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A b s t r a c t  

This paper demonstrates that  machine learning is 
a suitable approach for rapid parser development. 
From 1000 newly treebanked Korean sentences we 
generate a deterministic shift-reduce parser. The 
quality of the treebank, particularly crucial given its 
small size, is supported by a consistency checker. 

1 I n t r o d u c t i o n  

Given the enormous complexity of natural language, 
parsing is hard enough as it is, but  often unforeseen 
events like the crises in Bosnia or East-Timor create 
a sudden demand for parsers and machine transla- 
tion systems for languages that  have not benefited 
from major attention of the computat ional  linguis- 
tics community up to that  point. 

Good machine translation relies strongly on the 
context of the words to be translated, a context that 
often goes well beyond neighboring surface words. 
Often basic relationships, like that  between a verb 
and its direct object, provide crucial support for 
translation. Such relationships are usually provided 
by parsers. 

The NLP resources for a language of sudden inter- 
national interest are typically quite limited. There is 
probably a dictionary, but most likely no treebank. 
Maybe basic tools for morphological analysis, but  
probably no semantic ontology. 

This paper reports on the rapid development of 
a parser based on very limited resources. We show 
that  by building a small treebank of only a thousand 
sentences, we could develop a good basic parser us- 
ing machine learning within only three months. For 
the language we chose, Korean, a number of research 
groups have been working on parsing and/or  ma- 
chine translation in recent years (Yoon, 1997; Seo, 
1998; Lee, 1997), but advanced resources have not 
been made publicly available, and we have not used 
any, thereby so-to-speak at least simulating a low 
density language scenario. 

2 K o r e a n  
Like Japanese, Korean is a head-final agglutinative 
language. It is written in a phonetic alphabet called 

hangul, in which each two-byte character represents 
one syllable. While our parser operates on the orig- 
inal Korean hangul, this paper presents examples 
in a romanized transcription. In sentence (1) for 
example, the verb is preceded by a number of so- 
called eojeols (equivalent to bunsetsus in Japanese) 
like "chaeg-eul", which are typically composed of a 
content part  ("chaeg" = book) and a postposition, 
which often corresponds to a preposition in English, 
but  is also used as a marker of topic, subject or ob- 
ject ("eul"). 

,_ ,_ _ I-~ °] ;gl  7 
Na-neun eo-je geu chaeg-eul sass-da. 
ITOPIC yesterday this bookoBJ bought. (1) 
I bought this book yesterday. 

Our parser produces a tree describing the structure 
of a given sentence, including syntactic and semantic 
roles, as well as additional information such as tense. 
For example, the parse tree for sentence (1) is shown 
below: 

[1] na-netm eo-je geu chaeg-eul sass-da.  [S] 
(SUB J) [2] na-neun [NP] 

(HEAD) [3] na [KEG-NOUN] 
(PARTICLE) [4] neun [DUPLICATE-PRT] 

(TIME) [5] eo-je [REG-ADVERB] 
(HEAD) [6] eo-je [REG-ADVERB] 

(OBJ) [7] geu chaeg-eul [NP] 
(MOD) [8] geu [DEMONSTR-ADNOMINAL] 

(HEAD) [9] geu [DEMONSTR-ADNOMINAL] 
(HEAD) [I0] chaeg-eul [NP] 

(HEAD) [II] chae E [KEG-NOUN] 
(PARTICLE) [12] eul [OBJ-CASE-PRT] 

(HEAD) [13] sass-da. [VERB; PAST-TENSE] 
(HEAD) [14] sa [VERB-STEM] 
(SUFFIX) [15] eoss [INTEEMED-SUF-VERB] 
(SUFFIX) [16] da [CONNECTIVE-SUF-VERB] 
(DUMMY) [17] . [PERIOD] 

Figure 1: Parse tree for sentence 1 (simplified) 

For preprocessing, we use a segmenter and mor- 
phological analyzer, KMA, and a tagger, KTAG, 
both provided by the research group of Prof. Rim of 
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Korea University. KMA, which comes with a built- 
in Korean lexicon, segments Korean text into eojeols 
and provides a set of possible sub-segmentations and 
morphological analyses. KTAG then tries to select 
the most  likely such interpretation. Our parser is 
initialized with the result of KMA, preserving all 
interpretations, but marking KTAG' s  choice as the 
top alternative. 

3 T r e e b a n k i n g  E f f o r t  

The additional resources used to train and test a 
parser for Korean, which we will describe in more 
detail in the next section, were (1) a 1187 sentence 
treebank, (2) a set of 133 context features, and (3) 
background knowledge in form of an ' is-a' ontology 
with about  1000 entries. These resources were built 
by a team consisting of the principal researcher and 
two graduate students, each contributing about  3 
months.  

3.1 T r e e b a n k  

The treebank sentences are taken from the Korean 
newspaper Chosun, two-thirds from 1994 and the re- 
mainder from 1999. Sentences represent continuous 
articles with no sentences skipped for length or any 
other reason. The average sentence length is 21.0 
words. 

3 . 2  F e a t u r e  S e t  

The feature set describes the context of a partially 
parsed state, including syntactic features like the 
part  of speech of the constituent at the f ron t / top  
of the input list (as sketched in figure 2) or whether 
the second constituent on the parse stack ends in a 
comma,  as well as semantic features like whether or 
not a constituent is a t ime expression or contains 
a location particle. The feature set can accommo- 
date any type of feature as long as it is computable,  
and can thus easily integrate different types of back- 
ground knowledge. 

3.3 B a c k g r o u n d  K n o w l e d g e  

The features are supported by background knowl- 
edge in the form of an ontology, which for example 
has a t ime-particle concept with nine sub-concepts 
(accounting for 9 of the 1000 entries mentioned 
above). Most of the background knowledge groups 
concepts like particles, suffixes, units (e.g. for lengths 
or currencies), temporal  adverbs - semantic classes 
tha t  are not covered by par t  of speech information 
of the lexicon, yet provide valuable clues for parsing. 

3.4 T i m e  E f fo r t  

The first graduate student, a native Korean and 
linguistics major ,  hired for 11 weeks, spent about  
2 weeks getting trained, 6 weeks on building two- 
thirds of the treebank, 2 weeks providing most  back- 
ground knowledge entries and 1 week helping to 

< parse stack 
-3 -2 

~ "bought" 

synt: verb 

top of 
stack 

-1 

(R 2 TO S-VP AS PRED OBJ) 

front/top of 
list 
<:input list> 

1 
i 

, "today" I 

synt: adv I 

"reduce the 2 top elements of the parse stack 
to a frame with syntax 'vp' 
and roles 'pred' and 'obj'" 

"bought" 

synt: verb 

"bought a book" 

synt: vp 
sub: (pred) (obj) 

"today" 

synt: adv 

Figure 2: A typical parse action (simplified). 
Boxes represent frames. The asterisk (*) represents the 
current parse position. Optionally, parse actions can 
have additional arguments, like target syntactic or se- 
mantic classes to overwrite any default. Elements on the 
input list are identified by positive integers, elements on 
the parse stack by negative integers. The feature 'Synt of 
-1' for example refers to the (main) syntactic category of 
the top stack element. Before the reduce operation, the 
feature 'Synt of-1 '  would evaluate to np (for "a book"), 
after the operation to vp (for "bought a book"). The in- 
put list is initialized with the morphologically analyzed 
words, possibly still ambiguous. After a sequence of shift 
(from input list to parse stack) and reduce (on the parse 
stack) operations, the parser eventually ends up with a 
single element on the parse stack, which is then returned 
as the parse tree. 

identify useful features. The other graduate student, 
a native Korean and computer  science major,  in- 
stalled Korean tools including a terminal for hangul 
and the above mentioned KMA and KTAG, wrote a 
number of scripts tying all tools together, made some 
tool improvements,  built one-third of the treebank 
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and also contributed to the feature set. The prin- 
cipal researcher, who does not speak Korean, con- 
tributed about 3 person months, coordinating the 
project, training the graduate students, writing tree- 
bank consistency checking rules (see section 6), mak- 
ing extensions to the tree-to-parse-action-sequence 
module (see section 4.1) and contributing to the 
background knowledge and feature set. 

4 L e a r n i n g  t o  P a r s e  

We base our training on the machine learning based 
approach of (Hermjakob k: Mooney, 1997), allow- 
ing however unrestricted text and deriving the parse 
action sequences required for training from a tree- 
bank. The basic mechanism for parsing text into 
a shallow semantic representation is a shift-reduce 
type parser (Marcus, 1980) that  breaks parsing into 
an ordered sequence of small and manageable parse 
actions. Figure 2 shows a typical reduce action. The 
key task of machine learning then is to learn to pre- 
dict which parse action to perform next. 

Two key advantages of this type of deterministic 
parsing are that  its linear run-time complexity with 
respect to sentence length makes the parser very 
fast, and that  the parser is very robust in that  it 
produces a parse tree for every input sentence. 

Figure 3 shows the overall architecture of parser 
training. From the treebank, we first automatically 
generate a parse action sequence. Then, for every 
step in the parse action sequence, typically several 
dozens per sentence, we automatically compute the 
value for every feature in the feature set, add on the 
parse action as the proper classification of the parse 
action example, and then feed these examples into a 
machine learning program, for which we use an ex- 
tension of decision trees (Quinlan, 1986; Hermjakob 
& Mooney, 1997). 

We built our parser incrementally. Starting with a 
small set of syntactic features that  are useful across 
all languages, early training and testing runs reveal 
machine learning conflict sets and parsing errors that  
point to additionally required features and possibly 
also additional background knowledge. A conflict 
set is a set of training examples that  have identical 
values for all features, yet differ in their classification 
(= parse action). Machine learning can therefore not 
possibly learn how to handle all examples correctly. 
This is typically resolved by adding an additional 
feature that  differentiates between the examples in 
a linguistically relevant way. 

Even treebanking benefits from an incremental ap- 
proach. Trained on more and more sentences, and 
at the same time with also more and more features, 
parser quality improves, so that the parser as a tree- 
banking tool has to be corrected less and less fre- 
quently, thereby accelerating the treebanking pro- 
cess. 

Knowledge Base ("ontology") 
¢ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

temporal-concept 

~ - t h e - y e a r :  
i day-of-the-week ' 

Monday ... Sunday 

syntactic-element 

verb noun adverb 

count-noun mass-noun 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I 

i 

Feature set: ', l Svnt Svnt 
of-2 of- 1 S~n~ 

Treebank 

computer science 

~ parse action sequence 
generator (automatic) 

Parse action sequence: 

Shift noun 

Shift noun 

Reduce 2 as mod head 

Done 

~ parse example generator (automatic) 

Parse action examples: 

[Unavail Unavail Noun [ Shift noun [ 

[ Unavaii Noun Noun [ Shift noun I 

[Noun Noun Unavail I Reduce 2 as mod head I 

[Unavaii Noun Unavail [Done  I 

decision structure builder (automatic) 

Parse decision structure: 

Synt of 1 N ~ a i l  
Shi~t noun / / ~ n t  of-2 

Done Reduce 2 as rood head 

Figure 3: Derivation of the parser from a treebank 
and a feature set. The resulting parser has the form 
of a decision structure, an extension of decision trees. 
Given a seen or unseen sentence in form of a list 
of words, the decision structure keeps selecting the 
next parse action until a single parse tree covering 
the entire sentence has been built. 
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word level constituent 
labeled precision 

+ i/SUFFIX-NOUN + I/OBJ-CASE-PRT 

+ i/NUMERAL + I/OBJ-CASE-PRT 

+ il/UNIT-NOUN 

+ il/REGULAR-NOUN 

86.0%- 

The analyzer divides '31i1' into groups with varying 
number of sub-components  with different parts  of 
speech. When shifting in an element, the parser has 
to decide which one to pick, the third one in this 
case, using context of course. 

The module generating parse action sequences 
from a tree needs special split and merge operations 
for cases where the correct segmentation is not of- 
fered as a choice at all. To make things a little ugly, 
these splits can not only occur in the middle of a leaf 
constituent, but even in the middle of a character 
that  might have been contracted from two charac- 
ters, each with its own meaning. 

5 C h o s u n  N e w s p a p e r  E x p e r i m e n t s  

Table 1 presents evaluation results with the number  
of training sentences varying from 32 to 1024 and 
with the remaining 163 sentences of the treebank 
used for testing. 
Precision: 

number of correct constituents in system parse 
number  of constituents in system parse 

Reca l l :  
number  of correct constituents in system parse 

number  of constituents in logged parse 

C r o s s i n g  b r a c k e t s :  number of constituents 
which violate constituent boundaries with a con- 
stituent in the logged parse. L a b e l e d  preci- 
sion/recall measures not only structural correctness, 
but also the correctness of the syntactic label. C o r -  
r e c t  o p e r a t i o n s  measures the number  of correct 
operations during a parse that  is continuously cor- 
rected based on the logged sequence; it measures 
the core machine learning algorithm performance in 
isolation. A sentence has a correct o p e r a t i n g  se- 
q u e n c e ,  if the system fully predicts the logged parse 
action sequence, and a correct s t r u c t u r e  a n d  la-  
b e l i n g ,  if the structure and syntactic labeling of the 
final system parse of a sentence is 100% correct, re- 
gardless of the operations leading to it. 

Figures 4 and 5 plot the learning curves for two 
key metrics. While both curves are clearly heading 

z KMA actually produces 10 different alternatives in this 
case, of which only four are shown here. 

87.0%- 

85.0%- 

84.0%- 

I t I I I i 
32 64 128 256 512 1024 

number of  training sentences 

2.1 

2.0 

1.9 

1.8 

1.7 

1.6 

1.5 

31/NUMERAL 
31/NUMERAL 
31/NUMERAL 
31/NUMERAL 

Figure 4: Learning curve for labeled precision corre- 
sponding to table 1 

crossings brackets per  sentence 

4.1 S p e c i a l  A d a p t a t i o n  fo r  K o r e a n  

The segmenter and morphological analyzer KMA re- 
turns a list of alternatives for each eojeol. However, 
the alternatives are not atomic but rather two-level 
constituents, or mini-trees. Consider for example 
the following fou r  1 alternatives for the eojeol '31il '  
(the 31st day of a month):  

32 64 128 256 512 1024 

number  of  training sentences 

Figure 5: Learning curve for crossing brackets per 
sentence corresponding to table 1 

in the right direction, up for precision, and down 
for crossing brackets, their appearance is somewhat  
jagged. For smaller da ta  sets like in our case, this 
can often be avoided by running an n-fold cross val- 
idation test. However, we decided not to do so, 
because many training sentences were also used for 
feature set and background knowledge development 
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Training sentences 32 64 128 256 512 1024 
Precision 
Recall 
Labeled precision 
Labeled recall 
Tagging accuracy 
Crossings/sentence 
0 crossings 
< 1 crossing 
< 2 crossings 
< 3 crossings 
< 4 crossings 
Correct operations 
Operation Sequence 
Structure&Label 

88.6% 
87.3% 
84.1% 
81.2% 
94.3% 

1.97 
27.6% 
56.4% 
70.6% 
81.0% 
88.3% 
63.0% 
2.5% 
5.5% 

88.1% 
87.4% 
83.9% 
81.9% 
92.9% 
2.00 

35.0% 
58.9% 
72.4% 
81.6% 
84.0% 
68.3% 
6.1% 
12.9% 

90.0% 
89.2% 
85.8% 
83.6% 
93.9% 
1.72 

38.7% 
63.2% 
73.0% 
82.2% 
91.4% 
71.5% 
8.O% 
11.7% 

89.6% 
89.1% 
85.6% 
83.6% 
93.4% 
1.79 

40.5% 
59.5% 
71.8% 
81.6% 
89.0% 
73.4% 
8.6% 
16.o% 

90.7% 
89.6% 
86.7% 
84.7% 
94.0% 

1.69 
43.6% 
64.4% 
73.0% 
82.2% 
90.8% 
75.0% 
11.0% 
19.0% 

91 .O% 
89.8% 
86.9% 
85.O% 
94.2% 

1.63 
42.9% 
62.6% 
74.2% 
83.4% 
89.6% 
76.3% 
7.4% 
16.0% 

Table 1: Evaluation results with varying number of training sentences 

as well as for intermediate inspection, and therefore 
might have unduly influenced the evaluation. 

5.1 Tagging accuracy 

A particularly striking number is the tagging accu- 
racy, 94.2%, which is dramatically below the equiv- 
alent 98% to 99% range for a good English or 
Japanese parser. In a Korean sentence, only larger 
constituents that typically span several words are 
separated by spaces, and even then not consistently, 
so that segmentation errors are a major source for 
tagging problems (as it is to some degree however 
also for Japanese2). We found that the segmen- 
tation part of KMA sometimes still struggles with 
relatively simple issues like punctuation, proposing 
for example words that contain a parenthesis in the 
middle of standard alphabetic characters. We have 
corrected some of these problems by pre- and post- 
processing the results of KMA, but believe that there 
is still a significant potential for further improve- 
ment. 

In order to assess the impact of the relatively low 
tagging accuracy, we conducted experiments that 
simulated a perfect tagger by initializing the parser 
with the correctly segmented, morphologically ana- 
lyzed and tagged sentence according to the treebank. 

By construction, the tagging accuracy in table 2 
rises to 100%. Since the segmenter/tagger returns 
not just atomic but rather two-level constituents, 
the precision and recall values benefit particularly 
strongly, possibly inflating the improvements for 
these metrics, but other metrics like crossing brack- 
ets per sentence show substantial gains as well. Thus 
we believe that refined pre-parsing tools, as they are 

2Whi l e  J a p a n e s e  does  no t  use  spaces  a t  all, scr ipt  changes  
be tween  kanji, hiragana, a n d  katakana provide  a lot of  seg- 
m e n t a t i o n  gu idance .  M o d e r n  Korean ,  however ,  a lmos t  exclu-  
sively uses  only  a single phone t i c  scr ip t .  

Segmentation/ Regular Simulating 
Tagging seg/tag as perfect 
( "seg/tag" ) implemented seg/tag 
Labeled precision 
Labeled recall 
Tagging accuracy 
Crossings/sentence 
0 crossings 
< 2 crossings 
Structure&Label 

86.9% 
85 .O% 
94.2% 
1.63 

42.9% 
74.2% 
16.0% 

93.4% 
92.9% 
100.0% 

1.13 
48.5% 
85.3% 
28.8% 

Table 2: Impact of segmentation/tagging errors 

in the process of becoming available for Korean, will 
greatly improve parsing accuracy. 

However, for true low density languages, such high 
quality preprocessors are probably not available so 
that our experimental scenario might be more re- 
alistic for those conditions. On the other hand, 
some low density languages like for example Tetun, 
the principal indigenous language of East Timor, 
are based on the Latin alphabet, separate words by 
spaces and have relatively little inflection, and there- 
fore make morphological analysis and segmentation 
relatively simple. 

6 T r e e b a n k  C o n s i s t e n c y  C h e c k i n g  

It is difficult to maintain a high treebank quality. 
When training on a small treebank, this is particu- 
larly important, because there is not enough data to 
allow generous pruning. 

Treebanking is done by humans and humans err. 
Even with annotation guidelines there are often ad- 
ditional inconsistencies when there are several an- 
notators. In the Penn Treebank (Marcus, 1993) for 
example, the word ago as in 'two years ago', is tagged 
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414 times as an adverb and 150 times as a preposi- 
tion. 

In many treebanking efforts, basic taggers and 
parsers suggest parts of speech and tree structures 
that  can be accepted or corrected, typically speed- 
ing up the treebanking effort considerably. How- 
ever, incorrect defaults can easily slip through, leav- 
ing blatant inconsistencies like the one where the 
constituent ' that '  as in ' the dog that  bit her' is tree- 
banked as a noun phrase containing a conjunction 
(as opposed to a pronoun). 

From the very beginning of treebanking, we have 
therefore passed all trees to be added to the tree- 
bank through a consistency checker that  looks for 
any suspicious patterns in the new tree. For every 
type of phrase, the consistency checker draws on a 
list of acceptable patterns in a BNF style notation. 
While this consistency checking certainly does not 
guarantee to find all errors, and can produce false 
alarms when encountering rare but legitimate con- 
structions, we have found it a very useful tool to 
maintain treebank quality from the very beginning, 
easily offsetting the about three man days that it 
took to adapt the consistency checker to Korean. 

For a number of typical errors, we extended the 
checker to automatically correct errors for which this 
could be done safely, or, alternatively, suggest a 
likely correction for errors and prompt  for confir- 
mation/correction by the treebanker. 

7 C o n c l u s i o n s  

Comparisons with related work are unfortunately 
very problematic, because the corpora are differ- 
ent and are sometimes not even described in other 
work. In most cases Korean research groups also use 
other evaluation metrics, particularly dependency 
accuracy, which is often used in dependency struc- 
ture approaches. Training on about 40,000 sentences 
(Collins, 1997) achieves a crossing brackets rate of 
1.07, a better value than our 1.63 value for regular 
parsing or the 1.13 value assuming perfect segmen- 
tation/tagging, but even for similar text types, com- 
parisons across languages are of course problematic. 

It is clear to us that with more training sentences, 
and with more features and background knowledge 
to better leverage the increased number of train- 
ing sentences, accuracy rates can still be improved 
significantly. But we believe that  the reduction of 
parser development time from two years or more 
down to three months is in many cases already very 
valuable, even if the accuracy has not 'maxed out '  
yet. And given the experience we have gained from 
this project, we hope this research to be only a first 
step to an even steeper development time reduction. 
A particularly promising research direction for this 
is to harness knowledge and training resources across 
languages. 
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