
Hybrid Neuro and Rule-Based Part of Speech Taggers

Qing Ma, Masaki Murata, Kiyotaka Uchimoto, Hitoshi Isahara

Communications Research Laboratory

Ministry of Posts and Telecommunications

588-2, Iwaoka, Nishi-ku, Kobe 651-2492, Japan

fqma, murata, uchimoto, isaharag@crl.go.jp

Abstract

A hybrid system for tagging part of speech is
described that consists of a neuro tagger and
a rule-based corrector. The neuro tagger is
an initial-state annotator that uses di�erent
lengths of contexts based on longest context pri-
ority. Its inputs are weighted by information
gains that are obtained by information maxi-
mization. The rule-based corrector is construct-
ed by a set of transformation rules to make up
for the shortcomings of the neuro tagger. Com-
puter experiments show that almost 20% of the
errors made by the neuro tagger are correct-
ed by these transformation rules, so that the
hybrid system can reach an accuracy of 95.5%
counting only the ambiguous words and 99.1%
counting all words when a small Thai corpus
with 22,311 ambiguous words is used for train-
ing. This accuracy is far higher than that using
an HMM and is also higher than that using a
rule-based model.

1 Introduction

Many part of speech (POS) taggers proposed
so far (e.g., Brill, 1994; Merialdo, 1994; Daele-
mans, et al., 1996; and Schmid, 1994) have
achieved a high accuracy partly because a very
large amount of data was used to train them
(e.g., on the order of 1,000,000 words for En-
glish). For many other languages (e.g., Thai,
which we treat in this paper), however, it is not
as easy to create large corpora from which large
amounts of training data can be extracted. It is
therefore desirable to construct a practical tag-
ger that needs as little training data as possible.

A multi-neuro tagger (Ma and Isahara, 1998)
and its slimmed-down version called the elas-
tic neuro tagger (Ma, et al., 1999), which have
high generalizing ability and therefore are good
at dealing with the problems of data sparse-
ness, were proposed to satisfy this requirement.
These taggers perform POS tagging using di�er-
ent lengths of contexts based on longest context
priority, and each element of the input is weight-
ed with information gains (Quinlan, 1993) for
reecting that the elements of the input have
di�erent relevances in tagging. They had a tag-
ging accuracy of 94.4% (counting only the am-
biguous words in part of speech) in computer ex-
periments when a small Thai corpus with 22,311
ambiguous words was used for training. This ac-
curacy is far higher than that using the hidden
Markov model (HMM), the main approach to
part of speech tagging, and is also higher than
that using a rule-based model.

Neuro taggers, however, have several crucial
shortcomings. First, even in the case where the
POS of a word is uniquely determined by the
word on its left, for example, a neural net will
also try to perform tagging based on the com-
plete context. As a result, even for when the
word on the left is the same, the tagging result-
s will be di�erent if the complete contexts are
di�erent. That is, the neuro tagger can hard-
ly acquire the rules with single inputs. Fur-
thermore, although lexical information is very
important in tagging, it is di�cult for neural
nets to use it because doing so would make the
network enormous. That is, the neuro tagger
cannot acquire the rules with lexical informa-
tion. Additionally, because of convergence and

over-training problems, it is impossible and also
not advisable to train neural nets to an accura-
cy of 100%. The training should be stopped at
an appropriate level of accuracy. Consequently,
neural nets may not acquire some useful rules.

To make up for these shortcomings of the
neuro tagger, we introduce in this paper a rule-
based corrector as the post-processor and con-
struct a hybrid system. The rule-based cor-
rector is constructed by a set of transforma-
tion rules, which is acquired by transformation-
based error-driven learning (Brill, 1994) from
training corpus using a set of templates. The
templates are designed to supply the rules that
the neuro tagger can hardly acquire. Actual-
ly, by examining the transformation rules ac-
quired in the computer experiments, the 99.9%
of them are exactly those that the neuro tagger
can hardly acquire, even when using a template
set including those for generating the rules that
the neuro tagger can easily acquire. This rein-
forces our expectation that the rule-based ap-
proach is a well-suited method to cope with the
shortcomings of the neuro tagger. Computer ex-
periments shows that about 20% of errors made
by the neuro tagger can be corrected by using
these rules and that the hybrid system can reach
an accuracy of 95.5% counting only the ambigu-
ous words and 99.1% counting all words in the
testing corpus, when the same corpus described
above is used for training.

2 POS Tagging Problems

In this paper, suppose there is a lexicon V ,
where the POSs that can be served by each word
are listed, and there is a set of POSs, �. That is,
unknown words that do not exist in the lexicon
are not dealt with. The POS tagging problem
is thus to �nd a string of POSs T = �1�2 � � � �s
(�i 2 �, i = 1; � � � ; s) by following procedure
' when sentence W = w1w2 � � �ws (wi 2 V ,
i = 1; � � � ; s) is given.

' :W t ! �t; (1)

where t is the index of the target word (the word
to be tagged), and W t is a word sequence with

length l + 1 + r centered on the target word:

W t = wt�l � � �wt � � �wt+r; (2)

where t� l � 1, t+ r � s. Tagging can thus be
regarded as a classi�cation problem by replacing
the POS with class and can therefore be handled
by using neural nets.

3 Hybrid System

Our hybrid system (Fig. 1) consists of a neuro
tagger, which is used as an initial-state annota-
tor, and a rule-based corrector, which corrects
the outputs of the neuro tagger. When a word
sequence W t [see Eq. (2)] is given, the neuro
tagger output a tagging result �N(wt) for the
target word wt at �rst. The rule-based correc-
tor then corrects the output of the neuro tagger
as a �ne tuner and gives the �nal tagging result
�R(wt).

Neuro Tagger
Rule-Based
Corrector

τR wt()τN wt()tW

Figure 1: Hybrid neuro and rule-based tagger.

3.1 Neuro tagger

As shown in Fig. 2, the neuro tagger consists
of a three-layer perceptron with elastic input.
This section mainly describes the construction
of input and output of the neuro tagger, and
the elasticity by which it becomes possible to
use variable length of context for tagging. For
details of the architecture of perceptron see e.g.,
Haykin, 1994 and for details of the features of
the neuro tagger see Ma and Isahara, 1998 and
Ma, et al., 1999.

Input IPT is constructed from word se-
quenceW t [Eq. (2)], which is centered on target
word wt and has length l + 1 + r:

IPT = (iptt�l; � � � ; iptt; � � � ; iptt+r); (3)

provided that input length l+1+r has elasticity,
as described at the end of this section. When
word w is given in position x (x = t�l; � � � ; t+r),

OPT

ipttiptt-1iptt-l iptt+1 iptt+r

IPT

Figure 2: Neuro tagger.

element iptx of input IPT is a weighted pattern,
de�ned as

iptx = gx � (ew1; ew2; � � � ; ew); (4)

where gx is the information gain which can be
obtained using information theory (for details
see Ma and Isahara, 1998) and is the number
of types of POSs. If w is a word that appears
in the training data, then each bit ewi can be
obtained:

ewi = Prob(� ijw); (5)

where Prob(� ijw) is a prior probability of � i

that the word w can take. It is estimated from
the training data:

Prob(� ijw) =
C(� i; w)

C(w)
; (6)

where C(� i; w) is the number of times both � i

and w appear, and C(w) is the number of times
w appears in the training data. If w is a word
that does not appear in the training data, then
each bit ewi is obtained:

ewi =

(
1
w

if � i is a candidate

0 otherwise,
(7)

where w is the number of POSs that the word
w can take. Output OPT is de�ned as

OPT = (O1;O2; � � � ;O); (8)

provided that the output OPT is decoded as

�N(wt) =

(
� i if Oi = 1 & Oj = 0 for j 6= i

Unknown otherwise,

(9)

where �N(wt) is the tagging result obtained by
the neuro tagger.

There is more information available for con-
structing the input for words on the left, be-
cause they have already been tagged. In the
tagging phase, instead of using (4)-(6), the in-
put can be constructed simply as

iptt�i = gt�i �OPT (�i); (10)

where i = 1; � � � ; l, andOPT (�i) means the out-
put of the tagger for the ith word before the
target word. However, in the training process,
the output of the tagger is not always correct
and cannot be fed back to the inputs directly.
Instead, a weighted average of the actual output
and the desired output is used:

iptt�i = gt�i �(wOPT �OPT (�i)+wDES �DES);
(11)

where DES is the desired output,

DES = (D1; D2; � � � ; D); (12)

whose bits are de�ned as

Di =

(
1 if � i is a desired answer
0 otherwise,

(13)

and wOPT and wDES are respectively de�ned as

wOPT =
EOBJ

EACT

(14)

and
wDES = 1� wOPT ; (15)

where EOBJ and EACT are the objective and
actual errors. Thus, at the beginning of train-
ing, the weighting of the desired output is large.
It decreases to zero during training.

Elastic inputs are used in the neuro tagger
so that the length of context is variable in tag-
ging based on longest context priority. In de-
tail, (l; r) is initially set as large as possible for
tagging. If �N (wt) = Unknown, then (l; r) is
reduced by some constant interval. This pro-
cess is repeated until �N (wt) 6= Unknown or
(l; r) = (0; 0). On the other hand, to make the
same set of connection weights of the neuro tag-
ger with the largest (l; r) available as much as

possible when using short inputs for tagging, in
training phase the neuro tagger is regarded as a
neural network that has gradually grown from
small one. The training is therefore performed
step by step from small networks to large ones
(for details see Ma, et al. 1999).

3.2 Rule-based corrector

Even when the POS of a word can be deter-
mined with certainty by only the word on the
left, for example, the neuro tagger still tries to
tag based on the complete context. That is,
in general, what the neuro tagger can easily
acquire by learning is the rules whose condi-
tional parts are constructed by all inputs iptx
(x = t � l; � � � ; t + r) that are joined with an
AND logical operator, i.e., (iptt�l & � � � iptt &
� � � iptt+r ! OPT). In other words, it is dif-
�cult for the neuro tagger to learn rules whose
conditional parts are constructed by only a sin-
gle input like (iptx ! OPT)1). Also, although
lexical information is very important in tagging,
it is di�cult for the neuro tagger to use it, be-
cause doing so would make the network enor-
mous. That is, the neuro tagger cannot acquire
rules whose conditional parts consist of lexical
information like (w ! OPT), (w&� ! OPT),
and (w1&w2 ! OPT), where w, w1, and w2 are
words and � is the POS. Furthermore, because
of convergence and over-training problems, it is
impossible and also not advisable to train neu-
ral nets to an accuracy of 100%. The training
should be stopped at an appropriate level of ac-
curacy. Thus, neural net may not acquire some
useful rules.

The transformation rule-based corrector
makes up for these crucial shortcomings.
The rules are acquired from a training cor-
pus using a set of transformation templates
by transformation-based error-driven learning
(Brill, 1994). The templates are constructed
using only those that supply the rules that the
neuro tagger can hardly acquire, i.e., are those

1)The neuro tagger can also learn this kind of rules
because it can tag the word using only iptt (the input
of the target word), in the case of reducing the (l; r) to
(0,0), as described in Sec. 3.1. The rules with single
input described here, however, are a more general case,
in which the input can be iptx (x = t� l; � � � ; t + r).

for acquiring the rules with single input, with
lexical information, and with AND logical in-
put of POSs and lexical information. The set of
templates is shown in Table 12).

According to the learning procedure shown
in Table 2, an ordered list of transformation
rules are acquired by applying the template set
to a training corpus, which had already been
tagged by the neuro tagger. After the trans-
formation rules are acquired, a corpus is tagged
as follows. It is �rst tagged by the neuro tag-
ger. The tagged corpus is then corrected by
using the ordered list of transformation rules.
The correction is a repetitive process applying
the rules in order to the corpus, which is then
updated, until all rules have been applied.

4 Experimental Results

Data: For our computer experiments, we used
the same Thai corpus used by Ma et al. (1999).
Its 10,452 sentences were randomly divided in-
to two sets: one with 8,322 sentences for train-
ing and the other with 2,130 sentences for test-
ing. The training set contained 124,331 word-
s, of which 22,311 were ambiguous; the testing
set contained 34,544 words, of which 6,717 were
ambiguous. For training the neuro tagger, only
the ambiguous words in the training set were
used. For training the HMM, all the words in
the training set were used. In both cases, all the
words in the training set were used to estimate
Prob(� ijw), the probability of � i that word w

can be (for details on the HMM, see Ma, et al.,
1999). In the corpus, 47 types of POSs are de-
�ned (Charoenporn et al., 1997); i.e., = 47.
Neuro tagger: The neuro tagger was con-
structed by a three-layer perceptron whose
input-middle-output layers had p� p

2 � units,
respectively, where p = � (l + 1 + r). The
(l+1+ r) had the following elasticity. In train-
ing, the (l; r) was increased step by step as (1,1)
! (2,1) ! (2,2) ! (3,2) ! (3,3) and gradual
training from a small to a large network was
performed. In tagging, on the other hand, the

2)To see whether this set is suitable, a number of ad-
ditional experiments were conducted using various sets
of templates. The details are described in Sec. 4.

Table 1: Set of templates for transformation rules
Change tag �

a to tag �
b when:

(single input)

(input consists of a POS)
1. left (right) word is tagged � .
2. second left (right) word is tagged � .
3. third left (right) word is tagged � .

(input consists of a word)
4. target word is w.
5. left (right) word is w.
6. second left (right) word is w.

(AND logical input of words)

7. target word is w1 and left (right) word is w2.
8. left (right) word is w1 and second left (right) word is w2.
9. left word is w1 and right word is w2.

(AND logical input of POS and words)

10. target word is w1 and left (right) word is tagged � .
11. left (right) word is w1 and left (right) word is tagged � .
12. target word is w1, left (right) word is w2, and left (right) word is tagged � .

Table 2: Procedure for learning transformation rules

1. Apply neuro tagger to training corpus, which is then updated.

2. Compare tagged results with desired ones and �nd errors.

3. Match templates for all errors and obtain set of transformation rules.

4. Select rule in corpus with the maximum value of (cnt good�h �cnt bad), where
cnt good: number that transforms incorrect tags to correct ones,
cnt bad: number that transforms correct tags to incorrect ones,
h: weight to control the strictness of generating the rule.

5. Apply selected rule to training corpus, which is then updated.

6. Append selected rule to ordered list of transformation rules.

7. Repeat steps 2 through 6 until no such rule can be selected, i.e., cnt good �
h � cnt bad � 0.

(l; r) was inversely reduced step by step as (3,3)
! (3,2) ! (2,2) ! (2,1) ! (1,1) ! (1,0) !
(0,0) as needed, provided that the number of
units in the middle layer was kept at the maxi-
mum value.
Rule-based corrector: The parameter h in
the evaluation function (cnt good� h � cnt bad)
used in the learning procedure (Table 2) is a
weight to control the strictness of generating a
rule. If h is large, the weight of cnt bad is large
and the possibility of generating incorrect rules
is reduced. By regarding the neuro tagger as al-
ready having high accuracy and using the rule-
based corrector as a �ne tuner, weight h was set
to a large value, 100. Applying the templates

to the training corpus, which had already been
tagged by the neuro tagger, we obtained an or-
dered list of 520 transformation rules. Table 3
shows the �rst 15 transformation rules.

Results: Table 4 shows the results of POS tag-
ging for the testing data. In addition to the
accuracy of the neuro tagger and hybrid sys-
tem, the table also shows the accuracy of a base-
line model, the HMM, and a rule-based model
for comparison. The baseline model is one that
performs tagging without using the contextual
information; instead, it performs tagging using
only frequency information: the probability of
POS that each word can be. The rule-based
model, to be exact, is also a hybrid system con-

Table 3: First 15 transformation rules

Table 4: Results of POS tagging for testing data�

model baseline HMM rule-based neuro hybrid

accuracy 0.836 0.891 0.935 0.944 0.955
�Accuracy was determined only for ambiguous words.

sisting of an initial-state annotator and a set of
transformation rules. As the initial-state anno-
tator, however, the baseline model is used in-
stead of the neuro tagger. And, its rule set has
1,177 transformation rules acquired from a more
general template set, which is described at the
end of this section. The reason for using a gener-
al template set is that the set of transformation
rules in the rule-based model should be the main
annotator, not a �ne post-processing tuner. For
the same reason, the parameter to control the
strictness of generating a rule, h, was set to a
small value, 1, so that a larger number of rules
were generated.

As shown in the table, the accuracy of the
neuro tagger was far higher than that of the
HMM and higher than that of the rule-based
model. The accuracy of the rule-based mod-
el, on the other hand, was also far higher than
that of the HMM, although it was inferior to
that of the neuro tagger. The accuracy of the
hybrid system was 1.1% higher than that of the
neuro tagger. Actually, the rule-based corrector
corrected 88.4% and 19.7% of the errors made
by the neuro tagger for the training and testing
data, respectively.

Because the template set shown in Table 1

was designed only to make up for the short-
comings of the neuro tagger, the set is smal-
l compared to that used by Brill (1994). To
see whether this set is large enough for our sys-
tem, we performed two additional experiments
in which (1) a set constructed by adding the
templates with OR logical input of words to the
original set and (2) a set constructed by further
adding the templates with AND and OR logi-
cal inputs of POSs to the set of case (1) were
used. The set used in case (2) included the set
used by Brill (1994) and all the sets used in our
experiments. It was also used for acquiring the
transformation rules in the rule-based model.
The experimental results show that compared
to the original case, the accuracy in case (1)
was improved very little and the accuracy in
case (2) was also improved only 0.03%. These
results show that the original set is nearly large
enough for our system.

To see whether the set is suitable for our
system, we performed an additional experimen-
t using the original set in which the templates
with OR logical inputs were used instead of the
templates with AND logical inputs. The accu-
racy dropped by 0.1%. Therefore, the templates
with AND logical inputs are more suitable than

those with OR logical inputs.
We also performed an experiment using a

template set without lexical information. In this
case, the accuracy dropped by 0.9%, indicating
that lexical information is important in tagging.

To determine the e�ect of using a large h

for generating rules, we performed an experi-
ment with h = 1. In this case, the accuracy
dropped by only 0.045%, an insigni�cant di�er-
ence compared to the case of h = 100.

By examining the acquired rules that were
obtained by applying the most complete tem-
plate set, i.e., the set used in case (2) described
above, we found that 99.9% of them were those
that can be obtained by applying the original
set of templates. That is, the acquired rules
were almost those that are di�cult for the neu-
ro tagger to acquire. This reinforced our expec-
tation that the rule-based approach is a well-
suited method to cope with the shortcoming of
the neuro tagger.

Finally, it should be noted that in the liter-
atures, the tagging accuracy is usually de�ned
by counting all the words regardless of whether
they are ambiguous or not. If we used this de�-
nition, the accuracy of our hybrid system would
be 99.1%.

5 Conclusion

To construct a practical tagger that needs as
little training data as possible, neuro taggers,
which have high generalizing ability and there-
fore are good at dealing with the problems of da-
ta sparseness, have been proposed so far. Neu-
ro taggers, however, have crucial shortcomings:
they cannot utilize lexical information; they
have trouble learning rules with single inputs;
and they cannot learn training data to an ac-
curacy of 100%. To make up for these short-
comings, we introduced a rule-based corrector,
which is constructed by a set of transformation
rules obtained by error-driven learning, for post
processing and constructed a hybrid tagging
system. By examining the transformation rules
acquired in the computer experiments, we found
that the 99.9% of them were those that the neu-
ro tagger can hardly acquire, even when using a
template set including those for generating the

rules that the neuro tagger can easily acquire.
This reinforced our expectation that the rule-
based approach is a well-suited method to cope
with the shortcoming of the neuro tagger. Com-
puter experiments showed that 19.7% of the er-
rors made by the neuro tagger were corrected
by the transformation rules, so the hybrid sys-
tem reached an accuracy of 95.5% counting only
the ambiguous words and 99.1% counting all the
words in the testing data, when a small corpus
with only 22,311 ambiguous words was used for
training. This indicates that our tagging system
can nearly reach a practical level in terms of tag-
ging accuracy even when a small Thai corpus is
used for training. This kind of tagging system
can be used to constructs multilingual corpora
that include languages in which large corpora
have not yet been constructed.

References

Brill, E.: Transformation-based error-driven learn-
ing and natural language processing: a case s-
tudy in part-of-speech tagging, Computational

Linguistics, Vol. 21, No. 4, pp. 543-565, 1994.
Charoenporn, T., Sornlertlamvanich, V., and Isa-

hara, H.: Building a large Thai text corpus -
part of speech tagged corpus: ORCHID, Proc.
Natural Language Processing Paci�c Rim Sym-

posium 1997, Phuket, Thailand, pp. 509-512,
1997.

Daelemans, W., Zavrel, J., Berck, P., and Gillis, S.:
MBT: A memory-based part of speech tagger-
generator, Proc. 4th Workshop on Very Large

Corpora, Copenhagen, Denmark, pp. 1-14, 1996.
Haykin, S.: Neural Networks, Macmillan College

Publishing Company, Inc., 1994.
Ma, Q. and Isahara, H.: A multi-neuro tagger us-

ing variable lengths of contexts, Proc. COLING-
ACL'98, Montreal, pp. 802-806, 1998.

Ma, Q., Uchimoto, K., Murata, M., and Isahara H.:
Elastic neural networks for part of speech tag-
ging, Proc. IJCNN'99, Washington, DC., pp.
2991-2996, 1999.

Merialdo, B.: Tagging English text with a proba-
bilistic model, Computational Linguistics, Vol.
20, No. 2, pp. 155-171, 1994.

Quinlan, J.: C4.5: Programs for Machine Learning,
San Mateo, CA: Morgan Kaufmann, 1993.

Schmid, H.: Part-of-speech tagging with neural net-
works, Proc. COLING'94, Kyoto, Japan, pp.
172-176, 1994.

