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Abstract 
Alignment of phonetic sequences is a necessary 
step in many applications in computational phonol- 
ogy. After discussing various approaches to pho- 
netic alignment, I present a new algorithm that com- 
bines a number of techniques developed for se- 
quence comparison with a scoring scheme for com- 
puting phonetic similarity on the basis of multival- 
ued features. The algorithm performs better on cog- 
nate alignment, in terms of accuracy and efficiency, 
than other algorithms reported in the literature. 

1 Introduction 
Identification of the corresponding segments in se- 
quences of phones is a necessary step in many appli- 
cations in both diachronic and synchronic phonol- 
ogy. Usually we are interested in aligning sequences 
that represent forms that are related in some way: 
a pair of cognates, or the underlying and the sur- 
face forms of a word, or the intended and the ac- 
tual pronunciations of a word. Alignment of pho- 
netic sequences presupposes transcription of sounds 
into discrete phonetic segments, and so differs from 
matching of utterances in speech recognition. On 
the other hand, it has much in common with the 
alignment of proteins and DNA sequences. Many 
methods developed for molecular biology can be 
adapted to perform accurate phonetic alignment. 

Alignment algorithms usually contain two main 
components: a metric for measuring distance be- 
tween phones, and a procedure for finding the op- 
timal alignment. The former is often calculated on 
the basis of phonological features that encode cer- 
tain properties of phones. An obvious candidate for 
the latter is a well-known dynamic programming 
(DP) algorithm for string alignment (Wagner and 
Fischer, 1974), although other algorithms can used 
as well. The task of finding the optimal alignment is 
closely linked to the task of calculating the distance 
between two sequences. The basic DP algorithm 

accomplishes both tasks. Depending on the appli- 
cation, either of the results, or both, can be used. 

Within the last few years, several different ap- 
proaches to phonetic alignment have been reported. 
Covington (1996) used depth-first search and a spe- 
cial distance function to align words for histori- 
cal comparison. In a follow-up paper (Covington, 
1998), he extended the algorithm to align words 
from more than two languages. Somers (1998) pro- 
posed a special algorithm for aligning children's ar- 
ticulation data with the adult model. Gildea and Ju- 
rafsky (1996) applied the DP algorithm to pre-align 
input and output phonetic strings in order to im- 
prove the performance of their transducer induction 
system. Nerbonne and Heeringa (1997) employed a 
similar procedure to compute relative distance be- 
tween words from various Dutch dialects. Some 
characteristics of these implementations are juxta- 
posed in Table 1. 

In this paper, I present a new algorithm for the 
alignment of cognates. It combines various tech- 
niques developed for sequence comparison with an 
appropriate scoring scheme for computing phonetic 
similarity on the basis of multivalued features. The 
new algorithm performs better, in terms of accuracy 
and efficiency, than comparable algorithms reported 
by Covington (1996) and Somers (1999). Although 
the main focus of this paper is diachronic phonol- 
ogy, the techniques proposed here can also be ap- 
plied in other contexts where it is necessary to align 
phonetic sequences. 

2 Comparing Phones 
To align phonetic sequences, we first need a func- 
tion for calculating the distance between individual 
phones. The numerical value assigned by the func- 
tion to a pair of segments is referred to as the cost, 
or penalty, of substitution. The function is often ex- 
tended to cover pairs consisting of a segment and 
the null character, which correspond to the opera- 
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Algorithm Calculation Calculation Dynamic Phonological 
of alignment of distance programming features 

Covington (1996) 
Somers (1998) 
Nerbonne and Heeringa (1997) 
Gildea and Jurafsky (1996) 

explicit 
explicit 
implicit 
explicit 

Table 1: Comparison of 

lions of insertion and deletion (also called indels). 
A distance function that satisfies the following ax- 
ioms is called a metric: 

1. Va, b : d(a, b) >_ 0 (nonnegative property) 

2. Va, b : d(a,b) = 0 ¢~ a = b (zero property) 

3. Va, b : d(a,b) = d(b,a) (symmetry) 

4. Va, b, c : d(a, b) + d(b, c) > d(a, c) (triangle in- 
equality) 

2.1 Covington's Distance Function vs. 
Feature-Based Metrics 

Covington (1996), for his cognate alignment algo- 
rithm, constructed a special distance function. It 
was developed by trial and error on a test set of 82 
cognate pairs from various related languages. The 
distance function is very simple; it uses no phono- 
logical features and distinguishes only three types 
of segments: consonants, vowels, and glides. Many 
important characteristics of sounds, such as place 
or manner of articulation, are ignored. For example, 
both yacht and will are treated identically as a glide- 
vowel-consonant sequence. The function's values 
for substitutions are listed in the "penalty" column 
in Table 2. The penalty for an indel is 40 if it is pre- 
ceded by another indel, and 50 otherwise. Coving- 
ton (1998) acknowledges that his distance function 
is "just a stand-in for a more sophisticated, perhaps 
feature-based, system". 1 

Both Gildea and Jurafsky (1996) and Nerbonne 
and Heeringa (1997) use distance functions based 
on binary features. Such functions have the ability 
to distinguish a large number of different phones. 
The underlying assumption is that the number of bi- 
nary features by which two given sounds differ is 

ICovington's distance function is not a metric. The zero 
property is not satisfied because the function's value for two 
identical vowels is greater than zero. Also, the triangle in- 
equality does not hold in all cases; for example: p(e,i) = 30 
and p(i,y) = 10, but p(e,y) = 100, where p(x,y) is the penalty 
for aligning [xl with lyl. 

implicit 
n o  

explicit 
implicit 

n o  

no 
yes 
yes 

n o  

multivalued 
binary 
binary 

alignment algorithms. 

a good indication of their proximity. Phonetic seg- 
ments are represented by binary vectors in which 
every entry stands for a single articulatory feature. 
The penalty for a substitution is defined as the Ham- 
ming distance between two feature vectors. The 
penalty for indels is established more or less arbi- 
trarily. 2 A distance function defined in such a way 
satisfies all metric axioms. 

It is interesting to compare the values of Cov- 
ington's distance function with the average Ham- 
ming distances produced by a feature-based met- 
ric. Since neither Gildea and Jurafsky (1996) nor 
Nerbonne and Heeringa (1997) present their fea- 
ture vectors in sufficient detail to perform the cal- 
culations, I adopted a fairly standard set of 17 bi- 
nary features from Hartman (1981). 3 The average 
feature distances between pairs of segments corre- 
sponding to every clause in Covington's distance 
function are given in Table 2, next to Covington's 
"penalties". By definition, the Hamming distance 
between identical segments is zero. The distance 
between the segments covered by clause #3 is also 
constant and equal to one (the feature in question 
being [long] or [syllabic]). The remaining average 
feature distances were calculated using a set of most 
frequent phonemes represented by 25 letters of the 
Latin alphabet (all but q). In order to facilitate com- 
parison, the rightmost column of Table 2 contains 
the average distances interpolated between the min- 
imum and the maximum value of Covington's dis- 
lance function. The very high correlation (0.998) 
between Covington's penalties and the average dis- 
tances demonstrates that feature-based phonology 
provides a theoretical basis for Covington's manu- 
ally constructed distance function. 

2Nerbonne and Heeringa (1997) fix the penalty for indels as 
half the average of the values of all substitutions. Gildea and 
Jurafsky (1996) set it at one fourth of the maximum substitution 
cost. 

3In order to handle all the phones in Covington's data set, 
two features were added: [tense] and [spread glottis]. 
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1 
2 
3 
4 
5 
6 

Clause in Covington's 
distance function 

"identical consonants or glides" 
"identical vowels" 
"vowel length difference only" 
"non-identical vowels" 
"non-identical consonants" 
"no similarity" 

Covington's 
penalty 

10 
30 
60 
100 

Average 
Hamming 
distance 

0.0 
0.0 
1.0 
2.2 

4.81 
8.29 

Interpolated 
average 
distance 

0.0 
0.0 
12.4 
27.3 
58.1 
100.0 

Table 2: The clause-by-clause comparison of Covington's distance function (column 3) and a feature-based 
distance function (columns 4 and 5). 

2.2 Binary vs. Multivalued Features 

Although binary features are elegant and widely 
used, they might not be optimal for phonetic align- 
ment. Their primary motivation is to classify 
phonological oppositions rather than to reflect the 
phonetic characteristics of sounds. In a strictly bi- 
nary system, sounds that are similar often differ in a 
disproportionately large number of features. It can 
be argued that allowing features to have several pos- 
sible values results in a more natural and phoneti- 
caUy adequate system. For example, there are many 
possible places of articulation, which form a near- 
continuum ranging from [labial] to [glottal]. 

Ladefoged (1995) devised a phonetically-based 
multivalued feature system. This system has been 
adapted by Connolly (1997) and implemented by 
Somers (1998). It contains about 20 features with 
values between 0 and 1. Some of them can take 
as many as ten different values (e.g. [place]), 
while others are basically binary oppositions (e.g. 
[nasal]). Table 3 contains examples of multivalued 
features. 

The main problem with both Somers's and Con- 
nolly's approaches is that they do not differenti- 
ate the weights, or saliences, that express the rel- 
ative importance of individual features. For ex- 
ample, they assign the same salience to the fea- 
ture [place] as to the feature [aspiration], which 
results in a smaller distance between [p] and [k] 
than between [p] and [phi. I found that in order 
to avoid such incongruous outcomes, the salience 
values need to be carefully differentiated; specifi- 
cally, the features [place] and [manner] should be 
assigned significantly higher saliences than other 
features (the actual values used in my algorithm are 
given in Table 4). Nerbonne and Heeringa (1997) 
experimented with weighting each feature by infor- 
mation gain but found it had an adverse effect on 

the quality of the alignments. The question of how 
to derive salience values in a principled manner is 
still open. 

2.3 Similarity vs. Distance 

Although all four algorithms listed in Table 1 mea- 
sure relatedness between phones by means of a dis- 
tance function, such an approach does not seem to 
be the best for dealing with phonetic units. The fact 
that Covington's distance function is not a metric is 
not an accidental oversight; rather, it reflects certain 
inherent characteristics of phones. Since vowels are 
in general more volatile than consonants, the pref- 
erence for matching identical consonants over iden- 
tical vowels is justified. This insight cannot be ex- 
pressed by a metric, which, by definition, assigns a 
zero distance to all identical pairs of segments. Nor 
is it certain that the triangle inequality should hold 
for phonetic segments. A phone that has two dif- 
ferent places of articulation, such as labio-velar [w], 
can be close to two phones that are distant from each 
other, such as labial [b] and velar [g]. 

In my algorithm, below, I employ an alternative 
approach to comparing segments, which is based on 
the notion of similarity. A similarity scoring scheme 
assigns large positive scores to pairs of related seg- 
ments; large negative scores to pairs of dissimilar 
segments; and small negative scores to indels. The 
optimal alignment is the one that maximizes the 
overall score. Under the similarity approach, the 
score obtained by two identical segments does not 
have to be constant. Another important advantage of 
the similarity approach is the possibility of perform- 
ing local alignment of phonetic sequences, which is 
discussed in the following section. 

3 Tree Search  vs. D y n a m i c  P r o g r a m m i n g  

Once an appropriate function for measuring simi- 
larity between pairs of segments has been designed, 
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Feature Phonological Numerical 
name term value 
Place 

Manner 

High 

Back 

[bilabial] 
[labiodental] 
[dental] 
[alveolar] 
[retroflex] 
[palato-alveolar] 
[palatal] 
[velar] 
[uvular] 
[pharyngeal] 
[glottal] 
[stop] 
[affricate] 
[fricative] 
[approximant] 
[high vowel] 
[mid vowel] 
[low vowel] 
[high] 
[mid] 
[low] 
[front] 
[central] 
[back] 

1.0 
0.95 
0.9 

0.85 
0.8 

0.75 
0.7 
0.6 
0.5 
0.3 
0.1 
1.0 
0.9 
0.8 
0.6 
0.4 
0.2 
0.0 
1.0 
0.5 
0.0 
1.0 
0.5 
0.0 

Table 3: Multivalued features and their values. 

we need an algorithm for finding the optimal align- 
ment of phonetic sequences. While the DP algo- 
rithm, which operates in quadratic time, seems to 
be optimal for the task, both Somers and Covington 
opt for exhaustive search strategies. In my opinion, 
this is unwarranted. 

Somers's algorithm is unusual because the se- 
lected alignment is not necessarily the one that 
minimizes the sum of distances between individ- 
ual segments. Instead, it recursively selects the 
most similar segments, or "anchor points", in the 
sequences being compared. Such an approach has 
a serious flaw. Suppose that the sequences to be 
aligned are tewos and divut. Even though the corre- 
sponding segments are slightly different, the align- 
ment is straightforward. However, an algorithm that 
looks for the best matching segments first, will er- 
roneously align the two t's. Because of its recursive 
nature, the algorithm has no chance of recovering 
from such an error. 4 

4The criticism applies regardless of the method of choosing 
the best matching segments (see also Section 5). 

Syllabic 5 Place 40 
Voice 10 Nasal 10 
Lateral 10 Aspirated 5 
High 5 Back 5 
Manner 50 Retroflex 10 
Long 1 Round 5 

Table 4: Features used in ALINE and their salience 
settings. 

Covington, who uses a straightforward depth-first 
search to find the optimal alignment, provides the 
following arguments for eschewing the DP algo- 
rithm. 

First, the strings being aligned are rel- 
atively short, so the efficiency of dy- 
namic programming on long strings is not 
needed. Second, dynamic programming 
normally gives only one alignment for 
each pair of strings, but comparative re- 
construction may need the n best alter- 
natives, or all that meet some criterion. 
Third, the tree search algorithm lends it- 
self to modification for special handling 
of metathesis or assimilation. 5 (Coving- 
ton, 1996) 

The efficiency of the algorithm might not be rel- 
evant in the simple case of comparing two words, 
but if the algorithm is to be of practical use, it will 
have to operate on large bilingual wordlists. More- 
over, combining the alignment algorithm with some 
sort of strategy for identifying cognates on the basis 
of phonetic similarity is likely to require comparing 
thousands of words against one another. Having a 
polynomially bound algorithm in the core of such a 
system is crucial. In any case, since the DP algo- 
rithm involves neither significantly larger overhead 
nor greater programming effort, there is no reason 
to avoid using it even for relatively small data sets. 

The DP algorithm is also sufficiently flexible to 
accommodate most of the required extensions with- 
out compromising its polynomial complexity. A 
simple modification will produce all alignments that 
are within e of the optimal distance (Myers, 1995). 
By applying methods from the operations research 
literature (Fox, 1973), the algorithm can be adapted 
to deliver the n best solutions. Moreover, the basic 
set of editing operations (substitutions and indels) 

5Covington does not elaborate on the nature of the modifi- 
cations. 
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can be extended to include both transpositions of ad- 
jacent segments (metathesis) (Lowrance and Wag- 
ner, 1975) and compressions and expansions (Oom- 
men, 1995). Other extensions of the DP algorithm 
that are applicable to the problem of phonetic align- 
ment include affine gap scores and local compari- 
son. 

The motivation for generalized gap scores arises 
from the fact that in diachronic phonology not only 
individual segments but also entire morphemes and 
syllables are sometimes deleted. In order to take 
this fact into account, the penalty for a gap can be 
calculated as a function of its length, rather than as 
a simple sum of individual deletions. One solution 
is to use an affine function of the form gap(x) = 
r + sx, where r is the penalty for the introduction of a 
gap, and s is the penalty for each symbol in the gap. 
Gotoh (1982) describes a method for incorporating 
affine gap scores into the DP alignment algorithm. 
Incidentally, Covington's penalties for indels can be 
expressed by an affine gap function with r -- 10 and 
s =  40. 

Local comparison (Smith and Waterman, 1981) 
is made possible by using both positive and neg- 
ative similarity scores. In local, as opposed to 
global, comparison, only similar subsequences are 
matched, rather than entire sequences. This often 
has the beneficial effect of separating inflectional 
and derivational affixes from the roots. Such affixes 
tend to make finding the proper alignment more dif- 
ficult. It would be unreasonable to expect affixes 
to be stripped before applying the algorithm to the 
data, because one of the very reasons to use an au- 
tomatic aligner is to avoid analyzing every word in- 
dividually. 

4 The algorithm 
Many of the ideas discussed in previous sections 
have been incorporated into the new algorithm for 
the alignment of phonetic sequences (ALINE). Sim- 
ilarity rather than distance is used to determine a 
set of best local alignments that fall within E of 
the optimal alignment. 6 The set of operations con- 
tains insertions/deletions, substitutions, and expan- 
sions/compressions. Multivalued features are em- 
ployed to calculate similarity of phonetic segments. 
Affine gaps were found to make little difference 
when local comparison is used and they were subse- 

6Global and serniglobal comparison can also be used. In 
a semiglobal comparison, the leading and trailing indels are 
assigned a score of zero. 

algorithm Alignment 
input: phonetic sequences x and y 
output: alignment of x and y 
define S(i,j) = _oo when i < 0 orj < 0 

for  i +-- 0 to Ixl do 
S(i, 0) ~ 0 

forj ~ 0 to lYl do 
s(o, j) ~ o 

for i +-- 1 to Ix[ do 
for j ~ 1 to lYl do 

S(i, j) ~-- max( 
S(i-  1, j) + Gskip(xi), 
S(i, j--1) + Gskip(Yj), 
S(i-- l, j--1) + Gsub(xi,yj), 
S ( i -  1, j - 2 )  + t~exp (xi, y j -  lYj ), 
S(i-2, j -  1) + t~exp(Xi-lxi,yj), 
0) 

T +-- (1 - e) x maxi,j S(i,j) 

for i +-- 1 to Ix[ do 
for j ~ 1 to [Y[ do 

ff S(i, j) > T then 
Retrieve(i, j, 0) 

Figure 1: The algorithm for computing the align- 
ment of two phonetic sequences. 

quently removed from ALINE. 7 The algorithm has 
been implemented in C++ and will be made avail- 
able in the near future. 

Figure 1 contains the main components of the 
algorithm. First, the DP approach is applied to 
compute the similarity matrix S using the G scor- 
ing functions. The optimal score is the maximum 
entry in the whole matrix. A recursive procedure 
Retrieve (Figure 2) is called on every matrix en- 
try that exceeds the threshold score T. The align- 
ments are retrieved by traversing the matrix until a 
zero entry is encountered. The scoring functions for 
indels, substitutions and expansions are defined in 
Figure 3. Cskip, Csub, and Cexp are the maximum 
scores for indels, substitutions, and expansions, re- 
spectively. Cvwt determines the relative weight of 
consonants and vowels. The default values are Cskip 
= -10,  Csub = 35, Cexp = 45 and Cvwt = 10. The dif f  
function returns the difference between segments p 
and q for a given feature f .  Set Rv contains fea- 
tures relevant for comparing two vowels: Syllabic, 
Nasal, Retroflex, High, Back, Round, and Long. Set 

7They may be necessary, however, when dealing with lan- 
guages that are rich in infixes. 
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procedure Retrieve(i, j, s ) 

if S(i, j) = 0 then 
print(Out) 
print("alignment score is s") 

else 
if S(i- l, j -1 )  + Gsub(xi,Yj) + s ~ Tthen 

push(Out, "align Xi with yj") 
Retrieve(i- 1, j -  1, s + Osub(Xi ,y j)) 
pop(Out) 

if S(i,j-1) + (Iskip(yj) + S >_ Tthen 
push(Out, "align null with yj") 
Retrieve(i, j -1 ,  s + Gskip(yj) ) 
pop(Out) 

if S(i- 1, j -  2) + CSexp (xi, y j -  lYj) + s _> T then 
push(Out, "align xi with Yj-lYj") 
Retrieve(i- 1, j -2 ,  s + Oexp(Xi,Yj-lYj)) 
pop(Out) 

if S( i - l , j )  + (~skip(Xj) -I- s ]> Tthen  
push(Out, "align xi with null") 
Retrieve(i- 1, j, s + t~skip(Xj)) 
pop(Out) 

if S( i -2 , j -1)  + Oexp(yj,xi-ixi) + s > Tthen 
push(Out, "align xixi_ 1 with yj") 
Retrieve(i-2, j -  1, s + Gexp(yj,xi-lXi)) 
pop(Out) 

Figure 2: The procedure for retrieving alignments 
from the similarity matrix. 

Rc contains features for comparing other segments: 
Syllabic, Manner, Voice, Nasal, Retroflex, Lateral, 
Aspirated, and Place. When dealing with double- 
articulation consonantal segments, only the nearest 
places of articulation are used. For a more detailed 
description of the algorithm see (Kondrak, 1999). 

ALINE represents phonetic segments as vectors 
of feature values. Table 4 shows the features that 
are currently used by ALINE. Feature values are 
encoded as floating-point numbers in the range 
[0.0, 1.0]. The numerical values of four principal 
features are listed in Table 3. The numbers are 
based on the measurements performed by Lade- 
foged (1995). The remaining features have exactly 
two possible values, 0.0 and 1.0. A special fea- 
ture 'Double', which has the same values as 'Place', 
indicates the second place of articulation. Thanks 
to its continuous nature, the system of features and 
their values can easily be adjusted and augmented. 

5 E v a l u a t i o n  

The best alignments are obtained when local com- 
parison is used. For example, when aligning En- 

o,k,'dp) 

ffsub (P, q) 

Gexp (p, q l q 2 )  

where 

V(p) 

= Cskip 

= C s u b - ~ ( p , q ) - V ( p ) - V ( q )  

= Cexp-8(p, q l ) - ~ ( p ,  q2 ) -  
V(p) - max(V(ql), V(q2)) 

0 ifp is a consonant 
= Cvwl otherwise 

~(P,q) 

where 

R 

= ~ diff(p, q, f )  x salience(f) 
fER 

Rc if p or q is a consonant 
= Re otherwise 

Figure 3: Scoring functions. 

glish grass with Latin gramen, it is importa~nt to 
match only the first three segments in each word; 
the remaining segments are unrelated. ALINE obvi- 
ously does not know the particular etymologies, but 
it can make a guess because [s] and [m] are not very 
similar phonetically. Only local alignment is able to 
distinguish between the essential and non-essential 
correspondences in this case (Table 5). 

The operations of compression and expansion 
prove to be very useful in the case of complex cor- 
respondences. For example, in the alignment of 
Latin factum with Spanish hecho, the affricate [if] 
should be linked with both [k] and [t] rather than 
with just one of them, because it originates from the 
merger of the two consonants. Note that taking a se- 

g r ~e s 
g r ~ m e n 

II g r s II 
II g r a m II e n  

II g r II s 
II g r a II men 

Table 5: Three alignments of English grass and 
Latin gramen obtained with global, semiglobal, and 
local comparison. The double bars delimit the 
aligned subsequences. 
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Covington ' s alignments ALINE' s alignments 

three : tr~s 0 r i y II 
t r ~ s II 

0 r iy II 
t r ~ II 

blow : flare b l - - o w II 
f 1 a r e - II 

b l o II w 
f 1 fi II re  

full : pl~nus f - - u 1 II 
p 1 ~ n u s II 

f u 1 II 
p 1 II ~nus 

fish : piscis f - - i ~ II 
p i s k i s ]l 

f i ~ II 
p i s II kis 

I :  ego a y II a y  II 
e g o - II e II go 

tooth : dentis - t u w 0 II t u w  0 

d e n t i - s den II t i s 

Table 6: Examples of alignments of English and Latin cognates. 

quence of substitution and deletion as compression 
is unsatisfactory because it cannot be distinguished 
from an actual sequence of substitution and dele- 
tion. ALINE posits this operation particularly fre- 
quently in cases of diphthongization of vowels (see 
the alignments in Table 6). 

Covington's data set of 82 cognates provides a 
convenient test for the algorithm. His English/Latin 
set is particularly interesting, because these two 
languages are not closely related. Some of the 
alignments produced by Covington's algorithm and 
ALINE are shown in Table 6. ALINE accurately 
discards inflectional affixes in piscis and flare. In 
fish/piscis, Covington's aligner produces four alter- 
native alignments, while ALINE selects the cor- 
rect one. Both algorithms are technically wrong 
on tooth/dentis, but this is hardly an error consid- 
ering that only the information contained in the 
phonetic string is available to the aligners. On 
Covington's Spanish/French data, ALINE does not 
make any mistakes. Unlike Covington's aligner, 
it properly aligns [1] in arbol with the second [r] 
in arbre. On his English/German data, it selects 
the correct alignment in those cases where Coving- 
ton's aligner produces two alternatives. In the fi- 
nal, mixed set, ALINE makes a single mistake in 
daughter/thugat~r, in which it posits a dropped pre- 
fix rather than a syncopated syllable; in all other 
cases, it is fight on target. Overall, ALINE clearly 

performs better than Covington's aligner. 
Somers (1999) tests one version of his algo- 

rithm, CAT, on the same set of cognates. CAT em- 
ploys binary, rather than multivalued, features. An- 
other important characteristic is that it pre-aligns 
the stressed segments in both sequences. Since 
CAT distinguishes between individual consonants, 
in some cases it produces more accurate alignments 
than Covington's aligner. However, because of its 
pre-alignment strategy, it is guaranteed to produce 
wrong alignments in all cases when the stress has 
moved in one of the cognates. For example, in 
the Spanish/French pair cabeza/cap, it aligns [p] 
with [0] rather than [b] and falls to align the two 
[a]'s. The problem is even more acute for closely 
related languages that have different stress rules. 8 
In contrast, ALINE does not even consider stress, 
which, in the context of diachronic phonology, is 
too volatile to depend on. Except for the single case 
of daughter/thugat~r, ALINE produces better align- 
ments than Somers's algorithm. 

6 F u t u r e  D i r e c t i o n s  

The goal of my current research is to combine the 
new alignment algorithm with a cognate identifica- 
tion procedure, The alignment of cognates is possi- 

8For example, stress regularly falls on the initial syllable 
in Czech and on the penultimate syllable in Polish, while in 
Russian it can fall anywhere in the word. 
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ble only after the pairs of words that are suspected 
of being cognate have been identified. Identification 
of cognates is, however, an even more difficult task 
than the alignment itself. Moreover, it is hardly fea- 
sible without some kind of pre-alignment between 
candidate lexemes. A high alignment score of two 
words should indicate whether they are related. An 
integrated cognate identification algorithm would 
take as input unordered wordlists from two or more 
related languages, and produce a list of aligned cog- 
nate pairs as output. Such an algorithm would be a 
step towards developing a fully automated language 
reconstruction system. 
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