e., from the state Ck it is possible to reach the
state Ci if the transition is in the automata and the
lexical probability P (WijCi) is not null). Also, the
transitions to initial and �nal states of the models
for chunks (i.e., from Ci to < SU >) are allowed;
these states are marked in Figure 3 with a white cir-
cle and in this case no symbol is consumed. In all
these cases, the transitions to initial and �nal pro-

duce transitions to their successors (the dotted lines
in Figure 3) where now symbols must be consumed.
Once the Dynamic Programing trellis is built, we

can obtain the maximum probability path for the
input sentence, and thus the best sequence of lexical
tags and the best segmentation in chunks.
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Final
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Figure 3: Partial Trellis for Programming Decoding
based on the Integrated LM.

3 Experimental Work

In this section we will describe a set of experiments
that we carried out in order to demonstrate the ca-
pabilities of the proposed approach for tagging and
shallow parsing. The experiments were carried out



on the WSJ corpus, using the POS tag set de�ned
in (Marcus et al., 1993), considering only the NP
chunks de�ned by (Church, 1988) and using the
models that we have presented above. Nevertheless,
the use of this approach on other corpora (chang-
ing the reference language), other lexical tag sets or
other kinds of chunks can be done in a direct way.

3.1 Corpus Description.

We used a portion of the WSJ corpus (900,000
words), which was tagged according to the Penn
Treebank tag set and bracketed with NP markers,
to train and test the system.
The tag set contained 45 di�erent tags. About

36.5% of the words in the corpus were ambiguous,
with an ambiguity ratio of 2.44 tag/word over the
ambiguous words, 1.52 overall.

3.2 Experimental Results.

In order to train the models and to test the system,
we randomly divided the corpora into two parts: ap-
proximately 800,000 words for training and 100,000
words for testing.
Both the bigram models for representing contex-

tual information and syntactic description of the NP
chunk and the lexical probabilities were estimated
from training sets of di�erent sizes. Due to the fact
that we did not use a morphological analyser for En-
glish, we constructed a tag dictionary with the lex-
icon of the training set and the test set used. This
dictionary gave us the possible lexical tags for each
word from the corpus. In no case, was the test used
to estimate the lexical probabilities.
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Figure 4: Accuracy Rate of Tagging on WSJ for
incremental training sets.

In Figure 4, we show the results of tagging on the
test set in terms of the training set size using three
approaches: the simplest (LEX) is a tagging process
which does not take contextual information into ac-
count, so the lexical tag associated to a word will
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Figure 5: NP-chunking results on WSJ for incremen-
tal training sets.

Tagging NP-Chunking
Tagger Accuracy Precision Recall

BIG-BIG 96.8 94.6 93.6

Lex 94.3 90.8 91.3
BIG 96.9 94.9 94.1
IDEAL 100 (assumed) 95.5 94.7

Table 2: Tagging and NP-Chunking results for dif-
ferents taggers (training set of 800,000 words).

be that which has appeared more often in the train-
ing set. The second method corresponds to a tagger
based on a bigram model (BIG). The third one uses
the Integrated LM described in this paper (BIG-
BIG). The tagging accuracy for BIG and BIG-BIG
was close, 96.9% and 96.8% respectively, whereas
without the use of the language model (LEX), the
tagging accuracy was 2.5 points lower. The trend in
all the cases was that an increment in the size of the
training set resulted in an increase in the tagging
accuracy. After 300,000 training words, the result
became stabilized.
In Figure 5, we show the precision (#correct

proposed NP/#proposed NP) and recall (#correct
proposed NP/#NP in the reference) rates for NP
chunking. The results obtained using the Integrated
LM were very satisfactory achieving a precision rate
of 94.6% and a recall rate of 93.6%. The perfor-
mance of the NP chunker improves as the train-
ing set size increases. This is obviously due to the
fact that the model is better learnt when the size
of the training set increases, and the tagging error
decreases as we have seen above.
The usual sequential process for chunking a sen-

tence can also be used. That is, �rst we tag the sen-
tence and then we use the Integrated LM to carry
out the chunking. In this case, only the contextual
probabilities are taken into account in the decoding



process. In Table 2, we show the most relevant re-
sults that we obtained for tagging and for NP chunk-
ing. The �rst row shows the result when the tagging
and the chunking are done in a integrated way. The
following rows show the performance of the sequen-
tial process using di�erent taggers:

� LEX: it takes into account only lexical proba-
bilities. In this case, the tagging accuracy was
94.3%.

� BIG: it is based on a bigram model that
achieved an accuracy of 96.9%.

� IDEAL: it simulates a tagger with an accuracy
rate of 100%. To do this, we used the tagged
sentences of the WSJ corpus directly.

These results con�rm that precision and recall
rates increase when the accuracy of the tagger is
better. The performance of the sequential process
(using the BIG tagger) is slightly better than the
performance of the integrated process (BIG-BIG).
We think that this is probably because of the way
we combined the probabilities of the di�erent mod-
els.

4 Conclusions and Future Work

In this paper, we have presented a system for Tag-
ging and Chunking based on an Integrated Lan-
guage Model that uses a homogeneous formalism
(�nite-state machine) to combine di�erent knowl-
edge sources: lexical, syntactical and contextual
models. It is feasible both in terms of performance
and also in terms of computational eÆciency.
All the models involved are learnt automatically

from data, so the system is very exible and portable
and changes in the reference language, lexical tags
or other kinds of chunks can be made in a direct way.
The tagging accuracy (96.9% using BIG and

96.8% using BIG-BIG) is higher than other similar
approaches. This is because we have used the tag
dictionary (including the test set in it) to restrict
the possible tags for unknown words, this assump-
tion obviously increase the rates of tagging (we have
not done a quantitative study of this factor).
As we have mentioned above, the comparison with

other approaches is diÆcult due among other reasons
to the following ones: the de�nitions of base NP are
not always the same, the sizes of the train and the
test sets are di�erent and the knowledge sources used
in the learning process are also di�erent. The pre-
cision for NP-chunking is similar to other statistical
approaches presented in section 1, for both the in-
tegrated process (94.6%) and the sequential process
using a tagger based on bigrams (94.9%). The recall
rate is slightly lower than for some approaches using
the integrated system (93.6%) and is similar for the

sequential process (94.1%). When we used the se-
quential system taking an error free input (IDEAL),
the performance of the system obviously increased
(95.5% precision and 94.7% recall). These results
show the inuence of tagging errors on the process.
Nevertheless, we are studying why the results be-
tween the integrated process and the sequential pro-
cess are di�erent. We are testing how the introduc-
tion of some adjustment factors among the models
for weighting the di�erent probability distribution
can improve the results.
The models that we have used in this work, are bi-

grams, but trigrams or any stochastic regular model
can be used. In this respect, we have worked on a
more complex LMs, formalized as a �nite-state au-
tomata which is learnt using Grammatical Inference
techniques. Also, our approach would bene�t from
the inclusion of lexical-contextual information into
the LM.
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