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Abstract

We report the results of a study into the use
of a linear interpolating hidden Markov model
(HMM) for the task of extracting technical ter-
minology from MEDLINE abstracts and texts
in the molecular-biology domain. This is the
�rst stage in a system that will extract event
information for automatically updating biology
databases. We trained the HMM entirely with
bigrams based on lexical and character fea-
tures in a relatively small corpus of 100 MED-
LINE abstracts that were marked-up by do-
main experts with term classes such as proteins
and DNA. Using cross-validation methods we
achieved an F-score of 0.73 and we examine the
contribution made by each part of the interpo-
lation model to overcoming data sparseness.

1 Introduction

In the last few years there has been a great in-
vestment in molecular-biology research. This
has yielded many results that, together with
a migration of archival material to the Inter-
net, has resulted in an explosion in the num-
ber of research publications available in online
databases. The results in these papers how-
ever are not available in a structured format and
have to be extracted and synthesized manually.
Updating databases such as SwissProt (Bairoch
and Apweiler, 1997) this way is time consuming
and means that the results are not accessible so
conveniently to help researchers in their work.
Our research is aimed at automatically ex-

tracting facts from scienti�c abstracts and full
papers in the molecular-biology domain and us-
ing these to update databases. As the �rst stage
in achieving this goal we have explored the use
of a generalisable, supervised training method
based on hidden Markov models (HMMs) (Ra-
biner and Juang, 1986) for the identi�cation and

classi�cation of technical expressions in these
texts. This task can be considered to be similar
to the named entity task in the MUC evaluation
exercises (MUC, 1995).
In our current work we are using abstracts

available from PubMed's MEDLINE (MED-
LINE, 1999). The MEDLINE database is an
online collection of abstracts for published jour-
nal articles in biology and medicine and con-
tains more than nine million articles.
With the rapid growth in the number of pub-

lished papers in the �eld of molecular-biology
there has been growing interest in the appli-
cation of information extraction, (Sekimizu et
al., 1998)(Collier et al., 1999)(Thomas et al.,
1999)(Craven and Kumlien, 1999), to help solve
some of the problems that are associated with
information overload.
In the remainder of this paper we will �rst

of all outline the background to the task and
then describe the basics of HMMs and the for-
mal model we are using. The following sections
give an outline of a new tagged corpus (Ohta et
al., 1999) that our team has developed using ab-
stracts taken from a sub-domain of MEDLINE
and the results of our experiments on this cor-
pus.

2 Background

Recent studies into the use of supervised
learning-based models for the named entity task
in the micro-biology domain have shown that
models based on HMMs and decision trees such
as (Nobata et al., 1999) are much more gener-
alisable and adaptable to new classes of words
than systems based on traditional hand-built
patterns and domain speci�c heuristic rules
such as (Fukuda et al., 1998), overcoming the
problems associated with data sparseness with
the help of sophisticated smoothing algorithms



(Chen and Goodman, 1996).
HMMs can be considered to be stochastic �-

nite state machines and have enjoyed success
in a number of �elds including speech recogni-
tion and part-of-speech tagging (Kupiec, 1992).
It has been natural therefore that these mod-
els have been adapted for use in other word-
class prediction tasks such as the named-entity
task in IE. Such models are often based on n-
grams. Although the assumption that a word's
part-of-speech or name class can be predicted
by the previous n-1 words and their classes is
counter-intuitive to our understanding of lin-
guistic structures and long distance dependen-
cies, this simple method does seem to be highly
e�ective in practice. Nymble (Bikel et al.,
1997), a system which uses HMMs is one of the
most successful such systems and trains on a
corpus of marked-up text, using only character
features in addition to word bigrams.
Although it is still early days for the use of

HMMs for IE, we can see a number of trends
in the research. Systems can be divided into
those which use one state per class such as
Nymble (at the top level of their backo� model)
and those which automatically learn about the
model's structure such as (Seymore et al., 1999).
Additionally, there is a distinction to be made
in the source of the knowledge for estimating
transition probabilities between models which
are built by hand such as (Freitag and McCal-
lum, 1999) and those which learn from tagged
corpora in the same domain such as the model
presented in this paper, word lists and corpora
in di�erent domains - so-called distantly-labeled
data (Seymore et al., 1999).

2.1 Challenges of name �nding in

molecular-biology texts

The names that we are trying to extract fall into
a number of categories that are often wider than
the de�nitions used for the traditional named-
entity task used in MUC and may be considered
to share many characteristics of term recogni-
tion.
The particular diÆculties with identifying

and classifying terms in the molecular-biology
domain are an open vocabulary and irrgeular
naming conventions as well as extensive cross-
over in vocabulary between classes. The irreg-
ular naming arises in part because of the num-
ber of researchers from di�erent �elds who are

TI - Activation of <PROTEIN> JAK kinases
</PROTEIN> and <PROTEIN>STAT proteins
</PROTEIN> by <PROTEIN> interleukin - 2
</PROTEIN> and <PROTEIN> interferon alpha
</PROTEIN> , but not the <PROTEIN> T cell
antigen receptor </PROTEIN> , in <SOURCE.ct>
human T lymphocytes </SOURCE.ct> .
AB - The activation of <PROTEIN> Janus
protein tyrosine kinases </PROTEIN> (
<PROTEIN> JAKs </PROTEIN> ) and
<PROTEIN> signal transducer and ac-
tivator of transcription </PROTEIN> (
<PROTEIN> STAT </PROTEIN> ) pro-
teins by <PROTEIN> interleukin ( IL ) - 2
</PROTEIN> , the <PROTEIN> T cell antigen
receptor </PROTEIN> ( <PROTEIN> TCR
</PROTEIN> ) and <PROTEIN> interferon
( IFN ) alpha </PROTEIN> was explored in
<SOURCE.ct> human peripheral blood - derived
T cells </SOURCE.ct> and the <SOURCE.cl>
leukemic T cell line Kit225 </SOURCE.cl> .

Figure 1: Example MEDLINE sentence marked
up in XML for biochemical named-entities.

working on the same knowledge discovery area
as well as the large number of substances that
need to be named. Despite the best e�orts of
major journals to standardise the terminology,
there is also a signi�cant problem with syn-
onymy so that often an entity has more than
one name that is widely used. The class cross-
over of terms arises because many proteins are
named after DNA or RNA with which they re-
act.
All of the names which we mark up must be-

long to only one of the name classes listed in
Table 1. We determined that all of these name
classes were of interest to domain experts and
were essential to our domain model for event
extraction. Example sentences from a marked
up abstract are given in Figure 1.
We decided not to use separate states for

pre- and post-class words as had been used in
some other systems, e.g. (Freitag and McCal-
lum, 1999). Contrary to our expectations, we
observed that our training data provided very
poor maximum-likelihood probabilities for these
words as class predictors.
We found that protein predictor words had

the only signi�cant evidence and even this was
quite weak, except in the case of post-class
words which included a number of head nouns
such as \molecules" or \heterodimers". In our



Class # Example Description

PROTEIN 2125 JAK kinase proteins, protein groups,
families, complexes and substructures.

DNA 358 IL-2 promoter DNAs, DNA groups, regions and genes
RNA 30 TAR RNAs, RNA groups, regions and genes
SOURCE.cl 93 leukemic T cell line Kit225 cell line
SOURCE.ct 417 human T lymphocytes cell type
SOURCE.mo 21 Schizosaccharomyces pombe mono-organism
SOURCE.mu 64 mice multiorganism
SOURCE.vi 90 HIV-1 viruses
SOURCE.sl 77 membrane sublocation
SOURCE.ti 37 central nervous system tissue
UNK - tyrosine phosphorylation background words

Table 1: Named entity classes. # indicates the number of XML tagged terms in our corpus of 100
abstracts.

early experiments using HMMs that incorpo-
rated pre- and post-class states we found that
performance was signi�cantly worse than with-
out such states and so we formulated the model
as given in section 3.

3 Method

The purpose of our model is to �nd the most
likely sequence of name classes (C) for a given
sequence of words (W). The set of name classes
includes the `Unk' name class which we use for
background words not belonging to any of the
interesting name classes given in Table 1 and
the given sequence of words which we use spans
a single sentence. The task is therefore to max-
imize Pr(CjW ). We implement a HMM to es-
timate this using the Markov assumption that
Pr(CjW ) can be found from bigrams of name
classes.
In the following model we consider words to

be ordered pairs consisting of a surface word,
W , and a word feature, F , given as < W;F >.
The word features themselves are discussed in
Section 3.1.
As is common practice, we need to calculate

the probabilities for a word sequence for the
�rst word's name class and every other word
di�erently since we have no initial name-class
to make a transition from. Accordingly we use
the following equation to calculate the initial
name class probability,

Pr(Ctj < Wfirst; Ffirst >) =

�0f(Cfirstj < Wfirst; Ffirst >) +

�1f(Cfirstj < ;Ffirst >) +

�2f(Cfirst) (1)

and for all other words and their name classes
as follows:

Pr(Ctj < Wt; Ft >;< Wt�1; Ft�1 >;Ct�1) =

�0f(Ctj < Wt; Ft >;< Wt�1; Ft�1 >;Ct�1) +

�1f(Ctj < ;Ft >;< Wt�1; Ft�1 >;Ct�1) +

�2f(Ctj < Wt; Ft >;< ;Ft�1 >;Ct�1) +

�3f(Ctj < ;Ft >;< ;Ft�1 >;Ct�1) +

�4f(CtjCt�1) +

�5f(Ct) (2)

where f(j) is calculated with maximum-
likelihood estimates from counts on training
data, so that for example,

f(Ctj < Wt; Ft >;< Wt�1; Ft�1 >;Ct�1)
:
=

T (< Wt; Ft >;Ct; < Wt�1; Ft�1 >;Ct�1)

T (< Wt; Ft >;< Wt�1; Ft�1 >;Ct�1)
(3)

Where T () has been found from counting the
events in the training corpus. In our current
system we set the constants �i and �i by hand
and let

P
�i = 1:0,

P
�i = 1:0, �0 � �1 � �2,

�0 � �1 : : : � �5. The current name-class Ct

is conditioned on the current word and fea-
ture, the previous name-class, Ct�1, and pre-
vious word and feature.
Equations 1 and 2 implement a linear-

interpolating HMM that incorporates a number



of sub-models (referred to from now by their
� coeÆcients) designed to reduce the e�ects of
data sparseness. While we hope to have enough
training data to provide estimates for all model
parameters, in reality we expect to encounter
highly fragmented probability distributions. In
the worst case, when even a name class pair
has not been observed before in training, the
model defaults at �5 to an estimate of name
class unigrams. We note here that the bigram
language model has a non-zero probability asso-
ciated with each bigram over the entire vocab-
ulary.

Our model di�ers to a backo� formulation be-
cause we found that this model tended to su�er
from the data sparseness problem on our small
training set. Bikel et al for example consid-
ers each backo� model to be separate models,
starting at the top level (corresponding approx-
imately to our �0 model) and then falling back
to a lower level model when there not enough
evidence. In contrast, we have combined these
within a single probability calculation for state
(class) transitions. Moreover, we consider that
where direct bigram counts of 6 or more occur
in the training set, we can use these directly to
estimate the state transition probability and we
use just the �0 model in this case. For counts
of less than 6 we smooth using Equation 2; this
can be thought of as a simple form of `buck-
eting'. The HMM models one state per name
class as well as two special states for the start
and end of a sentence.

Once the state transition probabilities have
been calculated according to Equations 1 and 2,
the Viterbi algorithm (Viterbi, 1967) is used to
search the state space of possible name class as-
signments. This is done in linear time, O(MN2)
for M the number of words to be classi�ed and
N the number of states, to �nd the highest prob-
ability path, i.e. to maximise Pr(W;C). In our
experiments M is the length of a test sentence.

The �nal stage of our algorithm that is used
after name-class tagging is complete is to use
a clean-up module called Unity. This creates a
frequency list of words and name-classes for a
document and then re-tags the document using
the most frequently used name class assigned by
the HMM. We have generally found that this
improves F-score performance by about 2.3%,
both for re-tagging spuriously tagged words and

Word Feature Example

DigitNumber 15
SingleCap M
GreekLetter alpha
CapsAndDigits I2
TwoCaps RalGDS
LettersAndDigits p52
InitCap Interleukin
LowCaps kappaB
Lowercase kinases
Hyphon -
Backslash /
OpenSquare [
CloseSquare ]
Colon :
SemiColon ;
Percent %
OpenParen (
CloseParen )
Comma ,
FullStop .
Determiner the
Conjunction and
Other * + #

Table 2: Word features with examples

for �nding untagged words in unknown contexts
that had been correctly tagged elsewhere in the
text.

3.1 Word features

Table 2 shows the character features that we
used which are based on those given for Nymble
and extended to give high performance in both
molecular-biology and newswire domains. The
intuition is that such features provide evidence
that helps to distinguish name classes of words.
Moreover we hypothesize that such features
will help the model to �nd similarities between
known words that were found in the training
set and unknown words (of zero frequency in
the training set) and so overcome the unknown
word problem. To give a simple example: if we
know that LMP - 1 is a member of PROTEIN
and we encounter AP - 1 for the �rst time in
testing, we can make a fairly good guess about
the category of the unknown word `LMP' based
on its sharing the same feature TwoCaps with
the known word `AP' and `AP's known relation-
ship with `- 1'.
Such unknown word evidence is captured in

submodels �1 through �3 in Equation 2. We



consider that character information provides
more meaningful distinctions between name
classes than for example part-of-speech (POS),
since POS will predominantly be noun for all
name-class words. The features were chosen
to be as domain independent as possible, with
the exception of Hyphon and GreekLetter which
have particular signi�cance for the terminology
in this domain.

4 Experiments

4.1 Training and testing set

The training set we used in our experiments
consisted of 100 MEDLINE abstracts, marked
up in XML by a domain expert for the name
classes given in Table 1. The number of NEs
that were marked up by class are also given in
Table 1 and the total number of words in the
corpus is 29940. The abstracts were chosen from
a subdomain of molecular-biology that we for-
mulated by searching under the terms human,
blood cell, transcription factor in the PubMed
database. This yielded approximately 3300 ab-
stracts.

4.2 Results

The results are given as F-scores, a common
measurement for accuracy in the MUC con-
ferences that combines recall and precision.
These are calculated using a standard MUC tool
(Chinchor, 1995). F-score is de�ned as

F � score =
2� Precision�Recall

P recision+Recall
(4)

The �rst set of experiments we did shows the
e�ectiveness of the model for all name classes
and is summarized in Table 3. We see that data
sparseness does have an e�ect, with proteins -
the most numerous class in training - getting
the best result and RNA - the smallest training
class - getting the worst result. The table also
shows the e�ectiveness of the character feature
set, which in general adds 10.6% to the F-score.
This is mainly due to a positive e�ect on words
in the PROTEIN and DNA clases, but we also
see that members of all SOURCE sub-classes
su�er from featurization.
We have attempted to incorporate generali-

sation through character features and linear in-
terpolation, which has generally been quite suc-
cessful. Nevertheless we were curious to see just

Class Base Base-features

PROTEIN 0.759 0.670 (-11.7%)
DNA 0.472 0.376 (-20.3%)
RNA 0.025 0.000 (-100.0%)
SOURCE(all) 0.685 0.697 (+1.8%)
SOURCE.cl 0.478 0.503 (+5.2%)
SOURCE.ct 0.708 0.752 (+6.2%)
SOURCE.mo 0.200 0.311 (+55.5%)
SOURCE.mu 0.396 0.402 (+1.5%)
SOURCE.vi 0.676 0.713 (+5.5%)
SOURCE.sl 0.540 0.549 (+1.7%)
SOURCE.ti 0.206 0.216 (+4.9%)
All classes 0.728 0.651 (-10.6%)

Table 3: Named entity acquisition results us-
ing 5-fold cross validation on 100 XML tagged
MEDLINE abstracts, 80 for training and 20 for
testing. Base-features uses no character feature
information.

� Model No.
# Texts 0 1 2 3 4 5

80 0.06 0.22 0.10 0.67 0.93 1.0
40 0.06 0.19 0.10 0.63 0.94 1.0
20 0.04 0.15 0.09 0.59 0.89 1.0
10 0.03 0.12 0.08 0.52 0.83 1.0
5 0.02 0.09 0.06 0.41 0.68 1.0

Table 4: Mean number of successful calls to sub-
models during testing as a fraction of total num-
ber of state transitions in the Viterbi lattice. #
Texts indicates the number of abstracts used in
training.

which parts of the model were contributing to
the bigram scores. Table 4 shows the percent-
age of bigrams which could be matched against
training bigrams. The result indicate that a
high percentage of direct bigrams in the test
corpus never appear in the training corpus and
shows that our HMM model is highly depen-
dent on smoothing through models �1 and �3.
We can take another view of the training data
by `salami-slicing' the model so that only evi-
dence from part of the model is used. Results
are shown in Table 5 and support the conclu-
sion that models �1, �2 and �3 are crucial at
this size of training data, although we would
expect their relative importance to fall as we
have more direct observations of bigrams with
larger training data sets.
Table 6 shows the robustness of the model



Backo� models �0,�1 : : : �5 �0,�2 : : : �5 �0,�3 : : : �5 �0,�4; �5 �0,�5
F-score (all classes) 0.728 0.722 0.644 0.572 0.576

Table 5: F-scores using di�erent mixtures of models tested on 100 abstracts, 80 training and 20
testing.

# Texts 80 40 20 10 5

F-score 0.728 0.705 0.647 0.594 0.534

Table 6: F-score for all classes against size of
training corpus (in number of MEDLINE ab-
stracts).

for data sparseness, so that even with only 10
training texts the model can still make sensible
decisions about term identi�cation and classi-
�cation. As we would expect, the table also
clearly shows that more training data is better,
and we have not yet reached a peak in perfor-
mance.

5 Conclusion

HMMs are proving their worth for various
tasks in information extraction and the results
here show that this good performance can be
achieved across domains, i.e. in molecular-
biology as well as using news paper reports. The
task itself, while being similar to named entity
in MUC, is we believe more challenging due to
the large number of terms which are not proper
nouns, such as those in the source sub-classes as
well as the large lexical overlap between classes
such as PROTEIN and DNA. A useful line of
work in the future would be to �nd empirical
methods for comparing diÆculties of domains.
Unlike traditional dictionary-based methods,

the method we have shown has the advantage of
being portable and no hand-made patterns were
used. Additionally, since the character features
are quite powerful, yet very general, there is lit-
tle need for intervention to create domain spe-
ci�c features, although other types of features
could be added within the interpolation frame-
work. Indeed the only thing that is required is
a quite small corpus of text containing entities
tagged by a domain expert.
Currently we have optimized the � constants

by hand but clearly a better way would be to do
this automatically. An obvious strategy to use

would be to use some iterative learning method
such as Expectation Maximization (Dempster
et al., 1977).

The model still has limitations, most obvi-
ously when it needs to identify term boundaries
for phrases containing potentially ambiguous lo-
cal structures such as coordination and paren-
theses. For such cases we will need to add post-
processing rules.

There are of course many NE models that
are not based on HMMs that have had suc-
cess in the NE task at the MUC conferences.
Our main requirement in implementing a model
for the domain of molecular-biology has been
ease of development, accuracy and portability
to other sub-domains since molecular-biology it-
self is a wide �eld. HMMs seemed to be the
most favourable option at this time. Alterna-
tives that have also had considerable success
are decision trees, e.g. (Nobata et al., 1999)
and maximum-entropy. The maximum entropy
model shown in (Borthwick et al., 1998) in par-
ticular seems a promising approach because of
its ability to handle overlapping and large fea-
ture sets within a well founded mathematical
framework. However this implementation of the
method seems to incorporate a number of hand-
coded domain speci�c lexical features and dic-
tionary lists that reduce portability.

Undoubtedly we could incorporate richer fea-
tures into our model and based on the evidence
of others we would like to add head nouns as
one type of feature in the future.
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