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Abstract 

We present an algorithm and a tool for 
automatically revising grammars for natural 
language processing (NLP) systems to 
disallow specifically identified sentences or 
sets of sentences. We also outline an 
approach for automatically revising attribute 
value grammars using counter-examples. 
Developing grammars for NLP systems that 
are both general enough to accept most 
sentences about a domain, but constrained 
enough to disallow other sentences is very 
tedious. Our approach of revising grammars 
automatically using counter-examples 
greatly simplifies the development and 
revision of tightly constrained grammars. 
We have successfully used our tool to 
constrain over-generalizing grammars of 
speech understanding systems and obtained 
higher recognition accuracy. 

1 Introduction 

Natural language processing systems often 
constrain the set of "utterances" from a user 
(spoken, typed in, etc.) to narrow down the 
possible syntactic and semantic resolutions of 
the utterance and reduce the number of 
misrecognitions and/or misunderstandings by 
the system. Such constraints on the allowed 
syntax and the inferred semantics are often 

expressed in the form of a "grammar "l ,  a set of 

Throughout this document, by using the word 
"grammar", we refer to a Context-Free Grammar that 
consists of a finite set of non-terminals, a finite set of 
terminals, a unique non-terminal called the start 
symbol, and a set of production rules of the form A-> 
a, where A is a non-terminal and a is a string of 
terminal or non-terminal symbols. The 'language' 

rules specifying the set of allowed utterances 
and possibly also specifying the semantics 
associated with these utterances. For instance, 
grammars are commonly used in speech 
understanding systems to specify both the set of 
allowed sentences and to specify "tags" to 
extract semantic entities (e.g. the "amount" of  
money). 

Constraining the number of sentences accepted 
by a grammar is essential for reducing 
misinterpretations of user queries by an NLP 
system. For instance, for speech understanding 
systems, if the grammar accepts a large number 
of sentences, then the likelihood of recognizing 
uttered sentences as random, irrelevant, or 
undesirable sentences is increased. For 
transaction processing systems, misrecognized 
words can lead to unintended transactions being 
processed. An effective constraining grammar 
can reduce transactional errors by limiting the 
number of sentence level errors. The problem of 
over-generalization of speech grammars and 
related issues is well discussed by Seneff (1992). 

Thus, speech grammars must often balance the 
conflicting requirements of 

• accepting a wide variety of sentences to 
increase flexibility, and 

• accepting a small number of  sentences 
to increase system accuracy and 
robustness. 

Developing tight grammars which trade-off 
these conflicting constraints is a tedious and 

accepted by a grammar is the set of all terminal 
strings that can be generated from the start symbol by 
successive application of the production rules. The 
grammar may optionally have semantic interpretation 
rules associated with each production rule (e.g. see 
(Allen 95)). 
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difficult process. Typically, grammars 
overgeneralize and accept too many sentences 
that are irrelevant or undesirable for a given 
application. We call such sentences "counter- 
examples". The problem is usually handled by 
revising the grammar manually to disallow such 
counter-examples. For instance, the sentence 
"give me my last eighteen transactions" may 
need to be excluded from a grammar for a 
speech understanding system, since the words 
"eighteen" and "ATM" are easily confused by 
the speech recogniser. However, "five" and 
"ten" should remain as possible modifiers of 
"transactions". Counter-examples can also be 
sets of  sentences that need to be excluded from a 
grammar (specified by allowing the inclusion of  
non-terminals in counter-examples). For 
example, for a banking application that 
disallows money transfers to online accounts, we 
might wish to exclude the set of  sentences 
"transfer <AMOUNT> dollars to my online 
account" from the grammar, where 
<AMOUNT> is a non-terminal in the grammar 
that maps to all possible ways of specifying 
amounts. 

In this paper, we are proposing techniques for 
automatically revising grammars using counter- 
examples. The grammar developer identifies 
counter-examples from among sentences (or sets 
of sentences) mis-recognized by the speech 
recognizer or from sentences randomly 
generated by a sentence generator using the 
original grammar. The grammar reviser modifies 
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the original grammar to invalidate the counter- 
examples. The revised grammar can be fed back 
to the grammar reviser and whole process can be 

iterated several times until the resulting 
grammar is deemed satisfactory. 

In the next sections, we first describe our 
algorithm for revising grammars to disallow 
counter-examples. We also discuss algorithms to 
make the revised grammar compact using 
minimum description length (MDL) based 
grammar compaction techniques and extensions 
to our basic algorithm to handle grammars with 
recursion. We then present some results of  
applying our grammar reviser tool to constrain 
speech grammars of speech understanding 
systems. Finally, we present an approach for 
revising attribute value grammars using our 
technique and present our conclusions. 

2 Automated Grammar Revision by rule 
modification 

In this section, we describe an algorithm (see 
Figure 1) for revising grammars that directly 
modifies the rules of the grammar to disallow 

counter-examples. For each counter-example 2, 
we generate the parse tree (representation of all 
the grammar rules needed to generate the 
sentence or set of  sentences) and the grammar 
modifier modifies the production rules of  the 
grammar to invalidate the counter-example. This 
process is repeated for each counter-example 
using the revised grammar from the previous 
iteration for generating the parse tree for the 
current counter-example. If a counter-example 
generates multiple parse trees, the above 
algorithm is repeated for each parse tree in turn. 

2.1 Grammar modification algorithm 

We present the grammar modification algorithm 
below. For, we assume that the parse-tree(s) of  
the counter-example contain no recursion (i.e. 
the same production rule does not occur twice in 
any of the parse trees). In section 2.4, we present 
an approach for using the algorithm even when 
the parse-trees contain recursion. Thus, the 
algorithm is applicable for any context-free 
grammar. The grammar modification algorithm 

a Note that a counter-example can be a sentence such 
as "move to operator" or a set of sentences such as 
"transfer <AMOUNT> to online account". The latter 
is specified using non-terminals interspersed with 
words. 
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for modifying the rules of a grammar to disallow 
a counter-example c (identified by a grammar 
developer) using a parse-tree for e proceeds as 
follows : 

1. For each non-terminal <N> in the parse 
tree, except the <<START>> symbol, 

a. Add a rule to define a new non- 
terminal <N'> such that <N'> 
generates all phrases that <N> 
generates except for the phrase 
in the counter-example that <N> 
generates. 

b. Add a rule to define a new non- 
terminal <No> such that <No> 
generates only the phrase(s) in 
the counter-example that <N> 
generates. 

2. Modify the rule that contains the 
<<START>> symbol in the parse tree, 
such that the <<START>> symbol no 
longer generates the given counter- 
example. 

Figure 2 

(a) Original grammar: 

<<START>> : : =  < V >  < N >  < P P >  t 
< V >  < P P >  . 

<PP> ::= "to m <N> . 

<V> : := "move" I "transfer" . 

<N> ::= "checking" I "savings" I 

"money" [ "operator" . 

(b) Parse Tree for "move to operator" 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

<%'> : = =  "move" . ! 

I <PP> ::= "to" <N> . 1 

' <N> : := "operator". I 

............................................................................................................................... i 

We illustrate the algorithm with an example. 
Figure 2(a) shows a simple grammar. Suppose 
the sentence "move to operator" is a counter- 
example for an application. Figure 2(b) shows 
the parse-tree for "move to operator". Since the 
parse tree contains the rule: <V> ::= "move", 
new rules are added to define non-terminals 
<V'> and <Vo>, where <V'> does not generate 
"move" and <Vo> generates only "move". 
Similarly, since the parse tree contains the rule: 

<N>::= "operator", the new rules: <N'>::= 
"checking" I "savings" I "money"; and <No>::= 
"operator", are added. For the non-terminal 
<PP>, the new rules: <PP'>::= "to" <N'>; and 
<PPo>::= "to" <No>, are added. Note that since 
<No> only generates the phrase "operator" 
which is part of the counter-example, <PPo> 
only generates the phrase "to operator" which is 
part of the counter-example. Also, <PP'> 
generates all phrases that <PP> generates except 
for the phrase "to operator". Finally, the rule: 
<<START>>::= <V> <PP> is modified using 
the newly created non-terminals <V'>, <Vo>, 
<PP'> and <PPo> such that the only sentences 
which are accepted by the grammar and begin 
with the phrase "move" do not end with the 
phrase "to operator", and also, the only 
sentences which are accepted by the grammar 
and end with the phrase "to operator" do not 
begin with the phrase "move". Figure 3 shows 
the final modified grammar that accepts all the 
sentences that the grammar in Figure 2(a) 
accepts except for the sentence "move to 

Figure 3 

<<START>> ::= <V> <N> <PP> I 

<V'> <PPo> ] 
<Vo> <PP'> l 

<V'> <PP'> . 

<PP> ::= "tO" <N> . 

<PP'> ::= "tO" <N'> . 

<PPo> ::= "tO" <NO> . 

<V> ::= "move" [ "transfer" . 

<V'> :: = "transfer" . 

<Vo> ::= "move" . 

<N> ::= "checking" I "savings" [ 

"money" I "operator" . 

<N'> ::= "checking" I "savings" l 

• money" . 

<No> ::= "operator" . 

operator". In Figure 3, all the grammar rules that 
are new or modified are shown in bold and 
italics. 

The above algorithm for grammar modification 
has a time complexity of O(m*2 k) rule creation 
(or modification) steps for removing a counter- 
example, where m is the number of  production 
rules in the parse tree of the counter-example 
and k is the largest number of  non-terminals on 
the right hand side of any of these production 
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rules. Since grammars used for real applications 
rarely have more than a handful of non-terminals 
on the right hand side of production rules, this 
complexity is quite manageable. 

2.2 Automated grammar compaction using 
MDL based grammar induction 

As seen in the example described above, the size 
of  the grammar (number of production rules) can 
increase greatly by applying our algorithm 
successively for a number of counter-examples. 
However, we can remedy this by applying 
grammar induction algorithms based on 
minimum description length (MDL) (e.g. 
Grunwald (1996) and Zadrozny (1997)) to 
combine rules and create a compact grammar 
that accepts the same language. 

The MDL principle (Rissanen (1982)) selects 
that description (theory) of data, which 
minimizes the sum of  the length, in bits, of the 
description of the theory, and the length, in bits, 
of data when encoded using the theory. In our 
case, the data is the set of possible word 
combinations and the theory is the grammar that 
specifies it. We are primarily interested in using 
the MDL principle to obtain (select) a compact 
grammar (the theory) from among a set of 
equivalent grammars. Since the set of possible 
word combinations (data) is the same for all 
grammars in consideration, we focus on the 
description length of  the grammars itself, which 
we approximate by using a set of heuristics 
described in step 1 below. 

We use the following modified version of  
Zadrozny's (1997) algorithm to generate a more 
compact grammar from the revised grammar 
using the MDL principle: 

1. Compute the description length of the 
grammar, i.e. the total number of  
symbols needed to specify the grammar, 
where each non-terminal, "::=", and "1"  
are counted as one symbol. 

2. Modify the current grammar by 
concatenating all possible pairs of non- 
terminals, and compute the description 
length of  each such resultant grammar. 
For concatenating <NI> and <N2>, 
introduce the rule <N3>::= <NI> <N2>, 
search all other rules for consecutive 

occurrences of  <NI> and <N2>, and 
replace such occurrences with <N3>. 
Note that this change results in an 
equivalent grammar (that accepts the 
same set of  sentences as the original 
grammar). 

3. Modify the current grammar by merging 
all possible pairs of  non-terminals, and 
compute the description length of each 
such resultant grammar. For merging 
<N4> and <N5>, introduce the rule: 
<N6>::= <N4> [ <N5>, search for pairs 
of rules which differ only in one 
position such that for one of the rules, 
<N4> occurs in that position and the 
other rule, the <N5> occurs in the same 
position. Replace the pair of rules with a 
new rule that is exactly the same as 
either of the pairs of  rules, except for the 
use of  <N6> instead of  <N3> or <N4>. 
Note that this change results in an 
equivalent grammar (that accepts the 
same set of  sentences as the original 
grammar). 

4. Compute a table of description lengths 
of  the grammars obtained by 
concatenating or merging all possible 
pairs of non- terminals of the initial 
grammar, as described above. Select the 
pair of  non-terminals (if any) together 
with the action (concatenate or merge) 
that results in the least description 
length and execute the corresponding 
action. 

5. Iterate steps 2, 3, and 4 until the 
description length does not decrease. 
No further modification is performed if 
the base description length of  the 
grammar is lower than that resulting 
from merging or concatenating any pair 
of non- terminals. 

In variations of  this algorithm, the selection of  
the pairs of  non-terminals to concatenate or 
merge, can be based on; the syntactic categories 
of the corresponding terminals, the semantic 
categories of the corresponding terminals, and 
the frequency of occurrence of the non- 
terminals. 
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Using the algorithm described above in 
conjunction with the algorithm in section 2.1, we 
can obtain a compact grammar that is guaranteed 
to disallow the counter-examples. 

2.3 Results for grammar revision for speech 
understanding systems 

We have built a graphical tool for revising 
grammars for NLP systems based on the 
algorithm described in sections 2.1 and 2.2 
above. The tool takes as input an existing 
grammar and can randomly generate sentences 
accepted by the grammar including non-terminal 
strings and strings containing terminals and non- 
terminals (e.g. both "move to operator" and 
"transfer <AMOUNT> to online account" would 
be generated if they were accepted by the 
grammar). A grammar developer (a human) 
interacts with the tool and either inputs counter- 
examples selected from speech recognition error 
logs or selects counter-examples like the ones 
listed above. The grammar developer can then 
revise the grammar to disallow the counter- 
examples by pressing a button and then reduce 
the size of the resulting grammar using the 
algorithm in section 2.2 by pressing another 
button to obtain a compact grammar that does 
not accept any of  the identified counter- 
examples. Typically, the grammar developer 
repeats the above cycle several times to obtain a 
tightly constrained grammar. 

We have successfully used the tool described 
above to greatly constrain overgeneralizing 
grammars for speech understanding systems that 
we built for telephony banking, stock trading 
and directory assistance (Zadrozny et al, 1998). 
The speech recognition grammars for these 
systems accepted around fifty million sentences 
each. We successfully used the reviser tool to 
constrain these grammars by eliminating 
thousands of sentences and obtained around 20- 
30% improvement in sentence recognition 
accuracy. We conducted two user studies of our 
telephony banking system at different stages of 
development. The user studies were conducted 
eight months apart. During these eight months, 
we used a multi-pronged strategy of constraining 
grammars using the grammar revision 
algorithms described in this paper, improving 
the pronunciation models of some words and 

redesigning the prompts of the system to enable 
fast and easy error recovery by users. The 
combination of all these techniques resulted in 
improving the 'successful transaction in first 
try '3 from 43% to 71°/0, an improvement of 65%. 
The average number of wrong tries (turns of 
conversation) to get a successful answer was 
reduced from 2.1 to 0.5 tries. We did not 
conduct experiments to isolate the contribution 
of each factor towards this improvement in 
system performance. 

It is important to note here that we would 
probably have obtained this improvement in 
recognition accuracy even with a manual 
revision of the grammars. However, the main 
advantage in using our tool is the tremendous 
simplification of the whole process of  revision 
for a grammar developer who now selects 
counter-examples with an interactive tool 
instead of manually revising the grammars. 

2.4 Handling recursion in grammars 

We now describe an extension of  the algorithm 
in section 2.1 that can modify grammars with 
recursion to disallow a finite set of counter- 
examples. The example grammars shown above 
are regular grammars (i.e. equivalent finite state 
automatons exist). For regular grammars (and 
only for regular grammars), an alternative 
approach for eliminating counter-examples 
using standard automata theory is" 

• Compute the finite state automaton 
(FSA) G corresponding to the original 
grammar. 

• Compute the FSA C corresponding to 
the set of counter-examples. 

• Compute C', the complement of C with 
respect to the given alphabet. 

• Compute G', the intersection of G and 
C'. The FSA G' is equivalent to a revised 
grammar which disallows the counter- 
examples. 

3 We measured the number of times the user's 
transactional intent (e.g. checking balance, last five 
transactions etc.) was recognized and acted upon 
correctly by the system in the first try, even when the 
actual utterance may not have been recognized 
correctly word for word. 
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The time complexity of the algorithm is O(n*m), 
where n and m are the number of  states in the 
finite state automatons G and C respectively. 
This is comparable to the quadratic time 
complexity of our grammar revision algorithm 
presented in Section 3.1. 

However, the above algorithm for eliminating 
counter-examples only works for regular 
grammars. This is because context-free 
grammars are not closed under complementation 
and intersection. However we can use our 
algorithm for grammar modification (section 
2.1) to handle any context-free grammar as 
follows: 

1) As before, generate parse tree p for 
counter-example c for an initial 
grammar G. 

2) If  p contains a recursion (two or 
more repetitions of any production 
rule in the same parse tree), rewrite 
the initial grammar G as the 
equivalent grammar G', where the 
recursion is "unrolled" sufficiently 
many times (at least one more time 
than the number of repetitions of the 
recursive production rule in the 
parse tree). We explain the unrolling 
of  recursion in greater detail below. 
If  p does not contain any recursion, 
go to step 4. 

3) Generate parse tree p' for the 
counter-example c for the rewritten 
grammar G'. Note that p' will no 
longer contain a recursive 
application of  any production rules, 
though G' itself will still have 
recursion. 

4) Use the algorithm described in 
section 2.1 to modify the grammar 
G' to eliminate the counter-example 
c using the parse tree p'. 

We illustrate the above algorithm with an 
example. Figure 4(a) shows a context free 
grammar which accepts all strings of the form 
a"b", for any n greater than 0. Note that this is 
not a regular language. Suppose we wish to 
eliminate the counter-example aaabbb from the 
initial grammar. The parse treep for the counter- 
example aaabbb is shown in Figure 4(b). The 

grammar in 4(a) can be rewritten as the 
equivalent grammar 4(c), where the recursion of 
(S->aSb) is unrolled three times. The parse tree 
p '  for the counter-example aaabbb with respect 
to grammar in 4(c) is shown in Figure 4(d). Note 
that p '  does not contain any recursion, though 
the rewritten grammar does. We revised the 

FIGURE 4 
(a) O R I G I N A L  G R A M M A R  G 

<S> ::= "a" <S> "b" [ "a n "b" . 

(b) P A R S E  T R E E  p 
<S> ::= "a n <S> "b" . 

<S> ::= "a" <S> "b" . 

<S> ::= "a n rib" . 

(c) R E W R I T T E N  G R A M M A R  G '  

<S> ::= "a" <$1> "b" l "a" "b" . 

<Sl> ::= "a" <$2> "b" I "a" "b" . 

<$2> ::= "a" <$3> "b" I "a" "b" . 

<$3> ::= "a" <$3> "b" [ "a" "b" . 

(d) P A R S E  T R E E  p '  
<S> ::= "a" <Sl> "b" . 

<$1> ::= "a" <$2> "b" . 

<$2> ::= "a" "b" . 

~ )  REVISED G R A M M A R  G r  
<S> ::= "a" <Sl> "b" [ "a" "b" . 

<SI> : : =  "a" <$2> "b" I "a" "b" . 
<82> ::= "a" <$3> "b" . 

<$3> ::= "a" <$3> "b" [ "a" "b" . 

grammar in 4(c) to eliminate the counter- 
example aaabbb using the parse tree in Figure 
4(d). The revised grammar is shown in Figure 
4(e). Note that here we are assuming that a 
mechanism exists for rewriting the rules of  a 
grammar with recursion to unroll the recursion 
(if it exists) a finite number of  times. Such an 
unrolling is readily accomplished by introducing 
a set of  new non-terminars, one for each iteration 
of  unrolling as shown in Figure 4(c). 

3 Automated revision of attribute-value 
grammars 

In this section, we delineate an approach for 
automatically modifying attribute value 
grammars using counter-examples. We first 
convert an attribute value grammar into an 
equivalent non-attributed grammar by creating 
new non-terminals and encoding the attributes in 
the names of the new non-terminals (see 
Manaster Ramer and Zadrozny (1990) and 
Pollard and Sag (1994)). 

For example, suppose the grammar in Figure 
2(a) is an attribute value grammar with an 
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Figure 5 
<<START>> : := <V> <N> <PP> [ 

<V> <pp> . 

<PP> : :: "tO" <N> . 

<V> : := "move" [ "transfer" . 

<N> : := <N_account_checking> [ 

<N_accountsavings> [ 

<N_accountunspecified> 

<N_.account_checking> : := "checking" . 

<N_account_savings> : := "savings". 

<N_account_unspecified> ::= "money" I 

"operator" . 

attribute 'account', which encodes information 
about the type of account specified, e.g. 
'account' might have the values, SAVINGS, 
CHECKING and UNSPECIFIED. Figure 5 
shows an equivalent non-attributed grammar, 
where the value of the attribute 'account' has 
been encoded in the names of the non-terminals. 
Note that such an encoding can potentially 
create a very large number of non-terminals. 
Also, the specific coding used needs to be such 

<<START>> : := <V> <N> <PP> [ <V'> <PPO> 

Fiaure 6 . - vo> .cp_p,> I < v , >  < p p , >  . 
<PP> : := "to n <N> . 

<PP'> :.'= "tO" <N'> • 

<PPo> ::= "tO" <NO> • 

<V> ::= "move" ~ "transfer" . 

<Vr> : ~ =  "transfer" . 

<Vo> : ~ =  .~ve # . 

<N> :~= <Naccount_checking> I 

<N_account_savings> 1 

<N__account_unspecified> . 

<N'> : : :  <N_account_checking> ] 

<N_account_savings> ] 

<N '_acco un t_unspec i f i ed> 

<No> ::: <No_account_umspecified> . 

<N_accountchecking> ::= "checking" . 

<N_account savings> : := "savings". 

<Naccountunspecified> : := "money" I 

"operator" . 

<N'_account__unspecified> : := "money" . 

<No account_unspecified> ::= "operator" . 

that the attributes can be easily recovered from 
the non-terminal names later on. 

We can now use our modification algorithms 
(Section 2.1 and 2.2) to eliminate counter- 
examples from the non-attributed grammar. For 
instance, suppose we wish to eliminate 'move to 
operator' from the attributed grammar based on 
Figure 2(a), as discussed above. We apply our 
algorithm (Section 2.1) to the grammar in Figure 
5 and obtain the grammar shown in Figure 6. 
Note that we name any new non-terminals 
created during the grammar modification in such 

a way as to leave the encoding of the attribute 
values in the non-terminal names intact. 

After applying the grammar revision algorithm, 
we can extract the attribute values from the 
encoding in the non-terminal names. For 
instance, in the example outlined above, we 
might systematically check for suffixes of a 
certain type and recover the attributes and their 
values. Also, as described earlier, we can use the 
algorithm described in section 2.2 to make the 
resulting grammar compact again by using MDL 
based grammar induction algorithms. 

4 Conclusions 

We have presented a set of algorithms and an 
interactive tool for automatically revising 
grammars of NLP systems to disallow identified 
counter-examples (sentences or sets of  sentences 
accepted by the current grammar but deemed to 
be irrelevant for a given application). We have 
successfully used the tool to constrain 
overgeneralizing grammars of speech 
understanding systems and obtained 20-30% 
higher recognition accuracy. However, we 
believe the primary benefit of using our tool is 
the tremendously reduced effort for the grammar 
developer. Our technique relieves the grammar 
developer from the burden of  going through the 
tedious and time consuming task of  revising 
grammars by manually modifying production 
rules one at a time. Instead, the grammar 
developer simply identifies counter-examples to 
an interactive tool that revises the grammar to 
invalidate the identified sentences. 

We also discussed an MDL based algorithm for 
grammar compaction to reduce the size of  the 
revised grammar. Thus, using a combination of 
the algorithms presented in this paper, one can 
obtain a compact grammar that is guaranteed to 
disallow the counter-examples. 

Although our discussion here was focussed on 
speech understanding applications, the 
algorithms and the tool described here are 
applicable for any domain where grammars are 
used. We are currently implementing an 
extension of the grammar modifier to handle 
attribute-value grammars. We outlined an 
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approach for automated modification of  
attribute-value grammars in Section 3. 

We conclude that algorithms for automatically 
constraining grammars based on counter- 
examples can be highly effective in reducing the 
burden on grammar developers to develop 
constrained, domain specific grammars. 
Moreover, these algorithms can be used in any 
applications, which deal with grammars. 
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