
Experiments with Corpus-based LFG Specialization 

N i c o l a  C a n c e d d a  a n d  C h r i s t e r  S a m u e l s s o n  
Xerox Research Cent re  Europe ,  

6, chemin  de Maupe r tu i s  
38240 Meylan ,  France  

{cancedda. lsamuelsson}@xrce.xerox.com 

A b s t r a c t  

Sophisticated grammar formalisms, such as LFG, al- 
low concisely capturing complex linguistic phenom- 
ena. The powerful operators provided by such for- 
malisms can however introduce spurious ambigu- 
ity, making parsing inefficient. A simple form of 
corpus-based grammar pruning is evaluated experi- 
mentally on two wide-coverage grammars, one En- 
giish and one French. Speedups of up to a factor 6 
were obtained, at a cost in grammatical coverage of 
about 13%. A two-stage architecture allows achiev- 
ing significant speedups without introducing addi- 
tional parse failures. 

1 I n t r o d u c t i o n  

Expressive grammar formalisms allow grammar de- 
velopers to capture complex linguistic generaliza- 
tions concisely and elegantly, thus greatly facilitat- 
ing grammar development and maintenance. (Car- 
rol, 1994) found that the empirical performance 
when parsing with unification-based grammars is 
nowhere near the theoretical worst-case complexity. 
Nonetheless, directly parsing with such grammars, 
in the form they were developed, can be very ineffi- 
cient. For this reason, grammars are typically com- 
piled into representations that allow faster parsing. 
This does however not solve the potential problem 
of the grammars overgenerating considerably, thus 
allowing large amounts of spurious ambiguity. In- 
deed, a current trend in high-coverage parsing, es- 
pecially when employing a statistical model of lan- 
guage, see, e.g., (Collins 97), is to allow the grammar 
to massively overgenerate and instead disambiguate 
by statistical means during or after parsing. If the 
benefits resulting from more concise grammatical de- 
scriptions are to outweigh the costs of spurious am- 
biguity, the latter must be brought down. 

In such a situation, corpus-based compilation 
techniques can drastically improve parsing perfor- 
mance without burdening the grammar developer. 
The initial, and much seminal work in this area 
was been carried out by Rayner and coworkers, see 
(Rayner 1988), (Samuelsson and Rayner 91) and 
(Rayner and Carter 1996). In the current article, 

we apply similar ideas to Lexical Functional Gram- 
mar (LFG) in the incarnation of the Xerox Linguis- 
tic Environment (XLE). The goal is to investigate 
to what extent corpus-based compilation techniques 
can reduce overgeneration and spurious ambiguity, 
and increase parsing efficiency, without jeopardiz- 
ing coverage. The rest of the article is organized 
as follows: Section 2 presents the relevant aspects 
of the LFG formalism and the pruning strategy em- 
ployed, Section 3 describes the experimental setup, 
Section 4 reports the experimental results and Sec- 
tion 5 relates this to other work. 

2 L F G  a n d  G r a m m a r  P r u n i n g  

The LFG formalism (Kaplan and Bresnan, 1982) al- 
lows the right-hand sides (RHS) of grammar rules to 
consist of a regular expression over grammar sym- 
bols. This makes it more appropriate to refer to 
the grammar rules as rule schemata, since each RHS 
can potentially be expanded into a (possibly infinite) 
number of distinct sequences of grammar symbols, 
each corresponding to a traditional phrase-structure 
rule. As can easily be imagined, the use of regular- 
expression operators such as Kleene-star and com- 
plementation may introduce a considerable amount 
of spurious ambiguity. Moreover, the LFG formal- 
ism provides operators which - -  although not in- 
creasing its theoretical expressive power - -  allow 
rules to be written more concisely. Examples of such 
operators are the ignore operator, which allows skip- 
ping any sequence of grammar symbols that matches 
a given pattern; the shuffle operator, which allows 
a set of grammar symbols to occur in any order; 
and the linear precedence operator, which allows par- 
tially specifying the order of grammar symbols. 

The pruning method we propose consists in elim- 
inating complex operators from the grammar de- 
scription by considering how they were actually in- 
stantiated when parsing a corpus. In LFGs, each 
rule scheme corresponds to a particular grammar 
symbol, since different expansions of the same sym- 
bol are expressed as alternatives in the regular ex- 
pression on its RHS. We can define a specific path 
through the RHS of a rule scheme by the choices 

~ t f ~  211 204



made when matching it against some sequence of 
g r ammar  symbols. Our training data allows us to 
derive, for each training example, the choices made 
at each rule expansion. By applying these choices to 
the rule scheme in isolation, we can derive a phrase- 
structure rule from it,. 

The g rammar  is specialized, or pruned, by retain- 
ing all and only those phrase-structure rules that  
correspond to a path taken through a rule scheme 
when expanding some node in some training exam- 
ple. Since the g rammar  formalism requires that  each 
LHS occur only in one rule scheme in the gram- 
mar,  extracted rules with the same LHS symbol are 
merged into a single rule scheme with a disjunction 
operator at its top level. For instance, if a rule 
scheme with the structure 

A ~ B*{CI D} 

is expanded in the training data  only in the following 
ways 

A -> C 

A --+ BC 

A -+ BD 

then it will be replaced by a rule scheme with the 
following structure 

A --+ { C I B C ] B D }  

The same approach is taken to replace all regular- 
expression operators, other than concatenation, with 
the actual sequences of g rammar  symbols that  are 
matched against them. A more realistic example, 
taken from the actual data, is shown in Figure 1: 
none of the optional alternative portions following 
the V is ever used in any correct parse in the corpus. 
Moreover, the A D V P  preceding the V occurs only 
0 or 1 times in correct parses. 

Like other unification-based formalisms, lexical 
functional g rammars  allow g rammar  rules to be an- 
notated with sets of feature-based constraints, here 
called "functional descriptions", whose purpose is 
both to enforce additional constraints on rule appli- 
cability and to build an enriched predicate-argument 
structure called "f-structure", which, together with 
the parse tree, constitutes the output  of the parsing 
process. As these constraints are maintained verba- 
t im in the specialized version of the rule scheme, this 
poses no problem for this form of g rammar  pruning. 

3 E x p e r i m e n t a l  S e t u p  

The experiments carried out to determine the ef- 
fectiveness of corpus-based specialization were per- 
formed as illustrated in Figure 2. Two broad- 
coverage LFG grammars  were used, one for French 
and one for English, both of which were developed 

within the Pargram project (Butt  et al., 1999) dur- 
ing several years time. The French g rammar  consists 
of 133 rule schemata, the English g r ammar  of 8.5 rule 
schemata. 

Each gralmnar  is equipped with a treebank, which 
was developed for other purposes than g rammar  spe- 
cialization. Each treebank was produced by letting 
the system parse a corpus of technical documenta- 
tion. Any sentence that  did not obtain any parse 
was discarded. At this point, the French corpus 
was reduced to 960 sentences, and the English cor- 
pus to 970. The average sentence length was 9 for 
French and 8 for English. For each sentence, a hu- 
man expert then selected the most appropriate anal- 
ysis among those returned by the parser. 

In the current experiments, each treebank was 
used to specialize the g rammar  it had been devel- 
oped with. A set of 10-fold cross-validation experi- 
ments was carried out to measure several interesting 
quantities under different conditions. This means 
that,  for each language, the corpus was randomly 
split into ten equal parts, and one tenth at a t ime 
was held out for testing while the remaining nine 
tenths were used to specialize the grammar ,  and the 
results were averaged over the ten runs . .  For each 
g rammar  the average number of parses per sentence, 
the fraction of sentences which still received at least 
one parse (angparse) and the fraction of sentences for 
which the parse selected by the expert was still de- 
rived (coverage) were measured 1. The average CPU 
time required by parsing was also measured, and this 
was used to compute the speedup with respect to the 
original grammar .  

The thus established results constitute one da ta  
point in the trade-off between ambiguity reduction 
on one side, which is in turn related to parsing speed, 
and loss in coverage on the other. In order to deter- 
mine other points of this trade-off, the same set. of 
experiments was performed where speciMization was 
inhibited for certain rule schemata. In particular, for 
each grammar ,  the two rule schemata that  received 
the largest number of distinct expansions in the cor- 
pora were determined. These proved to be those 
associated with the LHS symbols 'VPverb[main] '  
and 'NP '  for the French grammar ,  and 'VPv '  and 
'NPadj '  for the English one. 2 The experiments were 
repeated while inhibiting specialization of first the 
scheme with the most expansions, and then the two 
most expanded schemata. 

Measures of coverage and speedup are important  

1 As  l o n g  as  we a r e  i n t e r e s t e d  in  p r e s e r v i n g  t h e  f - s t r u c t u r e  
a s s i g n e d  t o  s e n t e n c e s ,  t h i s  n o t i o n  o f  c o v e r a g e  is s t r i c t e r  t h a n  
n e c e s s a r y .  T h e  s a m e  f - s t r u c t u r e  c a n  in  f a c t  b e  a s s i g n e d  b y  
m o r e  t h a n  o n e  p a r s e ,  so  t h a t  i n  s o m e  c a s e s  a s e n t e n c e  is c o n -  
s i d e r e d  o u t  o f  c o v e r a g e  e v e n  i f  t h e  s p e c i a l i z e d  g r a m m a r  a s s i g n s  
t o  i t  t h e  c o r r e c t  f - s t r u c t u r e .  

2 ' V P v '  a n d  ' V P v e r b [ m a i n ] '  c o v e r  V P s  h e a d e d  b y  a m a i n  
v e r b .  ' N P a d j '  c o v e r s  N P s  w i t h  a d j e c t i v e s  a t t a c h e d .  

205



The original rule: 

l/Pperfp --+ 
ADVP* 
SE (t ADJUNCT) 
($ ADV_TYPE) = t,padv 

~/r 

{ @M_Head_Perfp I@M_Head_Passp } 
@( Anaph_Ctrl $) 

{ AD VP+ 
SE ('~ ADJUNCT) 
($ ADV_TYPE) = vpadv 

is replaced by the following: 

ADVP 
,[.E (~ ADJUNCT) 
(.l. A D V _ T Y P E )  = vpadv 

l/'Pperfp --+ 

@PPadjunct @PPcase_obl 

{@M.Head_Pevfp [@M..Head_Passp} 
@( Anaph_Ctrl ~ ) 

V 
{ @M_Head_Perfp I@M_Head_Passp } 
@( Anaph_Ctrl ~) 

Figure 1: The pruning of a rule from the actual French grammar. The "*" and the "+" signs have the usual 
interpretation as in regular expressions. A sub-expression enclosed in parenthesis is optional. Alternative 
sub-expressions are enclosed in curly brackets and separated by the "[" sign. An "@" followed by an identifier 
is a macro expansion operator, and is eventually replaced by further functional descriptions. 

Corpus 

--..,, 

0.1[ 
Disambiguated 

Treebank treebank 

Human 
expert 

Grammar 
specialization 

Specialized 
grammar 

Figure 2: The setting for our experiments on grammar specialization. 

indicators of what can be achieved with this form of 
grammar pruning. However, they could potentially 
be misleading, since failure times for uncovered sen- 
tences might be considerably lower than their pars- 
ing times, had they not been out of coverage. If 
the pruned grammar fails more frequently on sen- 
tences which take longer to parse, the measured 
speedup might be artificiMly high. This is easily 

realized, as simply removing the hardest sentences 
froln the corpus would cause a decrease ill the av- 
erage parsing time, and thus result in a speedup, 
without any pruning at all. To factor out the contri- 
bution of uncovered sentences fi'om the results, the 
performance of a two-stage architecture analogous 
to that of (Samuelsson and Rayner, 1991) was siln- 
ulated, in which the pruned grammar is attempted 

206



"A Sentence" 

Parser with specialized 
grammar 

Fails 

1 
Succeeds 

L_ 
Time = Timespecialize d 

Parser with original 
grammar 

Time = Timespecialize d + Time original 

Figure 3: A schematic representation of the simu- 
lated two-stage coverage-preserving architecture. 

first, and the sentence is passed on to the original 
unpruned g rammar  whenever the pruned g rammar  
fails to return a parse (see Figure 3). The mea- 
sured speedup of this simulated architecture, which 
preserves the anyparse measure of the original gram- 
mar,  takes into account the contribution of uncov- 
ered sentences, as it penalizes sweeping difficult sen- 
tences under the carpet. 

4 Experimental Results 
The results of the experiments described in the sec- 
tion above are summarized in the table in Figure 4. 
The upper part  of the table refers to experiments 
with the French grammar ,  the lower part  to exper- 
iments with the English grammar .  For each lan- 
guage, the first line presents data  gathered for the 
original g r ammar  for comparison with the pruned 
grammars .  The figures in the second line were col- 
lected by pruning the g rammar  based on the whole 
corpus, and then testing on the corpus itself. The 
g rammars  obtained in this way contain 516 and 388 
disjuncts - -  corresponding to purely concatenative 
rules - -  for French and English respectively. Any- 
parse and coverage are not, of course, relevant in 
this case, but the statistics on parsing time are, es- 
pecially the one on the max imum parsing time. For 
each iteration in the 10-fold cross-validation experi- 
ment,  the max imum parsing t ime was retained, and 
those ten times were eventually averaged. If pruning 
tended to leave sentences which take long to parse 
uncovered, then we would observe a significant dif- 
ference between the average over ma.ximum times on 
the g r ammar  trained and tested on the same corpus 

(which parses all sentences, including the hardest), 
and the average over max imum times for g rammars  
trained and tested on different sets. The fact that  
this does not seem to be the case indicates that  prun- 
ing does not penalize difficult sentences. Note also 
that  the average number of parses per sentence is 
significantly smaller than with the full g rammar ,  of 
almost a factor of 9 in the case of the French gram- 
inar. 

The third line contains results for the fully pruned 
grammar. In the case of the French grammar a 
speedup of about 6 is obtained with a loss in cov- 
erage of 13%. The smaller speedup gained with 
the English g rammar  can be explained by the fact 
that  here, the parsing times are lower in general, 
and that  a non-negligible part  of this time, espe- 
cially that  needed for morphological analysis, is un- 
affected by pruning. Even in the case of the English 
grammar ,  though, speedup is substantial  (2.67). For 
both grammars ,  the reduction in the average max- 
inmm parsing time is particularly good, confirming 
our hypothesis that  t r imming the g r amma r  by re- 
moving heavy constructs makes it considerably more 
efficient. A partially negative note comes from the 
average number of disjuncts in the prun.ed grain- 
mars, which is 501 for French and 374 for English. 
Comparing this figures to the number of disjuncts in 
grammars  pruned on the full corpus (516 and 388), 
we find that  after training on nine tenths of the cor- 
pus, adding the last tenth still leads to an increase 
of 3-4% in the size of the resulting grammars .  In 
other words, the marginal gain of further training 
examples is still significant after considering about  
900 sentences, indicating that  the training corpora 
are somewhat too small. 

The last two lines for each language show figures 
for g rammars  with pruning inhibited on the most 
variable and the two most variable symbols respec- 
tively. For both languages, inhibiting pruning on the 
most variable symbol has the expected effect of in- 
creasing both parsing time and coverage. Inhibiting 
pruning also on the second most variable symbol has 
ahnost no effect for French, and only a small effect 
for English. 

The table in Figure 5 summarizes the measures 
on the simulated two-stage architecture. For both 
languages the best trade-off, once the distribution 
of uncovered sentences has been taken into account, 
is achieved by the fully pruned grammars .  

5 R e l a t e d  W o r k  

The work presented in the current article is related 
to previous work on corpus-based g rammar  spe- 
cialization as presented in (Rayner, 1988; Salnuels- 
son and Rayner, 1991; Rayner and Carter, 1996; 
Samuelsson, 1994; Srinivas a.nd Joshi, 1995; Neu- 
mann, 1997). 

207 



Parses/sentence 

F r e n c h  
original g rammar  1941 
test = training 219 

Anyparse Coverage Avg. t ime 
(secs.) 

Max. t ime 
(secs.) 

Speedup 

1.00 1.OO 1.52 78.5 1 
1.00 1.00 0.28 5.62 5.43 
0.91 0.25 First-order pruning 164 0.87 5.69 6.08 

no pruning on 
'VPverb[main] '  1000 0.94 0.91 0.42 8.70 3.62 
no pruning on 
'Vpverb[main] '  and 'NP '  

First-order pruning 

0.94 0.92 0.42 8.42 1279 3.62 

0.88 

1.00 1.00 0.56 31.73 1 
1.00 1.00 0.23 3.92 2.43 
0.94 0.21 

0.91 

E n g l i s h  
original g r ammar  58 
test = training 24 

21 

0.96 0.32 

0.35 

no pruning on 
'VPv '  

0.96 

25 
no pruning on 
'Vpv '  and 'NPadj '  31 0.93 

3.92 

11.06 

11.16 

Figure 4: The results of the experiments on LFG specialization. 

Avg. CPU t ime (secs.) Speedup 
F r e n c h  

0.570 2.67 
0.616 2.47 
0.614 2.48 

First-order pruning 
no pruning on 'VPverb[main] '  
no pruning on 'VPverb[main] '  and 'NP '  
E n g l i s h  
First-order pruning 0.311 1.81 
no pruning on 'VPv '  0.380 1.47 
no pruning on 'VPv '  and 'NPadj '  0.397 1.40 

2.67 

1.75 

1.60 

Figure 5: Results for the simulated two-stage architecture. 

The line of work described in (Rayner, 1988; 
Samuelsson and Rayner, 1991; Rayner and Carter, 
1996; Samuelsson, 1994) deals with unification- 
based g rammars  that  already have a purely- 
concatenative context-fi'ee backbone, and is more 
concerned with a different t~orm of specialization, 
consisting in the application of explanation-based 
learning (EBL). Here, the central idea is to collect 
the most  frequently occurring subtrees in a treebank 
and use them as atomic units for parsing. The cited 
works differ mainly in the criteria adopted for select- 
ing subtrees fi'om the treebank. In (Rayner, 1988; 
Samuelsson and Rayner, 1991; Rayner and Carter, 
1996) these criteria are handcoded: all subtrees sat- 
isfying some properties are selected, and a new gram- 
mar  rule is created by flattening each such subtree, 
i.e., by taking the root as lefl.-hand side and the yield 
as right-hand side, and in the process performing all 
unifications corresponding to the thus removed in- 
ternal nodes. Experiments carried out on a corpus 
of 15,000 trees from the ATIS domain using a ver- 
sion of the SRI Core Language Engine resulted in a 
speedup of about  3.4 at a cost of 5% in gralmnati-  

cal coverage, which however was compensated by an 
increase in parsing accuracy. 

Finding suitable tree-cutting criteria requires a 
considerable amount  of work, and must  be repeated 
for each new g rammar  and for each new domain to 
which the g rammar  is to be specialized. Samuelsson 
(Samuelsson, 1994) proposes a technique to auto- 
matically selects what subtrees to retain. The se- 
lection of appropriate subtrees is done by choosing 
a subset of nodes at which to cut trees. Cutnodes 
are determined by computing the entropy of each 
node, and selecting only those nodes whose entropy 
exceeds a given threshold. Intuitively, nodes with 
low entropy indicate locations in the trees where a 
given symbol was expanded using a predictable set 
of rules, at least most of the times, so that  the loss 
of coverage that  derives from ignoring the remain- 
ing cases is low. Nodes with high entropy, on the 
other hand, indicate positions in which there is a 
high uncertainty in what rule was used to expand 
the symbol, so that  it is better  to preserve all alter- 
natives. Several schemas are proposed to compute 
entropies, each leading to a different trade-off be- 

~fllR 



tween coverage reduction and speedup. In general, 
results are not quite as good as those obtained using 
handcoded criteria, though of course the specialized 
grammar is obtained fully automatically, and thus 
with much less effort. 

When ignoring issues related to the elimination of 
complex operators t"1"o111 the RHS of rule schemata, 
the grammar-pruning strategy described in the cur- 
rent article is equivalent to explanation-based learn- 
ing where all nodes have been selected,as eutnodes. 
Conversely, EBL can be viewed as higher-order 
grammar pruning, removing not grammar rules, but 
gramlnar-rule combinations. 

Some of the work done on data-oriented parsing 
(DOP) (Bod, 1993; Bod and Scha, 1996; Bod and 
Kaplan, 1998; Sima'an, 1999) can also be considered 
related to our work, as it can be seen as a way to 
specialize in an gBL-like way the (initially unknown) 
grammar implicitly underlying a treebank. 

(Srinivas and aoshi, 1995) and (Neumann, 1997) 
apply EBL to speed up parsing with tree-adjoining 
grammars and sentence generation with HPSGs re- 
spectively, though they do so by introducing new 
components in their systems rather then by modify- 
ing the grammars they use. 

6 Conc lus ions  

Sophisticated grammar formalisms are very useful 
and convenient when designing high-coverage gram- 
mars for natural languages. Very expressive gram- 
matical constructs can make the task of develop- 
ing and maintaining such a large resource consid- 
erably easier. On the other hand, their use can re- 
sult in a considerable increase in grammatical am- 
biguity. Gramnaar-compilation techniques based on 
grammar structure alone are insufficient remedies in 
those cases, as they cannot access the information 
required to determine which alternatives to retain 
and which alternatives to discard. 

The current article demonstrates that a relatively 
simple pruning technique, employing the kind of ref- 
erence corpus that is typically used for grammar de- 
velopment and thus often already available, can sig- 
nificantly improve parsing performance. On large 
lexical functional grammars, speedups of up to a 
factor 6 were observed, at the price of a. reduction 
in grammatical coverage of about 13%. A simple 
two-stage architecture was also proposed that pre- 
serves the anyparse measure of the original gram- 
mar, demonstrating that significant speedups can be 
obtained without increasing the number of parsing 
failures. 

Future work includes extending the study of 
corpus-based grammar specialization from first- 
order grammar pruning to higher-order gram- 
mar pruning, thus extending previous work on 
explanation-based learning for parsing, aad apply- 

ing it to the LFG fornaalism. 

R e f e r e n c e s  
Rens Bod and Ronald Kaplan. 1998. A probabilistic 

corpus-driven model for lexical-functional analy- 
sis. In Proceedings of Coling-ACL-98, Montreal, 
Canada. 

R. Bod and R. Scha. 1996. Data-oriented lan- 
guage processing: An overview. Technical report, 
ILLC, University of Amsterdam, Alnsterdam, The 
Netherlands. 

Rens Bod. 1993. Using an annotated corpus as a 
stochastic grammar. In Proceedings of EACL-93, 
Utrecht, The Netherlands. 

M. Butt, T.H. King, M.E. Nifio, and F. Segond. 
1999. A Grammar Writer's Cookbook. CSLI Pub- 
lications, Stanford, CA. 

John Carrol. 1994. Relating complexity to practical 
performance in parsing with wide-coverage uni- 
fication grammars. In Proceedings of (ACL '94), 
Las Cruces, New Mexico, June. 

Ronald Kaplan and Joan Bresnan. 1982. Lexical- 
functional grammar: A formal system for gram- 
matical representation. In Joan Bresnan, editor, 
The Mental Representation of Grammatical Rela- 
tions, pages 173-281. MIT Press. 

G/inter Neumann. 1997. Applying explanation- 
based learning to control and speeding-up natu- 
ral language generation. In Proceedings of A CL- 
EACL-97, Madrid, Spain. 

Manny Rayner and David Carter. 1996. Fast pars- 
ing using pruning and grammar specialization. In 
Proceedings of the ACL-96, Santa. Cruz, CA. 

Manny Rayner. 1988. Applying explanation-based 
generalization to natural-language processing. 
In Proceedings of the International Conference 
on Fifth Generation Computer Systems, Tokyo, 
Japan. 

Christer Samuelsson and Manny Rayner. 1991. 
Quantitative evaluation of explanation-based 
learning as an optimization tool for a large-scale 
natural language system. In Proceedings of the 
IJCAI-91, Sydney, Oz. 

Christer Samuelsson. 1994. Grammar  specialization 
through entropy thresholds. In Proceedings of the 
ACL-94, Las Cruces, New Mexico. Available as 
cmp-lg/9405022. 

Khalil Sima'an. 1999. Learning Efficient Dis- 
ambiguation. Ph.D. thesis, Institute for Logic, 
Language and Computation, Amsterdam, The 
Netherlands. 

B. Srinivas and A. Joshi. 1995. Some novel appli- 
cations of explanation-based learning to parsing 
lexicalized tree-adjoining gramlnars. In Proceed- 
ings of the ACL-95, Cambridge, MA. 

209 


