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Abstract

With good explainability and controllability,
rule-based methods play an important role
in the task of Knowledge Graph Completion
(KGC). However, existing studies primarily fo-
cused on learning chain-like rules, whose chain-
like structure limits their expressive power.
Consequently, chain-like rules often exhibit
lower Standard Confidence, and are prone to
the incorrect grounding values during reason-
ing, thus producing erroneous reasoning re-
sults. In this paper, we propose the concept
of tree-like rules on knowledge graphs to ex-
pand the scope of the application and improve
the reasoning ability of rule-based methods.
To achieve this, we formalize the problem of
tree-like rule refinement and propose an ef-
fective framework for refining chain-like rules
into tree-like rules. Experimental evaluations
on four public datasets demonstrate that the
proposed framework can seamlessly adapt to
various chain-like rule induction methods and
the refined tree-like rules consistently exhibit
higher Standard Confidence and achieve bet-
ter performances than the original chain-like
rules on link prediction tasks. Furthermore,
we illustrate that the improvements brought by
tree-like rules are positively correlated with
the density of the knowledge graphs. The
data and code of this paper can be available
at https://github.com/forangel2014/tree-rule.

1 Introduction

Knowledge Graph Completion (KGC) (Taskar
et al., 2003; Chen et al., 2022; Wang et al., 2023) is
a fundamental and important task in Natural Lan-
guage Processing. For KGC, rule-based methods
play a pivotal role, which focus on first learning
symbolic and interpretable rules, and then lever-
age them for effective reasoning within Knowledge
Graphs (KGs). In these rule-based methods, the
development of comprehensive and high-quality
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Figure 1: An example of an inaccurate chain-like rule
and the refined tree-like rule. Although the chain-like
rule (bottom-left) can predict most cases correctly, due
to its chain structure, it has limited expressive power.
The refined tree-like rule (bottom-right) leverages the
information in the KG that originally ignored to improve
the chain-like rule.

rule sets is essential for the success of KGC (Nandi
et al., 2023; Meilicke et al., 2024).

To this end, previous works have proposed var-
ious types of methods to induce rules from the
KGs, like symbol-based (Galárraga et al., 2013),
embedding-based (Omran et al., 2018; Qu et al.,
2021; Cheng et al., 2023), Differentiable-ILP-
based (Yang et al., 2017; Yang and Song, 2020),
and RL-based (Meilicke et al., 2024). However,
these existing rule induction methods only con-
sider the chain-like rules in KGs (Galárraga et al.,
2013; Yang et al., 2017; Omran et al., 2018; Meil-
icke et al., 2024; Qu et al., 2021; Cheng et al.,
2023). chain-like rules are a special case of the
Horn Clauses (Russell and Norvig, 2016), which is
equivalent to a multi-hop reasoning process (Yang
and Song, 2020). For example, in the left-bottom
subfigure in Figure 1, live(X,Y ) ∧ lang(Y, Z) ⇒
speak(X,Z) is a typical chain-like rule. Since
there is only one path leading the query variable
X to the target variable Z, there are limited con-
straints for the semantics in the reasoning path of
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the chain-like rules. Consequently, chain-like rules
are often prone to the incorrect grounding values
during reasoning, thus producing erroneous reason-
ing results. For example, in Figure 1, this rule may
reason erroneous facts when X is just a traveler, or
Y is a country with more than one official language
and X just speaks one of them.

Therefore, this paper introduces the concept of
tree-like rules, which is a more general form of
rules. Apart from a direct path from the query
variable X to the target variable Z, the tree-like
rule body also contains some branch atoms to con-
strain the grounding values of the rule. These
branch atoms can be seen as “hanging” triplets
on the path, which further shape and narrow down
the possible grounding values of the rule. The
path and the branch atoms stretched together into
a tree structure in the KG. For example, in the
right-bottom subfigure in Figure 1, the tree-like
rule may look like live(X,Y ) ∧ lang(Y,Z) ∧
bornIn(X,Y ) ⇒ speak(X,Z) or live(X,Y ) ∧
lang(Y, Z) ∧ is(Y, Italy) ⇒ speak(X,Z). The
added atoms bornIn(X,Y ) and is(Y, Italy) yield
new constraints for the grounding values of vari-
able Y . With these added constraints, tree-like
rules are expected to possess higher quality (Stan-
dard Confidence) and avoid the wrong predictions
that X speaks Z in the cases mentioned before. As a
result, tree-like rules possess higher Standard Con-
fidence than chain-like rules and will exhibit better
reasoning performance on the task of KGC.

To refine chain-like rules into tree-like rules, the
key challenge is to tackle the large combinatorial
space of the rule body, i.e. searching and select-
ing the probable branch atoms. The branch atoms
are supposed to exclude the incorrect groundings
while still including the correct groundings of the
rule. To refine chain-like rules into tree-like rules
by adding branch atoms, our proposed framework
first transforms the optimization problem of the
Standard Confidence of the entire rule to that of
the best branch atom selection in a specific vari-
able in the rule body. For the best branch atom
selection problem, our framework proposes a three-
step pipeline: Forward Reasoning, Backward Rea-
soning, and Candidate Atom Selections. Through
this pipeline, our framework effectively refines the
original chain-like rules into high-quality tree-like
rules.

To verify the effectiveness of tree-like rules re-
fined by our framework, we conduct experiments
on four widely used benchmark KGs with three dif-

ferent sources of chain-like rules. The experimen-
tal results show that tree-like rules continuously
exhibit higher Standard Confidence, and outper-
form chain-like rules on the link prediction tasks
for different sources of chain-like rules on different
KGs. With further analysis, we also find that the
improvements brought by tree-like rules are posi-
tively correlated with the density of the knowledge
graphs, showing that tree-like rules have greater
advantages in KGs with complex topological struc-
tures.

In summary, the contributions of this paper are
as follows:
• This paper proposes the concept of tree-like rules

for the task of rule induction on KGs. An effec-
tive framework is proposed for refining chain-
like rules induced from any existing method into
tree-like rules.

• The paper conducts experiments on four open-
accessed datasets and the results show our refined
tree-like rules from different chain-like rules con-
sistently have higher Standard Confidence, and
outperform on KG reasoning task than original
chain-like rules. Further analysis finds that the
improvements brought by tree-like rules are pos-
itively correlated with the density of the knowl-
edge graphs.

2 Problem Formulation

In the scope of First-Order Logic (FOL), the rule
(or Horn Clause) is formalized as σ ⇒ φ. Here, the
left part σ is called “rule body”, which serves as the
premise, when it is satisfied by some groundings,
then the right part, “rule head” φ, will be grounded
as the conclusion.

For the evaluation of the quality of such a rule,
as we are adding constraints to refine it to be more
precise, we adopt the widely-used metric, Standard
Confidence (sc). It can be defined as:

sc =
#(Sσ ∩ Sφ)

#Sσ
(1)

where #(·) stands for the count of possible ground-
ings. This metric can also be easily understood if
we take the rule as a binary classifier in machine
learning: Sσ stands for the situation that the classi-
fier output “positive”, and Sφ stands for the situa-
tions that are “true”. Therefore, sc corresponds to
the precision, being a key metric to describe how
much we can trust the rule.

Based on the definition and objective above, our
task can be stated as follows. A given chain-like
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Figure 2: The framework of our proposed method. In the Forward Reasoning stage, the Query variable X is first
grounded with b randomly sampled entities and by forward reasoning, we obtain the grounding values of Y and
Z. In the Backward Reasoning stage, we then abductively obtain the positive groundings and negative groundings
of each variable in the rule body. Finally in the Candidate Atoms Selection stage, three types of candidate branch
atoms are then selected according to their inner product scores with the variable representation.

rule R of length n can be represented as:

R : r0(x0, x1) ∧ ... ∧ rn−1(xn−1, xn) ⇒ r(x0, xn)

To obtain tree-like rules from it, we aim to find
branch atoms b(xi) for the variable xi while being
aware of the objective in Eq 1. Finally, a refined
tree-like rule has the following format:

R∗ :r0(x0, x1) ∧ ... ∧ ri−1(xi−1, xi) ∧ b(xi)

∧ ... ∧ rn−1(xn−1, xn) ⇒ r(x0, xn)

Please note that when we represent branch atoms
as b(xi), we omit other variables and constants that
may appear within the predicate, to emphasize that
this branch is a constraint on the variable xi.

3 Method

Given the chain-like rule, this paper propose to first
grounded the rules with entities in the KG, and
then find the top branch atoms that could eliminate
the undesirable groundings, to make the ground-
ings satisfying rule body be as close as to those
satisfying rule head.

Given a KG G = (E ,R, T ), where E ,R, T
stands for the entity set, relation set, and triplet
set, respectively, to reason with the rule on this
KG, this paper adopts the matrix representation of
entities and relations for reasoning rules.

For an entity e ∈ E , let ve ∈ {0, 1}1×|E| be
the one-hot encoding of entity e, i.e. only the ith
element is 1 if e is the ith entity in E . Based on
the encoding of single entity, for a variable x in
the rule, if the set Cx denote the entities that can

be ground to x, then the variable grounding of x,
vx ∈ {0, 1}1×|E|, is defined as vx =

∑
e∈Cx

ve.
For an relation r ∈ R, let Mr ∈ {0, 1}|E|×|E|

be the binary adjacency matrix of relation r, i.e.
Mr[i, j] = 1 iff (ei, r, ej) ∈ T . With the definition
above, a reasoning hop (h, r, t?) can be modeled
by the following matrix multiplication:

vt = vhMr (2)

To obtain R∗ from R, we need to find a branch
atom b(xi) (correspond to a constraint vector bxi

)
for the ground value of variable xi, to best match
the reasoning results between rule body and rule
head, based on Eq 1, we have:

JR =

∥∥∥∥∥vx0Mr ⊙ [(vx0

i−1∏
j=0

Mrj ⊙ bxi)

n−1∏
j=i

Mrj ]

∥∥∥∥∥
/

∥∥∥∥∥(vx0

i−1∏
j=0

Mrj ⊙ bxi)

n−1∏
j=i

Mrj

∥∥∥∥∥
(3)

where ∥v∥ stands for the 1-norm of the vector v.
However, it is hard to directly find branch atoms

by maximizing Eq 3. Thus we approximately trans-
form it into the best branch atom selection problem:

J
′
R = S

(
vx0Mr

i∏
j=n−1

Mrj
⊤,vx0

i−1∏
j=0

Mrj⊙bxi

)
(4)

where S(a,b) = (1 − β) ∥a⊙ b∥ −
β ∥(1− a)⊙ b∥ is a similarity metric bal-
ancing the excluding of the incorrect groundings
and the including of the correct groundings.
Here, the ⊙ denotes the element-wise product,
and β ∈ (0, 1) balances the degree of including
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positive groundings and excluding negative
groundings. The colors in this equation correspond
to the colors in Figure 2.

To find the best branch atoms to maximize Eq 4,
as shown in Figure 2, we propose a three-step
framework:
• §3.1 Forward Reasoning: we first sample a batch

of b entities to ground the query variable x0 (i.e.
X in Figure 2). Then a forward reasoning pro-
cess transfers the groundings of x0 to the target
variable xn (i.e. Z in Figure 2) through both the
rule body and rule head. At target variable xn, the
positive groundings (pxn , the entities correctly
predicted by rule body) and negative groundings
(nxn , the entities incorrectly predicted by the rule
body) are obtained.

• §3.2 Backward Reasoning: we then abductively
obtain the positive groundings and negative
groundings of each variable in the rule body, by
sequentially multiplying the transpose of the re-
lation matrix with the current grounding vectors.

• §3.3 Candidate Atoms Selection: the variable
representation is a weighted sum of its positive
groundings and negative groundings, which is a
trade-off of including positive groundings and ex-
cluding negative groundings when adding branch
atoms. Finally, we consider three types of branch
atoms that are to be added to the rule bodies, the
candidate branch atoms are then selected accord-
ing to their inner product scores with the variable
representation.

3.1 Forward Reasoning

Let us first sample a batch of b entities to ground
x0, and we concatenate their encoding to get the
initial variable grounding vx0 ∈ {0, 1}b×|E|. As
most rules only cover a small part of entities on
the entire KG, directly sample b entities from the
entity set E may involve many “inactive tracks”
(line of all 0s in matrix) to the reasoning process,
we choose to sample from the entities that at least
satisfy the first relation r0. This can be done by
sum up the columns of Mr0 to find the candidate
entities:

vcand =
∑
j

Mi,j
r0 (5)

Then, by randomly keeping b entities from
vcand and concatenating their one-hot encoding,
we can obtain the initial variable grounding vx0 .
Based on the initial variable grounding vx0 , the
forward process of rule body can be modeled as a

series of matrix multiplication:

vxi+1
= vxi

Mri , i = 0, 1, ..., n− 1 (6)

where vxi
is the variable grounding of xi, and fi-

nally the reasoning result of this rule is vxn . Sim-
ilarly, we can obtain the true grounding of xn by
applying rule head: txn = vx0Mr. The vxn and
txn are vectorized groundings of Sσ and Sφ intro-
duced in Section 2.

3.2 Backward Reasoning
After obtaining the reasoning results from both
the rule body (vxn) and rule head (txn) of xn,
we then discriminate the positive (the groundings
that thought to ground the xn by rule body, and
proved to satisfy the rule head as well) and neg-
ative (the groundings that thought to ground the
xn by rule body, but proved not to satisfy the rule
head) groundings by performing element-wise pro-
duction:

pxn = vxn ⊙ txn

nxn = vxn ⊙ (1− txn)
(7)

where the i-th element in pxn /nxn represents how
many entity ei appear as positive/negative result in
rule R.

Notice that the encoding of r−1 (inverse relation
of r) is Mr

⊤. Then we can abductively obtain the
positive and negative groundings at all variables in
rule R by backward reasoning:

pxi
=

(
pxi+1

Mri+1

⊤
)
⊙ vxi

nxi
=

(
nxi+1

Mri+1

⊤
)
⊙ vxi

(8)

By performing such a backward reasoning process,
we can have the knowledge that at each variable of
the rule, which entities are desired (positive) and
which are undesired (negative).

3.3 Candidate Atoms Selection
After obtaining the positive and negative ground-
ings of each variable of the rule, we then propose to
refine the chain-like rules by evaluating the candi-
date branches on each variable. The branch atoms
we add at a specific variable of rule R aims to
include positive groundings while excluding the
negative ones as much as possible. So we define
the representation of each variable by linearly com-
bining pxi

and nxi
:

uxi
= (1− β) · pxi

− β · nxi
(9)
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where β ∈ (0, 1) is a weight balance the degree of
including positive groundings and excluding nega-
tive groundings. β → 0 tend to include all positive
groundings, while β → 1 tend to exclude all nega-
tive groundings.

Now that we have obtained the vectorized rep-
resentation of each variable in the rule body, we
thus consider applying a binary mask bxi

(the con-
straint brought by branch atom b(xi)) to the uxi

.
This paper considers three types of branch atoms
that are to be added to the rule body. As shown in
Figure 2, suppose that we add branches to constrain
the groundings of variable Y in the rule body:
• AUX. This type of branch atom yields a one-hop

result from an auxiliary variable M , constraining
Y to the entities that satisfy a certain relation. i.e.
b(Y ) ⇔ r(M,Y ). In this way, bY = 1⊤Mr,
where 1 denotes a |E| × 1 column vector with
all 1, which corresponds to the auxiliary M . For
example, b(Y ) ⇔ capital(Y,M).

• ENT. This type of branch atom grounds a vari-
able in the rule body to a unique entity. i.e.
b(Y ) ⇔ is(e, Y ). In this way, bY = one-hot(e).
For example, b(Y ) ⇔ Is(Y, Italy).

• QRY. This type of branch atom yields a one-hop
result from the query variable X (i.e. x0 in §2),
constraining Y to the entities that have an addi-
tional relation to X . i.e. b(Y ) ⇔ r(X,Y ). In
this way, bY = vXMr. For example, b(Y ) ⇔
bornIn(X,Y ).

For each KG, the candidate constraint vectors of
AUX and ENT can be obtained through prepro-
cessing and stay fixed during the whole refinement
process. For each rule, we can obtain the constraint
vectors of QRY after the b initial groundings are
sampled.

After obtaining the variable representations and
constraint vectors of candidate atoms, the score of
adding a branch atom b(xi) is defined by the inner
product:

score(b(xi)) = uxi
bxi

⊤ (10)

In the implementation, uxi
is multiplied with each

type of candidate atoms and we greedily select
the branch atoms with the top k scores for each
variable appearing in the rule body.

4 Experiments

In this section, we conduct a series of experiments
to evaluate and compare the refined tree-like rules

with original chain-like rules in the following two
aspects:
• Standard Confidence (§4.5). We adopt the Stan-

dard Confidence as the direct metric to evaluate
if the refined tree-like rules have better “quality”
than the original chain-like rules.

• Link Prediction (§4.6). To further verify the
effectiveness of the refined tree-like rules, we
compare two types of rules on the task of Link
Prediction and validate if tree-like rules conduct
better reasoning than chain-like rules.

4.1 Datasets

We employ four commonly used Knowledge
Graphs and their corresponding link prediction
benchmarks: FB15k-237 (Toutanova and Chen,
2015), WN18RR (Dettmers et al., 2018), UMLS
(Kok and Domingos, 2007), YAGO3-10 (Suchanek
et al., 2007) for the evaluations.

4.2 Chain-like Rules

We adopt the following methods to mine chain-like
rules to serve as the original chain-like rules for
evaluation and refinement:
• BBFS We propose a bi-directional breadth-first

search method to mine all chain-like rules within
length n in KG as a basic search-based rule in-
duction method.

• AMIE (Galárraga et al., 2013) AMIE is a classic
symbol-based rule mining system. It learns chain-
like rules by adding dangling atoms to the rule
body sequentially while evaluating their coverage
and confidence.

• AnyBurl AnyBurl (Meilicke et al., 2024) is a
novel RL-based rule induction method and is cur-
rently one of the best symbolic rule reasoning
methods competing with SOTA embedding rea-
soning approaches.

4.3 Implementations

For the tree-like rule refinement process, as it in-
volves many multiplications of large and sparse
matrices, we adopt the torch.sparse library to help
us store and operate such matrices. For the evalua-
tion process, to fairly evaluate the chain-like rules
mined by each method and the tree-like rules re-
fined by us, we adopt the toolkit of AnyBurl (Meil-
icke et al., 2024) to apply the learned rules to KGs
and evaluate the link prediction results with the
metrics MRR and Hit@n. As AnyBurl only origi-
nally supported chain-like rules, we modified the
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Avg. sc FB15k-237 WN18RR
Rule BBFS AMIE AnyBurl BBFS AMIE AnyBurl

CHAIN 12.85 30.71 26.84 5.93 28.05 8.66
TREE(AUX) 21.24 41.42 27.38 15.85 42.12 -
TREE(ENT) 61.34 76.47 61.12 88.14 93.63 87.30
TREE(QRY) 40.88 56.66 47.57 61.71 59.98 62.88
TREE 35.96 56.63 43.04 55.06 73.64 85.43

Avg. sc UMLS YAGO3-10
Rule BBFS AMIE AnyBurl BBFS AMIE AnyBurl

CHAIN 14.79 19.57 16.08 8.22 19.76 16.01
TREE(AUX) 19.86 33.29 26.05 15.56 27.60 19.09
TREE(ENT) 32.00 43.92 37.86 65.26 71.24 64.86
TREE(QRY) 25.65 39.51 32.19 41.08 44.48 47.23
TREE 24.48 38.24 30.93 37.17 49.18 42.38

Table 1: The average Standard Confidence of different rules on FB15k-237. CHAIN denotes the original chain-like
rules mined by each method. AUX, ENT, and QRY denote the three kinds of branch atoms in §3.3. TREE denotes
the refined tree-like rules. - denotes there are no such type of rules refined.

AnyBurl toolkit to make it compatible with tree-
like rules.

4.4 Setups

For each rule, we sample b = 100 entities to ground
the query variable X and conduct the forward &
backward reasoning process. We set β to the Stan-
dard Confidence sc of the original chain-like rule
R. For each variable, branch atoms with top k = 5
scores are selected to refine the rule. The chain-like
rules are all within length n = 3. The random seed
is fixed to 37.

4.5 Standard Confidence

We first verify if the refined tree-like rules are actu-
ally more precise, i.e. have higher Standard Confi-
dence than the original chain-like rules. As shown
in Table 1, The refined tree-like rules (TREE)
consistently have significant higher average Stan-
dard Confidence than the original chain-like rules
(CHAIN). These results verify that our proposed
refinement method effectively refine optimize the
initial objective in Eq 1. Moreover, we can observe
that among the tree types of proposed candidate
branch atoms, the ranking of their Standard Confi-
dence is ENT > QRY > AUX, indicating that their
constraining strength as branch atoms weakens in
this order, which aligns with our intuition.

4.6 Link Prediction

To further verify the effective of the refined tree-
like rules in the KG reasoning, we evaluated the
link prediction performances of chain-like rules
from all induction methods and their refined tree-
like rules on all four different KGs. As shown
in Table 2, the refined tree-like rules consistently
outperform the original chain-like rules induced
by different methods on different KGs. On the
FB15k-237 and UMLS datasets, the refinement of
chain-like rules into tree-like rules exhibits a per-
formance gain of more than 2% in most cases. No-
tably, on the UMLS dataset, tree-like rules demon-
strate a significant out-performance compared to
Anyburl chain-like rules, with an impressive 7.79%
improvement in MRR. These results lead us to the
conclusion that our framework effectively refines
chain-like rules from different rule-mining meth-
ods into higher-quality tree-like rules on different
knowledge graphs, thereby yielding superior rea-
soning outcomes.

4.7 Performance Analysis

From Table 2, we can also observe that the improve-
ments (delta values) vary across different knowl-
edge graphs. We explain this based on the topo-
logical structure and density of different knowl-
edge graphs. Intuitively, the sparser the knowledge
graph, the simpler the abstract structure it implies
(tending towards simple chain-like rules), while
the denser the knowledge graph, the more complex
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Dataset FB15k-237 WN18RR
Rule MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

BBFS
CHAIN 24.32 18.38 25.97 36.65 39.29 37.94 40.08 42.02
TREE 27.32 21.05 29.60 39.39 40.04 38.77 41.00 42.41
∆ +3.00 +2.67 +3.63 +2.74 +0.75 +0.83 +0.92 +0.39

AMIE
CHAIN 22.60 17.25 24.27 33.78 36.21 36.06 36.31 36.47
TREE 25.70 20.20 27.93 36.56 36.24 36.08 36.37 36.50
∆ +3.10 +2.95 +3.66 +2.78 +0.03 +0.02 +0.06 +0.03

AnyBurl
CHAIN 32.74 23.94 35.75 50.98 48.42 44.22 50.99 56.03
TREE 35.05 26.52 38.34 52.42 48.98 45.27 51.16 55.83
∆ +2.31 +2.58 +2.59 +1.44 +0.56 +1.05 +0.17 -0.20

Dataset UMLS YAGO3-10
Rule MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

BBFS
CHAIN 75.13 65.17 82.29 91.33 53.47 47.56 58.34 63.32
TREE 77.84 68.20 85.45 92.98 54.68 49.18 59.42 63.72
∆ +2.71 +3.03 +3.16 +1.65 +1.21 +1.62 +1.08 +0.40

AMIE
CHAIN 39.17 32.16 45.10 50.83 52.07 46.68 57.08 60.74
TREE 42.08 35.94 46.97 51.90 53.02 48.08 57.62 60.74
∆ +2.91 +3.78 +1.87 +1.07 +0.95 +1.40 +0.54 +0.00

AnyBurl
CHAIN 69.64 55.85 79.60 92.25 63.07 57.34 67.30 72.10
TREE 77.43 66.73 85.94 94.67 63.38 57.82 67.36 72.38
∆ +7.79 +10.88 +6.34 +2.42 +0.06 +0.48 +0.06 +0.28

Table 2: The link prediction performance of different rules on four KGs. CHAIN denotes the original chain-like
rules mined by each method. TREE denotes the refined tree-like rules. ∆ denotes the improvements.

KG FB15k-237 WN18RR UMLS YAGO3-10
density 2.59e-03 1.06e-04 2.20e-01 1.42e-04
avg∆MRR 2.80 0.61 4.47 0.74

Table 3: The edge density and the average ∆MRR
brought by tree-like rules of each KG.

the abstract structure it implies (tree-like rules will
have an advantage in reasoning).

From a qualitative perspective, WN18RR and
YAGO3-10, with smaller deltas, are subsets of
WN18 (which is also a subset of WordNet (Fell-
baum, 2010)) and YAGO3, respectively. FB15k-
237, with a moderate delta, is a larger subset of
FB15k and is relatively denser. These three knowl-
edge graphs have suffered varying degrees of in-
formation loss as they are sampled from the whole
knowledge graphs. UMLS, on the other hand, is
an unfiltered and complete knowledge graph, and
therefore retains the most complete information.

From a quantitative perspective, we calculated
the density of the four knowledge graphs used in
the experiments using edge density (number of
edges / the number of possible edges) and the av-
erage ∆MRR brought by tree-like rules, and the
results are shown in Table 3. We can see that in

knowledge graphs with higher density, the reason-
ing gain brought by tree-like rules is greater, and
the Pearson correlation coefficient between them
is 0.844. These verify that the density of the used
knowledge graph and the improvement brought by
tree-like rules are positively correlated.

4.8 Case Study
To better compare and present the tree-like rules
refined from chain-like rules, we provide two spe-
cific examples from YAGO3-10 in Figure 3. It
can be observed that the original chain-like rules,
constrained by the semantic expressiveness of their
chain structure, tend to produce a large number of
factually incorrect groundings, resulting in lower
standard confidence. In contrast, the tree-like rules
refined by our method address the semantic gaps of
the original rules in various ways, thereby achiev-
ing higher standard confidence.

5 Related Work

Rule induction over knowledge graphs is a classical
yet challenging task. Inductive Logic Programming
(ILP) seeks to induce the symbolic pattern behind
the knowledge graphs. It faces the combinatorial
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Examples of Rule Refinement

Chain-like Rule 1
Standard Confidence: 0.39
isLocatedIn(X, Y) <= hasCapital(X, Y)
Refined Tree-like Rules:

1. Standard Confidence: 1.00
isLocatedIn(X, Y) <= hasCapital(X, Y), hasOfficialLanguage(Y, M)

2. Standard Confidence: 0.50
isLocatedIn(X, Y) <= hasCapital(X, Y), hasWonPrize(Y, M)

3. Standard Confidence: 1.00
isLocatedIn(X, Y) <= hasCapital(X, Y), is(Gangtok, Y)

Chain-like Rule 2
Standard Confidence: 0.11
worksAt(X, Y) <= hasAcademicAdvisor(X, A), graduatedFrom(A, Y)
Refined Tree-like Rules:

1. Standard Confidence: 0.17
worksAt(X, Y) <= hasAcademicAdvisor(X, A), graduatedFrom(A, Y),

influences(A, X)

2. Standard Confidence: 0.33
worksAt(X, Y) <= hasAcademicAdvisor(X, A), graduatedFrom(A, Y),

is(University_of_Cambridge, Y)

3. Standard Confidence: 0.20
worksAt(X, Y) <= hasAcademicAdvisor(X, A), graduatedFrom(A, Y), owns(Y, M)

Figure 3: Examples of the refinement of chain-like rules into tree-like rules from YAGO3-10, along with their
respective Standard Confidences.

space of searching predicates and binding variables.
Traditional ILP methods including AMIE (Galár-
raga et al., 2013), AMIE+ (Galárraga et al., 2015)
and RLvLR (Omran et al., 2018) used search-based
methods to induce chain-like rules. Recently, many
works have studied the way of inducing chain-like
rules in a differentiable approach, named Differen-
tiable ILP, like NeuralLP (Yang et al., 2017), NLM
(Dong et al., 2019), DLM (Zimmer et al., 2021),
NLIL (Yang and Song, 2020).

However, only a few works considered the de-
fect of expressive power chain-like rules. NLIL
(Yang and Song, 2020) induced conjunctions of
chain-like rules like Car(X) ⇐ Wheel(Y1) ∧
Of(Y1, X)∧Window(Y2)∧Of(Y2, X), but they
are only tree-like rules with branches at the target
variable X . TyRule (Wu et al., 2022) proposed
to learn typed rules with type predicate typen(xi)

adding to each variable, but it needs extra type in-
formation of the knowledge graphs. In this paper,
we propose the concept of tree-like rules and an
effective framework for refining chain-like rules
into tree-like rules to reach better reasoning ability.

6 Conclusion

This paper introduces the concept of tree-like rules
and presents an effective framework for refining
chain-like rules into tree-like rules. To verify the
effectiveness of the tree-like rules refined by our
framework, this paper carried out experiments to
show that the refined tree-like rules consistently ex-
hibit higher Standard Confidence and outperform
the original chain-like rules on KG reasoning tasks.
Further analysis illustrates that the improvements
brought by the tree-like rules are positively corre-
lated with the the density of the KGs.
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