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Abstract 

Both full-text information retrieval and large scale 
parsing require text preprocessing to identify 
strong lexical associations in textual databases. In 
order to associate linguistic felicity with 
computational efficiency, we have conceived 
FASTR a unification-based parser supporting 
large textual and grammatical databases. The 
grammar is composed of term rules obtained by 
tagging and lemmatizing term lists with an on- 
line dict ionary.  Through F A S T R ,  large 
terminological data can be recycled for text 
processing purposes. Great stress is placed on the 
handling of term variations through metarules 
which relate basic terms to their semantically 
close morphosyntactic variants. 

The quality of terminological extraction and 
the computational efficiency of  FASTR are 
evaluated through a joint experiment with an 
industrial documentation center. The processing 
of two large technical corpora shows that the 
application is scalable to such industrial data and 
that accounting for term variants results in an 
increase of recall by 20%. 

Although automatic indexing is the most 
straightforward application of FASTR, it can be 
extended fruitfully to terminological acquisition 
and compound interpretation. 

Introduction 

Large terminological databases are now available and can 
be used as lexicons in Natural Language Processing 
(NLP) systems aimed at terminology extraction. In 
FASTR term lists are transformed into large lexicalized 
grammars and are parsed with a robust  and 
computationally tractable unification-based parser. Our 
method contrasts with pattern-matching techniques by 
offering an expressive and convenient descriptive 
framework. It also differs from a general multipurpose 
parser by an ability to recycle linguistic knowledge 
embodied in terminological data. Higher quality in 
terminological extraction is achieved thanks to a 
description of term variations. 

Areas of application using such a tool for 
terminology extraction include automatic indexing 
through an assignment of text pointers to thesaurus 

entries, knowledge acquisition form textual databases, 
noun phrase structural disambiguation and machine 
translation with a specific concern for the translation of 
idioms, compounds and terms. 

When designing any NLP system with large 
linguistic resources, there is tension between tractability 
and descriptive power. Finite state automata are efficient 
tools for lexical extraction. But their lack of convenience 
for information description makes the testing of different 
methodological choices difficult. Such a limitation is 
specifically problematic during the development stage. 
Symmetrically, unification-based parsers offer rich and 
conceptua l ly  t ractable  formal isms,  but their 
computational cost is very high. The approach taken in 
FASTR is to use a convenient grammatical description 
stemming from PATR-H (Shieber 1986) associated with 
an optimized computational engine. Efficiency and 
constraint-based grammar formalism have motivated the 
acronym of the application (FAST + PATR-H) that 
stands for FAST TERM RECOGNIZER. 

When terminology extraction is applied to automatic 
indexing, two measures are important:  recall and 
precision. Precision is crucial for applications using 
acquisition methods which are subject to an excessive 
recall, blurring terminological entries with syntactic 
recurrences or semantic preferences. Conversely, in a 
knowledge-based method like FASTR, recall is a 
decisive evaluation of the coverage of the extraction. The 
recall rate mainly depends on the ability of the processor 
to extract term occurrences which differ from their 
description in the terminological base. With the purpose 
of enhancing the recall rate, FASTR includes a 
metagrammar used to generate term variant rules from 
term rules. Such an addition of robustness does not 
entail a degradation of precision because variations are 
restricted to a "safe" window bordered by the term 
components. 

The formalism of FASTR is organized into three 
levels : a single word lexicon, a terminological grammar 
and a metagrammar  for term variations. The 
initialization of FASTR consists of the description of 
the inflectional system of the language under study, the 
generation of a lexicon and a grammar from a list of 
terms with an on-line lexicon and the handcrafted 
creation of a set of paradigmatic metarules (about a 
hundred) which are refmed according to the experimental 
results. 
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Processing in FASTR starts with segmentation and 
stemming. During stemming, a few term rules are 
activated through a bottom-up filtering. Then, metarules 
are applied to these rules and yield transformed rules used 
to extract terms and their variants. For example, from 
the preceding sentence and from a grammar including 
term variant, the sequence terms and their variants would 
be extracted as a variation of term variant. The data 
required by F A S T R  consist of  a declension file, an 
initial terminological database and an on-line dictionary 
to transform terms into compilable linguistic data. As 
far as human time is concerned,  only a slight 
experimental tuning of the metarules is necessary. 

A Three-tier Formalism 

The formalism of FASTR stems from PATR-H (Shieber 
1986). Rules are composed of a context-free portion 
describing the concatenation of the constituents and a set 
of  equations constraining informat ion of  these 
constituents. 

The description of a single word includes minimally 
the string of the word stem, a part-of-speech category and 
its inflection number. These three values are used to 
dynamically rebuild the different inflections of  the word. 
They are automatically extracted from an on-line 
dictionary with morphological information. We currently 
use the DELAS dict ionary of  LADL laboratory 
(University of Paris 7). For example, rule (1) describes 
the noun ray, plural rays. 

(1) Word : ' ray'  
<cat> = 'N' 
<inflection> = 1. 

Terms are described by g rammar  rules. The 
formalism of PATR-H has been extended to support such 
additional facilities as rules with an extended domain of 
locality, structure disjunction and negative atomic 
values. Rule (2) represents the term IX  ray] diffraction. 
This rule localizes the embedded structure X ray. Lexical 
anchors, indicated by the value of  the feature 
lexicallzation, are used prior to the parsing phase for a 
selective bottom-up activation of the rules. For example, 
rule (2) is anchored to diffraction and is activated when 
this word is encountered in the input sentence. 

(2) Rule : NI ---> (N2 ---> N3 N4) N 5 
<N I label> = 'XRD' 
<N I metaLabel> = 'XX' 
<N I lexicalization> = 'Ns' 
<N 3 lenuna> = 'X' 
<N 3 inflection> = 7 
<N 4 lemma> = 'ray' 
<N 4 inflection> = I 
<Ns lemma> = 'diffraction' 
<N5 inflection> = I. 

The third level of  the formalism consists of a 
metagrammar. Metarules are composed of two context- 
free descriptions : the source and the target and a set of 

equations constraining them. Information shared by the 
source and the target is embodied by identical symbols. 
For example, metarule (3) describes a coordination of a 
two-constituent term inserting a conjunction (except but) 
and a word (except a definite or indefinite determiner) 
between both constituents. When applied to rule (2), it 
outputs a novel rule which accepts X ray or neutron 
diffraction as a variant of X ray diffraction. 

(3) Metarule : Coor{X 1 --> X 2 X 3) 
= X I --~ X 2 C 3 X 4 X 3 "'C' = conjunct ion  " 

<X 1 metaLabel> = 'XX'" 
<Ca lemma> 1 'but  . . . .  I denotes  inequality"'  
<X 4 cat> I 'Dd . . . .  Dd'= definite determiner" 
<X4 cat> I 'Di'. "'Di'= indefinite determiner"  

Parsing 

Morphology 

FASTR has been applied to the French and the English 
languages and can be easily extended to any language 
without word agglutination thanks to an external 
description of morphology.  The suffix stripping 
operation precedes syntactic analysis and requires a 
dictionary of lemmas and a declension file (Savoy 1993). 
Each entry in the dictionary has a basic stem and words 
with an irregular inflectional morphology such as 
m o u s e / m i c e  have one or more  auxil iary stems. 
Derivational links such as synapselsynaptic can also be 
accounted for through mult i-valued part-of-speech 
categories such as noun-adjective. The declension file is 
illustrated by formulae (4) and (5). A set of features is 
provided for each inflectional case of  each inflected 
category (e.g. (4) for nouns).  A list of  suffixes 
corresponds to each declension class (e.g. (5) for the fn'st 
two classes of nouns). ? 1 indicates the first auxiliary 
stem. The inflection class of a word is denoted by the 
value of the feature inflection in word rule (1) and term 
rule (2). 

" The two cases  of  n o u n s  " 
(4) N[ 1 1 <number> = 's ingular ' .  

N[ 2 1 <number> = 'plural ' .  

" d o g / d o g - s  (stem dog) " 
(5) N[ 1 ] 0 s 
" m o u s e / m i c e  (stem mouse ,  aux. s t e m  mice) " 

N! 2 ] 0 ?1 

In order to prepare suffix stripping, a generalized 
lexicographic tree is built form the whole set of the 
reversed suffixes of the current language. Each inflected 
word is also reversed and all its endings corresponding to 
an actual suffix are removed. The corresponding stems 
are looked for in the dictionary. If  one of their inflections 
is equal to the current inflected word, the features 
associated with the declension case are unified with the 
features of the lemma and attached to the inflected word. 
Thus, the morphological  s temmer associates all its 
homographic inflections to an inflected word. 
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The term rules whose lexical anchor is equal to one 
of  the lemmas in the input are activated and processed by 
a top-down algorithm. In order to ensure short parsing 
times, unification is delayed until rewriting is achieved. 
Whenever a rule fails to be parsed, it is repeatedly tried 
again on its variants generated by metarules. 

Term syntax and local syntax 

Metarules  can be s t ra ight forwardly  descr ibed  by  
embedding the formalism into a logical framework where 
rule generation by metarules is calculated through 
unification. With this aim in mind, the definitions o f  
term rules and metarules given in the preceding part can 
be transformed into logical (in)equations by using the 
formulae of  Kasper and Rounds (1986). As in (Vijay- 
Shanker 1992), type variables whose denotations are sets 
of  structures derived from non-terminals can be replaced 
by monoadic predicates. Individual variables that stand 
for individual feature structures are used to capture 
reentrance. For  example,  rule (2) is translated into 
formula (6). A monoadic  predicate a r i t y  is added to 
restrict the application of  metarules. 

(6) XRD(x) ca  cat(x) = 'N' ^ arlty(x) = 2 
^ lexicallzation(x) = x4 ^ metaLabel(x) = 'XX' 
^ l (x) = x I ^ cat(xl) = 'N' ^ arity(xl) --- 2 
^ 1 (x I) --- x 2 A 2(XI) ----- X 3 ^ cat(x2) = 'N' 
^ l emma(x  2) = 'X' ^ inflection(x2) = I 
^ cat(x 3) = 'N 'A  lemma(x3) = 'ray'  
^ inf lect ion(x 3) = I ^ 2(x) = x 4 ^ cat(x4) = 'N' 
^ l emma(x  4) --- 'diffract ion'  ^ inflectlon(x4) = I 

Standard fixed-point semantics is associated to this syn- 
tax which is used to calculate the interpretation o f  such 
formulae. The denotation of  a formula is an automaton 
calculated through an inductive interpretation o f  the 
terms it contains (Rounds and Manaster-Ramer 1987). 
As a consequence of  this mathematical formulation, the 
metarules  are expressed as couples  o f  monoad ic  
predicates with shared variables, For  example, the 
metanfle of  coordination (3) is described by formula (7). 
The syntax of  both sides o f  the metarule is identical to 
the syntax of  rules except for the monoadic rule predicate 
p which is a variable. -, stands for negation. 

(7) Coor(p(y) ca  a r i ty(y) -2  ^ I (y) = Yl ^ 2(y) = Y2) 
= (Coot(p) (y) c a  arity(y) = 4 ^ l(y) = Yl 
^ 2(y) ~- Y3 A 3(y) = Y4 ^ 4(y) = Y2 
^ ca t (y  3) = 'C' ^ -~(lemma(y4) -- 'but ')  
^ -~(cat(y4) = 'Di') ^ -,(cat(y 4) = 'Dd') ) 

The result of  the application o f  a metarule to a rule is 
calculated in two steps. Firstly, the left-hand-side of  the 
metarule is unified with the rule. I f  unification falls, no 
output  rule is generated.  Otherwise,  let ¢~ be the 
substitution providing the unification. Then, the formula 
of  the transformed rule is equal to the right-hand-side of  
the metarule,  where the variables are substi tuted 
according to s .  The computational  implementation is 
s t ra ightforwardly der ived f rom this calculus.  For  
example, metarule (7) applies to rule (6) with the 

substitution ct (8) and yields the transformed rule (9) 
whose PATR-H expression is (10). 

(8) ~ -= [y = x, X R D  / p, x I = Yl,  x4 = Y2I 

(9) Coor(XRD)(x) c a  cat(x) --- 'N' ^ arlty(x) --- 4 
A lexlcaIlzation(x) = x 4 A metaLabel(x) --- 'XX' 
^ l(x) = x I ^ cat(xl) = 'N' ^ ar l ty(x I) = 2 
^ l (Xl) = x2 ^ 2(Xl) = x3 ^ cat(x2) = 'N' 
^ l emma(x  2) = 'X' ^ inflection(x2) = I 
^ cat(x3} = ' N ' ^  lemma(x3) = ' ray'  
A inflection(x3) = I ^ 4(x) = x4 ^ cat(x4) = 'N' 
^ lemma(x4) = 'diffraction'  ^ Inflection(x4) - I 
^ 2(y) = Y3 ^ 3(y) = Y4 ^ cat(y3) = 'C' 

(I0) Rule  : NI ---> (N2 ---> N3 N4) C6 N7 N s 
<NI label> = 'Coor(XRD)' 
<N l metaLabel> = 'XX' 
<N I lexicallzation> = 'N 5' 
< N  3 lernma> = 'X' 
<N 3 inflection> = l 
<N4 lemma> = 'ray' 
<N 4 inflection> = I 
<N s l emma> = 'diffraction'  
<N 5 inflection> = I. 

The mapping performed by the metarules in F A S T R  
differs from the definition o f  metarules in GPSG (Gazdar 
et al. 1985) on the following points : 

• The m a t c h i n g  of  the input rule and the source is 
replaced by their unification. The cor re spondence  
between source and target is achieved by identical 
variables shared by both sides o f  the metarule. 

• In GPSG, when input rule and target disagree about 
the value of  some feature, the target always wins. In 
FASTR,  the target wins if its value for this feature is 
independent o f  its source. Conversely, ff source and 
target share this value, the unification o f  the source 
and the rule falls and no output is provided. 

• The metavariable W used in GPSG and standing for a 
set of  categories  is not  avai lable  in F A S T R .  
However,  an empty  category in the context-free 
skeleton can stand for any subtree o f  the original 
rule. Thus, variable Yl f rom metarule (7), associated 
to X 2 in formula (3), stands for the subterm X ray 
when applied to rule (6). 
When implementing metarules in a grammar parser, 

there are two possibilities for the time to apply the 
metarules to a rule. The c o m p i l e - t i m e  applicat ion 
calculates all the images o f  all the rules in the grammar 
prior to parsing. In the run-time approach, metarules are 
dynamically applied to the active rules during parsing. 
Weisweber and Preu6 (1992) demonstrate that there is no 
difference in complexi ty  between both approaches.  
Moreover ,  in the compile- t ime approach,  metarules 
generate a huge set of  transformed rules which may make 
the parsing process totally inefficient. Due to the very 
large size o f  our  grammar,  we have opted for the 
dynamic approach. The computational performances of  
the application reported in (Jacquemin 1994a) indicate 
that the parser only spends 10% of  its time in generating 
metarules and fully justify the run-time approach. 
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Computational Lexicalization 

The keystone of the computational tractability is 
lexicalization which allows for a bottom-up filtering of 
the rules before parsing. It is completed by fast 
mechanisms for data access such as a B-Tree (for the disk 
resident lexicon of single words) and a Hash-Code table 
(for the memory resident stop words). 

The formalism of FASTR is lexicalized in the sense 
of Schabes and Joshi (1990) because it is composed of 
rules associated with each lexical item which is the 
anchor of the corresponding rules. The parsing algorithm 
for lexicalized grammars takes advantage of lexicalization 
through a two-step strategy. The first step is a selection 
of the rules linked to the lexical items in the input. The 
second step parses the input with a grammar restricted to 
the filtered rules. In case of rules with multiple lexical 
items such as the rules representing multi-word terms, 
the anchor can be any of the lexical items. For example, 
the term aortic disease can be anchored either to aortic or 
to disease. In Jacquemin (1994b), an algorithm for 
optimizing the determination of computational anchors 
is described. It yields a uniform distribution of the rules 
on to the lexical items with respect to a given weighting 
function. A comparison between the "natural"  
lexicalization on the head nouns and the optimized one 
has been made with FASTR. It shows that the rules 
filtered by the optimized lexicalization represent only 
57% of the rules selected by the natural lexicalization 
and ensure a 2.6-time higher parsing speed. 

The computational performances of parsing with 
FASTR mainly depend on the size of the grammar (see 
Figure 1). The parsing speed with a 71,623-rule 
terminological grammar, a 38,536-word lexicon and 110 
metarules is 2,562 words/minute on a Sparc 2 
workstation (real time), As 71,623 terms is a reasonable 
size for a real-word multi-domain list of terms (for 
example WordNet currently includes 35,155 synonyms 
sets), a workstation is well-suited for processing large 
corpora with such terminological databases. 

documentation center INIST/CNRS : a 118,563-word 
corpus on metallurgy [METAL] and a 1.5-million word 
medical  corpus [MEDIC].  The laboratory of 
INIST/CNRS has achieved tagging and lemmatization of 
terms and has evaluated the results of the indexing 
provided by FASTR. 

In this experiment, the metagrammar consists of 
positive paradigmatic metarules (e.g. (11)) and filtering 
negative metarules rejecting the spurious variations 
extracted by the positive ones (e.g. (12)). Examples of 
variations from [MEDIC] accepted by (11) or rejected by 
(12) are shown in Figure 2. 

(11) Metarule Coor( Xl ---> X2 X3 ) 
=x,  -~x~. c~ x4 x3 

<X l metaLabel> = 'XX'. 

(12) Metarule NegCoor( Xi ---> X2 X3 ) 
= x ,  ~ x2 c3 x4  x s  

<Xi metaLabel> = 'XX' 
<X4 cat> = 'P . . . .  P' = preposition" 
<X 4 cat> = 'Dd' 
<X 4 cat> = 'Di'. 

Variations accepted by (11) 

mechanical and enzymatic methods 
Down and Williams syndromes 
amplitude and frequency modulations 
Northern and Western blotting 

Variations rejected by (12) 

relaxation and the time 
satellite and whole chromosome 
cells or after culture 
tissue or a factor 

Figure 2. Antagonist description of variations 
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Figure 1. Parsing speed of FASTR (Sparc 2, real time) 

Application to Automatic Indexing 

A list of 71,623 multi-domain terms and two corpora of 
scientific abstracts have been provided by the 

Negative metarules are used instead of negative 
constraints such as the ones stated in (3) to keep a trace 
of the rejected variations. More details about this 
description are reported in (Jacquemin and Royaut6 
1994). An evaluation of terminology extraction on 
corpus [METAL] indicates that term variations represent 
16.7% of multi-word term occurrences extracted by 
FASTR (an account for term variants increases recall by 
20%). The three kinds of variants retrieved through 
metarules are coordinations (2%), modifier insertions 
(8.3%) and permutations (6.4%). See Figure 3 for 
examples. Elisions such as Kerrr ma~netoootical effect 
---> Kerr effect are not accounted for because our local 
approach to variation is not appropriate to elliptic 
references. In this framework, FASTR retrieves 74.9% 
of the term variants with a precision of 86.7%. These 
results confirm the substantial gain in recall obtained by 
accounting for term variants in automatic indexing. A 
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better precision could be reached through a more accurate 
description of permutation. An improvement in term 
variant recall requires the handling of elision. 

R e l a t e d  W o r k  

Firstly, our formalism is inspired by two fields of 
lexicalized and logical tree formalisms. The f'n'st one is 
the general framework of Lexicalized Tree Adjoining 
Grammar (LTAG) which has shown to be fruitful for the 
description of idioms (Abeill6 and Schabes 1989). The 
second one is the important extension of Tree Adjoining 
Grammar (TAG) to a logical framework (Vijay-Shanker 
1992) which contrasts with the traditional approach that 
operations in a TAG combine trees. From these works, 
we have adopted the constraint of  LTAG which states 
that rules must have at least one lexical frontier node 
together with the logical representation of Vijay-Shanker 
(1992) where rules are not restricted to immediate 
dependency. The lexicalized tree grammar is motivated 
by the domain to be described : terms mainly consist of 
compounds with an internal structure and lexical 
constituents. The logical formalism provides us with a 
straightforward extension to metandes. 

Secondly, our approach to text processing is a form 
of partial parsing. A current trend in large scale NLP 
system (Jacobs 1992) refuses to consider parsing as an 
exhaustive derivation of a very large grammar which 
would process any encountered sentence. To alleviate 
these problems parsing should be planned as the 
cooperat ion of  several  methods such as text 
preprocessing, parsing by chunks, multiple-step partial 
parsing, shallow parsing.., etc. The scope of  the 
preprocessing task is "abstract[ing] idiosyncrasies, 
highlight[ing] regularities, and, in general feed[ing] 
digested text into the unification parser" (Zernik 1992). 
With this aim in mind FASTR brings forth occurrences 
of complex lexical entries and their local variations. It is 
adapted to integration in a multi-step parsing strategy. It 
takes as input a raw corpus and yields chunks 
corresponding to partial parses. This output can be fed 
into a following module or reprocessed with more 
precise metarules. 

Thirdly, our research on term extraction places great 
stress on term variations. The most direct precursors of 
the use of term variation in information retrieval are 
Sparck Jones and Tait (1984). These authors advocate the 
systematic generation of syntactic term variants in query 

processing. Their  approach, however,  makes the 
assumption that only semantic equivalent variant should 
be generated and that each of the words in a variant 
should be given instead of allowing paradignmtic places. 
They only account for restricted associations such as 
information retrieval/retrieval of  information. 
Strzalkowski and Vauthey (1992) follow the way 
suggested by Sparck Jones and Tait (1984) at the end of 
their paper. Instead of generating term variants in a 
query, they look for different term occurrences in text 
documents analyzed by a general multipurpose parser. 
Their parse trees are composed of head/modifier relations 
of four categories. These four classes account for most of 
the syntactic variants of two-word terms into pairs with 
compatible semantic content such as information 
retrieval/information retrieval system~retrieval of  
information from databases... We think however that 
most of these variants can be extracted without parsing 
the whole sentence. They can be detected safely through 
a local parse with a noun-phrase micro-syntax. 

E x t e n s i o n s  a n d  C o n c l u s i o n  

Although applied straightforwardly to automatic 
indexing, FASTR can be extended to terminology 
acquisition through a bootstrapping method where new 
terms are acquired by observing the variations of 
controlled terms in corpora. Figure 3 reports four 
occurrences of term variants retrieved through three 
metarules belonging to three different families. Each of 
these occurrences yields a novel candidate term which 
either already belongs to the terminology or can be added 
after validation. 

A second extension of FASTR concerns acquisition 
of noun phrase interpretation from a corpus. Observation 
of variation is an opportunity to find objective linguistic 
clues which denote the semantic relation between both 
words of a binominal compound. For example, cell into 
a metastatic tumor is a permutation of  tumor cell 
involving the preposition into. Figure 4 lists four N 
cell terms for which more than four permutations cell 
Prep X N have been encountered in corpus [MEDIC]. 
The prepositions found in more than one permutation are 
followed by their number of occurrences. For example, 
the prepositions encountered in the permutations of 
blood cell are from,  in, into and on. These four 
prepositions denote a relation of spatial inclusion of a 
trajector cell into a landmark blood (Langacker 1987). 

Term Variat ion Candidate term 

water absorption 
CentraI Africa 
controlled delivery 
magnetic coupling 
information access 
wave effect 

water and sodium absorption (coordination) 
Central and West Africa (coordination) 
controlled drug delivery (insertion) 
magnetic transcutaneous coupling (insertion) 
access to lexical information (permutation) 
effect of short wave (permutation) 

sodium absorption 
WestAfrica 
drug delivery 
transcutaneous coupling 
lexical information 
short wave 

Figure 3. Acquisition of candidate terms through variation 
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Term Preposit ions 

Membrane cell in [4], into, to 
Myeloid cell of  [3], from 
Blood cell from [8], in [13], into, on 
Tumor cell in [3], from [4], into, with, of 

Figure 4. Noun phrase interpretation through variation 

Although initially devised for automatic indexing, 
FASTR can play a crucial role in other text-based 
intelligent tasks. This part has sketched out a picture of 
incremental terminological acquisition and noun-phrase 
understanding through the analysis of term variants. 

As Resnik (1993) points out, large-scale knowledge 
sources can be used as a source of lexical information. 
Similarly, our approach to corpus linguistics makes a 
extensive use of terminological data and investigates 
systematically and precisely the variations of terms in 
technical corpora. The next natural step in term and 
compound processing is to provide FASTR with a 
learning ability. With this aim in mind, we are currently 
investigating two novel research directions : firstly, a 
hybridisation of FASTR with a connectionist model 
dedicated to nominal composition (Jacquemin 1993) and, 
secondly, a cooperation between FASTR and LEXTER 
(Bourigault 1993) a tool for term acquisition through the 
filtering of part-of-speech patterns. 
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