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Abstract

Temporal knowledge graph reasoning (TKGR)

is increasingly gaining attention for its abil-

ity to extrapolate new events from histori-

cal data, thereby enriching the inherently in-

complete temporal knowledge graphs. Exist-

ing graph-based representation learning frame-

works have made significant strides in devel-

oping evolving representations for both enti-

ties and relational embeddings. Despite these

achievements, there’s a notable tendency in

these models to inadvertently learn biased

data representations and mine spurious cor-

relations, consequently failing to discern the

causal relationships between events. This often

leads to incorrect predictions based on these

false correlations. To address this, we pro-

pose an innovative Causal Enhanced Graph

Representation Learning framework for TKGR

(named CEGRL-TKGR). This framework in-

troduces causal structures in graph-based repre-

sentation learning to unveil the essential causal

relationships between events, ultimately en-

hancing the performance of the TKGR task.

Specifically, we first disentangle the evolution-

ary representations of entities and relations in

a temporal knowledge graph sequence into two

distinct components, namely causal representa-

tions and confounding representations. Then,

drawing on causal intervention theory, we advo-

cate the utilization of causal representations for

predictions, aiming to mitigate the effects of

erroneous correlations caused by confounding

features, thus achieving more robust and accu-

rate predictions. Finally, extensive experimen-

tal results on six benchmark datasets demon-

strate the superior performance of our model in

the link prediction task.

1 Introduction

Knowledge graphs (KGs) have gained significant

promise in natural language processing or knowl-

edge engineering perception tasks (Chen et al.,

2022a). They model real-world factual knowledge

using multi-relationship graph structures. However,

factual knowledge in reality is constantly evolving,

resulting in the form of event knowledge. This has

led to the development and application of temporal

knowledge graphs (TKGs). TKG encodes the rela-

tionship information of entities and events and their

timing for capturing the dynamics of entities and

their relationships over time (Gastinger et al., 2022).

Thus, analyzing the TKG provides a comprehen-

sive understanding of the evolving events, based

on which various time-dependent applications have

been developed, including time-sensitive semantic

search (Barbosa et al., 2013), policy making (Deng

et al., 2020), stock forecasting (Feng et al., 2019),

and more (Chen et al., 2022a).

The reliability of applications depends on ac-

curate predicting, which highly relies on data in-

tegrality. However, existing TKGs are inevitably

incomplete due to the partial observation of real-

world (Liang et al., 2022). To address this lim-

itation and enhance the representation capabil-

ity of the TKG, temporal knowledge graph rea-

soning (TKGR) models are proposed and aim

to extrapolate new facts and relationships in the

TKG according to their historical temporal infor-

mation. Existing models explore different strate-

gies to achieve satisfactory results on the TKGR

task. GHNN (Han et al., 2020) and GHT (Sun

et al., 2022) model historical facts as point-in-time

processes. TKGR-RHETNE (Sun et al., 2023)

jointly models the relevant historical event and

temporal neighborhood event context of events

in the TKG. RE-NET (Jin et al., 2020) and RE-

GCN (Li et al., 2021) introduce graph neural net-

works (GNN) into sequence models to capture

structural and temporal dependencies between en-

tities. TKGR-GPRSCL (Xiong et al., 2024) cap-

tures complex structure-aware information by en-

coding paths across entities and obtaining temporal

correlations in the complex plane. TLogic (Liu

et al., 2022) and TITer (Sun et al., 2021) design
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interpretable models based on logical rules and

reinforcement learning, respectively. Despite the

achievements of previous studies, they have over-

looked the reality that there are numerous con-

founding factors in the TKG, such as shallow pat-

terns and noisy links. However, these confounding

factors commonly misguide the reasoning process

in the TKG, resulting in the acquisition of incor-

rect dependencies and the generation of non-causal

predictions (Sui et al., 2022).

To address the aforementioned issues, we ad-

vocate for the integration of causal theory into

TKGR to guide learning of the essential causal

relationships between events and mitigate the im-

pact of confounding factors on the TKGR task.

Specifically, we first construct a structural causal

model (Zečević et al., 2021) to comprehensively an-

alyze and model the TKGR task from a causal per-

spective. Then, based on the causal model, we pro-

pose a new framework, namely Causal Enhanced

Graph Representation Learning (CEGRL-TKGR),

to disentangle confounding factors from the es-

sential causal factors in the TKG. To the best of
our knowledge, this is the first study to incorpo-
rate causal intervention in a graph representation
learning framework for learning the evolutionary
representations of entities and relations in the TKG.

To conclude, our contributions in this paper are 3-

folds:

• We propose a novel Causal Enhanced

Graph Representation Learning framework

for Temporal Knowledge Graph Reasoning,

called CEGRL-TKGR, to uncover the essen-

tial causal relationships between events and

mitigate the impact of confounding factors.

• The proposed CEGRL-TKGR framework dis-

entangles the evolutionary representations of

entities and relations into causal and con-

founding representations. Then, it applies

causal interventions to perform backdoor ad-

justments of representations, prioritizing pre-

dicted causal features while minimizing the

impact of spurious correlations introduced by

confounding features.

• Comprehensive experimental results demon-

strate that CEGRL-TKGR outperforms state-

of-the-art baselines on six real-world datasets

in the link prediction task. Further, compre-

hensive studies confirm the contribution of

the introduced causal structures and interven-

tions1.

2 Related Work

2.1 Temporal Knowledge Graph Reasoning
TKGR in extrapolation settings focuses on predict-

ing new facts about the future based on historical

events. Specifically, CyGNet (Zhu et al., 2021)

uses a copy-generating mechanism to capture the

global repetition rate of facts. GHNN (Han et al.,

2020) and GHT (Sun et al., 2022) construct a tem-

poral point process (TPP) to capture the temporal

dynamics of successive events, predicting future

facts by estimating the conditional probability of

the TPP. In recent years, with the successful appli-

cation of GNN in many dynamic scenarios (Zhang

et al., 2022), they have also been introduced into

structural-semantic dependency models in TKGR.

RE-NET (Jin et al., 2020) used a neighborhood

aggregator and cyclic event encoder to model his-

torical facts as subgraph sequences. RE-GCN (Li

et al., 2021) uses RGCN (Schlichtkrull et al., 2018)

to learn evolutionary representations of entities

and relationships at each timestamp. CEN (Li

et al., 2022a) uses length-aware convolutional neu-

ral networks (CNNS) to process evolutionary pat-

terns of different lengths. There are also some

studies to solve the TKGR problem through path

search. For example, TLogic (Liu et al., 2022)

completes link prediction tasks based on tempo-

ral logic rules learned from temporal knowledge

graphs. TITer (Sun et al., 2021) proposes a TKG

prediction model based on reinforcement learning,

which uses time-shaped rewards based on Dirich-

let distribution to guide model training. All of

the methods discussed above have limitations in

modeling entity and relationship representations, in

particular ignoring cause-and-effect relationships

between different entities, which we believe is key

to making correct predictions.

2.2 Causal Representation Learning
In graph causal representation learning, researchers

have explored various methods to improve the ex-

planatory power and generalization performance

of GNNs. By applying the principles of causal

reasoning to graph-structured data, the researchers

1To illustrate the evaluation of our CEGRL-TKGR frame-
work and facilitate further research on this topic, we have
made the experimental details and source code of the frame-
work publicly available at https://github.com/shengyp/
CEGRL-TKGR.
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sought to address the challenges GNNs face when

dealing with complex systems such as social net-

works, molecular maps, and syntax trees of pro-

gram code. DIR (Wu et al., 2022) is proposed

to reveal the intrinsic interpretability of GNNs by

discovering invariant reasons, which involves split-

ting input graphs into causal and non-causal fruit

graphs and training the two classifiers through in-

variant risk loss functions. GOOD (Chen et al.,

2022b) improves the cross-domain generalization

of graphs by distinguishing invariant subgraphs

from other parts of graphs that are susceptible to

domain transfer. CAL (Sui et al., 2022) introduces

de-confounding training to distinguish the key and

secondary parts of the graph and eliminate the con-

founding effect of the secondary parts on model

prediction. CFLP (Zhao et al., 2022) points out

that the causal relationship between graph structure

and link presence is often ignored, and proposed

to generate counterfactual links to enhance train-

ing data and reduce reliance on false associations.

Zevcevic et al. (Zečević et al., 2021) theoretically

analyze the relationship between GNNs and struc-

tural causal models (SCMs) and design a new class

of neuro-causal models. However, none of the work

has been done to combine causal learning with the

TKGR task.

3 Preliminary

3.1 Notations and Task Formulation

A TKG G can be formalized as a sequence of

knowledge graph slices {G1,G2, . . . .,GT }, where

Gt = {(es, r, eo, t) ∈ G} denotes a knowledge

graph slice that consists of facts that occurred at

the timestamp t range from t0 to tn. Here, es and

eo represent the subject and object entities, respec-

tively, and r denotes the predicate as a relation type.

Besides, es, r, eo written in bold represent their

embeddings. The objective of TKGR task is to pre-

dict either the subject in a give query (?, r, eo, t) or

the object in a given query (es, r, ?, t) with t > tn.

3.2 A Causal Perspective on the GNN-Based
TKGR Task

3.2.1 GNN-based TKGR Paradigm
Inspired by previous GNN-based modeling in a ca-

sual look (Didelez and Pigeot, 2001; Sui et al.,

2022), we abstract the GNN-based TKGR pro-

cess through a structural causal figure, as shown in

Fig. 1, encompassing five distinct variables. The

connectivity from one variable to another epito-

Figure 1: The GNN-based structural causal graph for

the TKGR task.

mizes the causal relationship, delineated as the

cause → effect. The variables are described as

follows:

• Graph data Gt: The knowledge graph at each

timestamp t, manifests as a directed multi-

relationship figure.

• Causal Feature C: These features epitomize

the causal essence of the targeted entity, pro-

viding a fundamental understanding of its in-

herent dynamics.

• Confounding Feature N : These features, dis-

cerned from GNN, embody the confounding

attributes, unveiling the potential biases or

trivial patterns ingrained in graph-based learn-

ing methodologies.

• Representation R: These representations are

the entity and relational representations of the

output of the final GNN layer after learning

for Gt.

• Prediction Y : Denoted as TKGR as the link

prediction, this aspect transitions through the

decoder, rendering the ultimate reasoning

based on the preceding representation.

The causal embedding encapsulates the causal

features C, authentically mirroring the implicit

knowledge inherent in the knowledge graph Gt.

Conversely, N symbolizes the confounding fea-

tures, which might be spawned by data biases, data

noise, or superficial patterns within graph-based

learning methodologies. These confounding fea-

tures forge a backdoor pathway between C and

Y , fostering spurious correlations that don’t con-

tribute to accurate reasoning. Functionally, the

structural operation denoted by C → R ← N por-

trays a GNN, wherein both the causal features C
and the confounding features N , as discerned by

the target entity from the graph data, exert a direct

impact on the output R of the GNN. Subsequently,
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the output R of GNN directly sways the model

inference outcome, illustrated as R → Y .

In the graph-based TKGR paradigm, causal and

confounding features are not decoupled for each

entity or relationship embedding. Using causal

graphs, we aspire to explicitly separate causal em-

beddings and confounding embeddings from entity

or relational representations, and aim to mitigate

the effects of confounding features by performing

causal interventions. This endeavor not only clari-

fies the inference process but also endeavors to re-

fine the accuracy and reliability of the GNN-based

TKGR mechanism.

3.3 Causal Intervention Strategies
Beyond fostering a novel comprehension of GNN-

based TKGR, causal theory avails analytical instru-

ments predicated on causal figures, such as causal

intervention. Causal intervention facilitates a pro-

found examination of the factors precipitating in-

ference outcomes. As delineated by Fig. 1., con-

founding feature N and causal feature C can be

discerned from the knowledge graph Gt. These fea-

tures are contemplated in the representation R of

entities and relations, thereby establishing a back-

door pathway represented as N ← Gt → C → R
→ Y , with N serving as the quick bridge between

C and Y .

To orchestrate a causal prognosis hinging on

the causal feature C, it necessitates the modeling

of P (Y | C). However, the backdoor path dis-

torts the probability distribution P (Y | C) through

the confounding effect of N , thereby necessitat-

ing the disentanglement of the backdoor pathway

from N to Y . It is imperative to stymie this back-

door pathway to mitigate the repercussions of the

hybrid embedding, thereby enabling the model to

reason robustly by leveraging the causal feature to

the fullest. Causality theory is a potent toolkit to

address this backdoor path dilemma.

We engage the do-calculus for executing causal

interventions on variable C, intending to sever the

backdoor path N ← Gt → C → R → Y. Our ob-

jective is to estimate P (Y | do(C)), as opposed to

muddling it with P (Y | C). By using Bayes’ theo-

rem with the causal postulation, we can extrapolate

the ensuing expression:

P (Y | do(C)) =
∑
n∈N

P (Y | C, n)P (n). (1)

The equation above illustrates that to gauge the

causal influence of C on Y , it’s requisite to take

into account the inference outcomes of both causal

and confounding features. This can be perceived

as re-coupling the disentanglement feature embed-

dings, utilizing them for deductive reasoning at

future timestamps. However, C and N are usually

unobservable, and it is difficult to obtain them di-

rectly at the data level, which makes the calculation

of the Eq. (1) very challenging. In the next section,

we discuss ways to overcome this problem.

4 The Proposed CEGRL-TKGR
Framework

4.1 The Overall Architecture of
TKGR-GPRSCL

We detail the CEGRL-TKGR framework for learn-

ing representations of entities and relationships

based on causal features and confounding features.

CEGRL-TKGR consists of three parts: (1) The

representation learning part that learns the struc-

ture dependence in each Gt; (2) The decoupling

learning part that learns the entity and relation rep-

resentations; (3) The decoder part that is designed

based on the time interval. The overall architecture

of the framework is shown in Fig. 2.

4.2 Entity and Relation Evolution
Representation

Within each Gt, representation learning of entities

and relationships involves the aggregation of multi-

ple relationships, as well as information from mul-

tiple hop neighbors under a single timestamp. Be-

tween adjacent Gt, we expect to accurately capture

the order dependencies inherent in the subgraph

with different timestamps. Drawing inspiration

from the RE-GCN model (Li et al., 2021), we em-

ploy the ω-layer RGCN, which hinges on structure

modeling and a recurrent mechanism to progres-

sively update the representations of entities and

relations. This approach allows for a more nuanced

understanding and modeling of the dynamic inter-

actions within the graph over time.

el+1
o,t = RReLu

( ∑
(es,r,eo)∈Gt

1

deo
Wl

1

(
Φ
(
els,t, rt

))

+Wl
2e

l
o,t

)
, (2)

Et = GRU
(
Et−1,E

′
t

)
. (3)

In the Eq. (2), we describe how the embedding

el+1
o,t of entity eo at time step t and layer l+1 is com-

puted. We integrate the information of all entities
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Figure 2: The overall architecture of our proposed CEGRL-TKGR framework.

and relations connected to entity eo in the knowl-

edge graph Gt. W
l
1,W

l
2 is learnable weights and

Φ has the option of addition or one-dimensional

convolution. In the Eq. (3), we showcase how the

entity embedding matrix Et is updated via the GRU.

Specifically, we take the entity embedding matrix

Et−1 at the previous time step t − 1 and the ag-

gregated entity embedding matrix E′
t as inputs to

obtain the entity embedding matrix Et at the cur-

rent time step t.
For relations, ensuring consistency with the en-

tity embedding updates within the subgraph se-

quence is crucial. To achieve this consistency, a

specialized GRU tailored for relations is employed

for the update process. This mechanism facilitates

a harmonized evolution of both entity and relation

causal embeddings over the sequence of subgraphs:

r′t = pooling (Et−1, Rt)⊕ r, (4)

Rt = GRU
(
Rt−1,R

′
t

)
, (5)

where r′t is an aggregation of all entities connected

to relation r via a mean pooling operation, and R′
t

is obtained by concatenating this result with the

embeddings of all relations. Eventually, we update

the relation embedding matrix Rt using a GRU.

4.3 Disentangled Causal and Confounding
Features

In the previous subsection, the entity and rela-

tion representations are learned based on GNN-

contained causal and confounding factors, and we

separate them at the presentation level, which pro-

vides a solution to the previously mentioned prob-

lem of not being able to separate these two features

at the data level. To do this, we introduce a decou-

pling module to decouple causal and confounding

features. Taking the entity embedding matrix as an

example, it is represented as follows:

DE,C ,DE,N = softmax(MLP(E)), (6)

EC = E � DE,C ,EN = E � DE,N . (7)

We want the two embeddings learned from the

decoupling module to be as independent as pos-

sible, which is essential to accurately separate

causal and confounding features (Chen et al., 2023).

Mutual information is a basic quantity to mea-

sure the nonlinear correlation of two random vari-

ables. Minimizing mutual information is a feasi-

ble scheme to decouple causal features from con-

founding features. Specifically, we implement this

process with contrastive log-ratio upper-bound MI

estimator (Cheng et al., 2020; Wu et al., 2021),

which utilizes variational distributions q and a neu-

ral network to approximate the true distribution.

We define the objective function as follows:

Lmi = Ep(EC ,EN ) [log qθ(EN |EC)]

− Ep(EC)Ep(EN )

[
log qθ(EN |E′

C)
]
.

(8)

We perform the same operation with relation
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embedding decoupling, after which we obtain RC

and RN .

4.4 Temporal Gap Guided Decoder
After the causal and confounding embeddings of

entities and relations in the derived data, we use

a specially crafted decoder to determine the like-

lihood score of potential entities and relations.

Events or facts in a data stream may span different

periods. For example, major political events may

occur in rapid succession over a short period, while

certain rare natural phenomena may occur sporad-

ically and at longer intervals. With this in mind,

it is reasonable to consider the time intervals of

events to get an accurate picture of their temporal

relationship. The key to the design of our decoder

is the time interval vector, which guides the decod-

ing process in considering the event time interval

while calculating the fraction. Formulaic as:

ts = αst+ βs, tl = αlt+ βl. (9)

Here, αs,βs,αl, and βl signify learnable pa-

rameters. Adopting ConvTransE as our decoder,

we introduce four variables, which traverse a one-

dimensional convolutional layer followed by a fully

connected layer, culminating in the extraction of a

probability vector encompassing all entities. This

process is mathematically articulated as:

pC (eo | es, r, t) = ReLU
(
ConvTransE

(
es,C,t,

rC,t, ts, tl
))

EC,t.

(10)

We apply the same decoding process to the con-

founding features to get pN (eo | es, r, t).
4.5 Causal Intervention and Training

Objective
Causal-based embedding learns the intrinsic causes

that cause events to occur, so the reasoning re-

sults obtained from causal-based embedding are

expected to yield reasonable input results. We de-

fine the supervised classification loss as follows:

LE,C =
∑

(es,r,eo,t)∈G
yt logpC (eo | es, r, t) , (11)

where yt is label vector. Conversely, confounding

features are conceptualized to address conceivable

biases or superficial patterns emanating from the

training dataset. Given their inability to aid in infer-

ence, we proceed to compute their output average

across all entity categories and encapsulate the loss

as:

LE,N =
1

|EN,t|
∑

(es,r,eo,t)∈G
KL
(

yu,

logpN (eo | es, r, t)
)
,

(12)

where KL denotes the KL-Divergence, yu repre-

sents the uniform distribution.

We believe that causal intervention is the mani-

festation of causal features under the influence of

confounding features, but we cannot directly con-

duct causal intervention at the data level to mitigate

confounding effects. Therefore, we obtain inter-

vention features that combine causal features and

confounding features at the representation level of

entities and relationships. Specifically, according

to the backdoor adjustment Eq. (1), we first intro-

duce a random addition procedure to obtain the

intervention feature, and for the intervention fea-

ture we expect the decoder to still output the correct

result:

EI,t = φ
(
EC,t,E

′
N,t

)
, (13)

pI (eo | es, r, t) = ReLU
(
ConvTransE

(
es,I,t, rI,t,

ts, tl
))

EI,t, (14)

where E′
N,t is the confounding feature of the

entites randomly sampled from EN,t. Then we

define the loss as follows:

LE,I =
∑

(es,r,eo,t)∈G
yt logpI (eo | es, r, t) . (15)

Finally, the loss function of the model for the

link prediction task is as follows:

LE = LE,C +λ1LE,N +λ2Lmi+λ3LE,I , (16)

where λ1, λ2, λ3 are designated as hyper-

parameters, and the first two are used to determine

the strength of decoupled learning of the model

and the latter is used to determine the strength of

causal intervention of the model.

5 Experiments and Analysis

5.1 Experimental Settings and
Implementation Details

Datasets. We evaluate our model and base-

lines on six benchmark datasets, includ-

ing ICEWS14 (Garcia-Duran et al., 2018),
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ICEWS18 (Jin et al., 2019), ICEWS05-15 (Garcia-

Duran et al., 2018), YAGO (Mahdisoltani et al.,

2014), WIKI (Leblay and Chekol, 2018) and

GDELT (Leetaru and Schrodt, 2013). Statistics of

the datasets are summarized in Table 1.

Table 1: Statistics of datasets in the experiments.

Dataset # Entity # Predict # Train # Valid # Test Time interval

ICEWS14 7128 230 63685 13823 13222 24 hours

ICEWS18 23033 256 373018 45995 49545 24 hours

ICEWS05-15 10488 251 322958 69224 69147 24 hours

YAGO 10623 10 161540 19523 20026 1 year

WIKI 12554 24 539286 67583 63110 1 year

GDELT 7691 240 1734399 238765 305241 15 mins

Baselines. For the link prediction task, we com-

pare CEGRL-TKGR model with two categories

of KGR models: (1) static KGR models, includ-

ing TransE (Bordes et al., 2013), DistMult (Yang

et al., 2015), ComplEx (Trouillon et al., 2016)

and R-GCN(Schlichtkrull et al., 2018). We ap-

ply these models in static KGs that ignore times-

tamp information. (2) TKGR models, includ-

ing TTransE (Leblay and Chekol, 2018), TA-

DistMult (Garcia-Duran et al., 2018), TNTCom-

plEx (Lacroix et al., 2019), RE-GCN (Li et al.,

2021), GHT (Sun et al., 2022), EvoKG (Park et al.,

2022), TITer(Sun et al., 2021), xERTE (Han et al.,

2021), TLogic(Liu et al., 2022) and CEN(Li et al.,

2022b).

Evaluation Metrics. The mean reciprocal rank

(MRR) and Hits@k are standard metrics for the

TKG link prediction task. MRR is the average re-

ciprocal of the correct query answer rank. Hits@k
indicates the proportion of correct answers among

the top k candidates. We use a more reasonable

time-aware filter setting to report our experimental

results2.

Implementation Details. The whole of training

hyper-parameters and model configurations are

summarized in Appendix A.1.

5.2 Experimental Results and Discussion
Table 2 and Table 3 report the experimental re-

sults of the link prediction task on six benchmark

datasets. Static KG embedding methods fell far

behind CEGRL-TKGR due to their inability to cap-

ture temporal dynamics in the TKG. Our method

is also superior to other TKGR models in predict-

ing events. The improved performance shows that

surface patterns and noise are widely present in sev-

eral real-world TKG datasets. The previous models

2The time-aware filtering setting filters out only the four
groups that occur at query time and can simulate extrapolated
prediction tasks in the real world (Sun et al., 2021).

are generally inadequate in design. CEGRL-TKGR

based on evolutionary representation will learn the

inherent confounding features in the TKG when

gathering neighborhood information and transmit-

ting historical information, and the model based on

rule-based inference will mine the false correlation

in the data, all of which will lead to the model-

making non-causal predictions in the reasoning

stage. Our model incorporates causal theory into

the TKGR task and visibly separates causal features

from confounding features. This helps to protect

the model from surface patterns and noise present

in the dataset and to uncover the real reasons that

affect the formation of links between entities. TiTer

and EvoKG show excellent performance on YAGO

datasets because the former’s historical fact search

strategy works well on smaller datasets, while the

latter’s modeling of event timing works well on

datasets containing events at relatively regular time

intervals. More model configurations and experi-

mental results are summarized in the Appendix.

6 Conclusion

In this paper, we revisit the GNN-based TKGR

model from the causality perspective, on this ba-

sis, we propose a novel CEGRL-TKGR frame-

work. By synergistically integrating causal struc-

tures with graph representation learning of the

TKG, our framework overcomes the problem of

existing TKGR models’ learning biased data repre-

sentations and mining for false correlations uninten-

tionally. Comprehensive experimental results and

analysis have proved the effectiveness of CEGRL-

TKGR.

Limitations and Future Work. The proposed

CEGRL-TKGR is an innovational causal enhanced

graph representation learning framework for opti-

mizing feature representations directly using causal

technology for the TGKR task. The limitations of

CEGRL-TKGR are as follows:

• From the dataset’s perspective, our research

primarily focuses on TKG datasets, which

may not verify the generalization ability of

the CEGRL-TKGR framework to those time-

interval insensitive graph datasets. Addition-

ally, we aim to further conduct case studies to

enhance the interpretability of the framework

in the reasoning procedure as future work.

• From the model’s perspective, our research

evaluates the TKGR task alone. Theoreti-
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Table 2: Experimental results of link prediction on ICEWS series dataset. The best result in each column is

boldfaced.

Model ICEWS14 ICEWS18 ICEWS05-15

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 22.48 13.36 25.63 41.23 12.24 5.84 12.81 25.10 22.55 13.05 25.61 42.05

Distmult 27.67 18.16 31.15 46.96 10.17 4.52 10.33 21.25 28.73 19.33 32.19 47.54

ComplEx 30.84 21.51 34.48 49.59 21.01 11.87 23.47 39.97 31.69 21.44 35.74 52.04

R-GCN 28.03 19.42 31.95 44.833 15.05 8.31 16.49 29.00 27.13 18.83 30.41 43.16

TTransE 13.43 3.11 17.32 34.55 8.31 1.92 8.56 21.89 15.71 5.00 19.72 38.02

TA-DistMult 26.47 17.09 30.22 45.41 16.75 8.61 18.41 33.59 24.31 14.58 27.92 44.21

TNTComplEx 32.12 23.35 36.03 49.13 21.23 13.28 24.02 36.91 27.54 19.52 30.80 42.86

Evo-KG 26.90 16.69 30.57 47.39 25.46 16.25 29.15 43.21 26.32 15.82 31.96 50.80

xERTE 40.79 32.70 45.67 57.30 29.31 21.03 33.51 46.48 46.62 37.84 52.31 63.92

TITer 40.59 31.41 45.47 57.62 29.55 21.37 33.10 44.87 46.62 36.46 52.29 65.23

TLogic 41.80 31.93 47.23 60.53 28.41 18.74 32.71 47.97 45.99 34.49 52.89 67.39

RE-GCN 42.00 31.63 47.20 61.65 32.62 22.39 36.79 52.68 48.03 37.33 53.90 68.51
CEN 41.93 31.71 46.86 61.36 29.41 19.60 33.91 49.97 47.04 36.58 52.60 67.18

GHT 38.28 28.43 42.85 57.47 28.38 18.78 32.01 47.27 42.90 31.76 46.77 64.64

CEGRL-TKGR 42.74 32.32 48.05 62.68 32.90 22.70 36.91 52.95 48.35 37.63 54.22 68.47

Table 3: Experimental results of link prediction on YAGO, WIKI, and GDELT datasets. The best result in each

column is boldfaced.

Model YAGO WIKI GDELT

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 38.97 26.87 42.45 56.05 23.46 16.53 28.45 35.71 - - - -

Distmult 44.05 39.19 49.70 59.94 27.96 18.84 32.45 39.51 8.61 3.91 8.27 17.04

ComplEx 44.09 39.33 49.57 59.64 27.69 18.67 31.99 38.61 9.84 5.17 9.58 18.23

R-GCN 20.25 11.25 24.01 37.30 13.96 7.21 15.75 22.05 12.17 8.64 12.37 20.63

TTransE 31.19 18.12 40.91 51.21 29.27 21.67 34.43 42.39 - - - -

TA-DistMult 54.92 48.15 59.61 66.71 44.53 39.92 48.73 51.71 10.34 6.25 10.44 21.63

TNTComplEx 57.98 52.92 61.33 66.69 45.03 40.04 49.31 52.03 19.53 12.41 20.75 33.42

Evo-KG 68.81 54.49 81.40 92.41 67.44 54.63 79.36 85.98 18.94 11.31 20.08 34.01

GHT 57.22 51.64 60.68 67.17 48.50 45.08 50.87 53.69 20.04 12.68 21.37 34.42

xERTE 84.19 80.09 88.02 89.78 73.60 69.05 78.03 79.73 19.45 11.92 20.84 34.18

TITer 87.47 80.09 89.96 90.27 73.91 71.70 75.41 76.96 18.19 11.52 19.20 31.00

RE-GCN 82.30 78.83 84.27 88.58 78.53 74.50 81.59 84.70 19.69 12.46 20.93 33.81

CEN 83.49 79.66 86.10 90.04 78.52 74.65 81.44 84.59 19.96 11.39 20.97 33.77

CEGRL-TKGR 86.25 82.92 88.72 91.70 79.66 75.73 82.83 85.59 20.11 12.73 21.46 34.51

cally, the GNN-based reasoning paradigm in-

corporated in the causal structure can be ap-

plied to any other graph representation learn-

ing tasks, such as triple classification (Jaradeh

et al., 2021), triple set prediction (Zhang et al.,

2024), and graph classification (Liu et al.,

2023). In future work, we desire to explore

powerful disentanglement methods and more

advanced causal intervention strategies to im-

prove the CEGRL-TKGR’s performance for

more rich graph representation learning-based

tasks. Besides, the increased complexity of

causal reasoning in the TKG is untouched.

• From the adaptation’s perspective, to adapt the

CEGRL-TKGR framework to more models,

there are some hyper-parameters to control

causal intervention and training. These hyper-

parameters are sensitive to different models

and datasets, hence it needs to take sufficient

time to experiment to find the optimal values

and combinations among them. Therefore,

how to reduce the consumption in the above

adaptation procedure upon the framework is

worthy of consideration.
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A Appendix

A.1 Implementation Details

We set the dimension of all embeddings and hidden

states to 200. The number of layers of the R-GCN

is set to 1 for YAGO and 2 for the other datasets.

The optimal number of historical snapshots is set

to 8, 10, 10, 1, 2, and 6 for ICEWS14, ICEWS18,

ICEWS05-15, YAGO, WIKI, and GDELT, respec-

tively. To fair comparison, static graph constraints

are added for ICEWS14, ICEWS18, and ICEWS05-

15. The channel number for decoding is set to 50,

and the kernel size is set to 4×3. We try several dif-

ferent values for λ1, λ2, and λ3, and finally chose

0.5, 0.5, 0.3. We use Adam to optimize the pa-

rameters, with a learning rate of 0.001. All of the

experiments are processed on a Linux server with

CPU Xeon Gold 6142, RAM 64G, and Nvidia 4090

GPU.

A.2 Ablation Study

We investigate the effectiveness of causally en-

hanced and time-interval guided decoders for the

link prediction task. Specifically, CEGRL-TKGR

w/o TD means that no time interval vector is used to

guide the decoder to work, and CEGRL-TKGR w/o

CE means that the model removes causal decou-

pling and causal intervention parts. Table 4 shows

the results of ablation experiments, which indicate

the effectiveness of these two components. As can

be seen from the results in the table, for datasets

such as YAGO and WIKI that contain relatively reg-

ular time intervals, a temporal gap-guided decoder

can capture this time interval pattern well enough

to make accurate predictions. At the same time,

it does not degrade performance even for time-

interval insensitive datasets. Our causal enhance-

ment module, under the independent constraint of

emphasizing causal features and confounding fea-

tures, eliminates the influence of the fast bridge

through causal intervention, forcing the model to

learn the intrinsic causes of the events. It is worth

noting that our causal enhancement module can be

seen as a flexible component that can be easily used

in several GNN-based reasoning frameworks.

A.3 Parameter Sensitivity Analysis

In the CEGRL-TKGR, λ1 and λ2 jointly affect the

disentanglement intensity of causal and confound-

ing features, and λ3 controls the intensity of causal

intervention. We study the sensitivity of parame-

ters in different benchmark datasets, as depicted

in Fig. 3. Specifically, one parameter is fixed at

0.5 and the other parameter varies in [0,1] with

a step size of 0.1. The model is relatively stable

in most parameter selection cases, but on noisy

datasets, the model has higher requirements for

hyper-parameters, and extreme values will degrade

the performance of the model. The best range for

λ1, λ2 is about 0.5 to 0.7. λ3 should be a relatively

small value, ranging from 0.3 to 0.6.

A.4 Performance on Noisy Temporal
Knowledge Graphs

To explore whether the proposed CEGRL-TKGR

can alleviate noise and surface patterns, we ran-

domly replace a certain percentage of positive

triples in the training set of each TKG dataset in

form of noisy TKGs. Taking YAGO and WIKI

datasets as examples, we test the performance of

CEGRL-TKGR and CEGRL-TKGR w/o CE un-

der different noise deviations, respectively. The

experimental results are shown in Fig. 4.

From the experimental results, we can draw the

following conclusion: when the noise in the dataset

increases, the performance of models lacking the

recognition of causal features and confounding fea-

tures will deteriorate sharply, and the performance

of MRR and Hits@1 will decrease, which indicates

that the CEGRL-TKGR w/o CE is easy to capture

data bias and make wrong predictions based on

it. In contrast, CEGRL-TKGR uses the causal en-

hancement module to effectively reduce the impact

of confounding features and shows more stable per-

formance on these two noisy TKG datasets. The

performance degradations on MRR and Hits@1 are

significantly smaller than those without the causal

module.
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Table 4: The ablation study of our model on the six benchmark datasets. "w/o" means "without".

Model ICEWS14 ICEWS18 ICEWS05-15 YAGO WIKI GDELT

MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

CEGRL-TKGR w/o TD 42.21 62.43 32.67 52.68 48.13 68.33 84.71 90.56 78.54 84.37 19.93 34.50

CEGRL-TKGR w/o CE 41.89 61.65 32.62 52.54 48.03 68.20 81.93 88.39 79.04 84.79 19.66 33.71

CEGRL-TKGR 42.74 62.68 32.90 52.95 48.35 68.47 86.25 91.70 79.66 85.59 20.11 34.51

Figure 3: The parameters sensitivity analysis of loss coefficients λ1, λ2 and λ3.

(a) MRR results on the YAGO dataset. (b) Hits@1 results on the YAGO dataset.

(c) MRR results on the WIKI dataset. (d) Hits@1 results on the WIKI dataset.

Figure 4: The performance of CEGRL-TKGR and CEGRL-TKGR w/o CE on the noisy YAGO and WIKI datasets,

respectively.


