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Abstract

Entity Alignment (EA) is a critical task in
Knowledge Graph (KG) integration, aimed
at identifying and matching equivalent enti-
ties that represent the same real-world ob-
jects. While EA methods based on knowl-
edge representation learning have shown strong
performance on synthetic benchmark datasets
such as DBP15K, their effectiveness signifi-
cantly decline in real-world scenarios which
often involve data that is highly heterogeneous,
incomplete, and domain-specific, as seen in
datasets like DOREMUS and AGROLD. Ad-
dressing this challenge, we propose DAEA, a
novel EA approach with Domain Adaptation
that leverages the data characteristics of syn-
thetic benchmarks for improved performance
in real-world datasets. DAEA introduces a
multi-source KGs selection mechanism and a
specialized domain adaptive entity alignment
loss function to bridge the gap between real-
world data and optimal benchmark data, mit-
igating the challenges posed by aligning en-
tities across highly heterogeneous KGs. Ex-
perimental results demonstrate that DAEA out-
performs state-of-the-art models on real-world
datasets, achieving a 29.94% improvement in
Hits@1 on DOREMUS and a 5.64% improve-
ment on AGROLD. Code is available at https:
//github.com/yangxiaoxiaoly/DAEA.

1 Introduction

Knowledge Graphs (KGs) have recently been de-
veloped and utilized across various domains. How-
ever, since most KGs are created independently by
different organizations and individuals, they often
exhibit significant heterogeneity. Knowledge fu-
sion seeks to address this by aligning and merging
heterogeneous and redundant information within
KGs to achieve a globally unified representation of

*Corresponding Author
1https://www.wikidata.org/wiki/Wikidata:Main_Page
2https://www.dbpedia.org/

knowledge (Dong et al., 2014). Entity Alignment
(EA) plays a crucial role in this fusion process, with
its primary objective being to identify equivalent
entities across different KGs.

In recent years, methods based on knowledge
representation learning have become increasingly
popular for tackling the entity alignment challenge.
These methods work by projecting entities into a
low-dimensional vector space, where the similarity
between entities is determined based on their em-
beddings. MTransE (Chen et al., 2017), BootEA
(Sun et al., 2018), JAPE (Sun et al., 2017), and
TransEdge (Sun et al., 2019) utilize TransE (Bor-
des et al., 2013) to learn entity and relation em-
beddings. GNN-based EA methods (Wang et al.,
2018; Xu et al., 2019; Wu et al., 2019a) generate en-
tity embeddings by aggregation information from
their neighbourhoods via GNNs (Kipf and Welling,
2017). These methods are based on the premise that
similar neighborhood structures exist in different
KGs, implying isomorphism, which may not hold
true due to the heterogeneity of KGs (Sun et al.,
2020). To address this, some approaches have ap-
plied an attention mechanism to weigh relations
between entities differently (Mao et al., 2020; Wu
et al., 2019a) or have selectively ignored neighbors
that are detrimental to alignment (Wu et al., 2020;
Cao et al., 2019; Li et al., 2019). Additionally, at-
tributes of triples have been recognized as vital for
alignment. Several strategies enhance alignment
by embedding attributes such as names, types, or
values alongside structural embeddings (Sun et al.,
2017; Wang et al., 2018; Chen et al., 2020; Zhang
et al., 2019; Trisedya et al., 2019; Wang et al., 2020;
Tang et al., 2020; Zhong et al., 2022).

In real-world datasets, issues such as high hetero-
geneity, sparsity, and incompleteness are prevalent
(Lisena et al., 2018; Venkatesan et al., 2018). Not
only many corresponding entities have completely
different neighbors (as illustrated in Figure 1), but
numerous entities also lack attribute information.

5890

Proceedings of the 31st International Conference on Computational Linguistics, pages 5890–5901
January 19–24, 2025. ©2025 Association for Computational Linguistics

mailto:email@domain
mailto:email@domain
mailto:email@domain
mailto:email@domain
https://github.com/yangxiaoxiaoly/DAEA
https://github.com/yangxiaoxiaoly/DAEA
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.dbpedia.org/


Macau

Macao(film)

Sao PauloLuanda

The Man with the 

Golden Gun

Fulltime Killer

Asia

Guangdong
Linkoping 

Municipality

No Risk, 

No Gain

share 

border 

with

twinned 

adminstrati

ve body

twinned 

adminstrati

ve body
twinned 

adminstrati

ve body

narrative

location
narrative

location
narrative

location

narrative

location

continent Macau

Macao(film)

Sao PauloLuanda

The Man with the 

Golden Gun

Fulltime Killer

Asia

Guangdong
Linkoping 

Municipality

No Risk, 

No Gain

share 

border 

with

twinned 

adminstrati

ve body

twinned 

adminstrati

ve body
twinned 

adminstrati

ve body

narrative

location
narrative

location
narrative

location

narrative

location

continent
Macau

2007_Asian_Indoor_

Games

So_Good

(TV_Series)

Ediso_Chen
Macau_Asia_Satellite

_Television

South_China_Sea

Macau_Tower

broadc

astArea citizenShip

location
location

hostCity

nearestCity

Macau

2007_Asian_Indoor_

Games

So_Good

(TV_Series)

Ediso_Chen
Macau_Asia_Satellite

_Television

South_China_Sea

Macau_Tower

broadc

astArea citizenShip

location
location

hostCity

nearestCity

Macau

2007_Asian_Indoor_

Games

So_Good

(TV_Series)

Ediso_Chen
Macau_Asia_Satellite

_Television

South_China_Sea

Macau_Tower

broadc

astArea citizenShip

location
location

hostCity

nearestCity

DBpediaWikidata

Figure 1: An example of entity alignment in real-world KGs (Wikidata 1and DBpedia2). The yellow backgrounds
represent the same entities in two KGs. The surrounding blue and green backgrounds represent their neighbor
entities, while the solid lines with arrows represent the relations between entities.

Therefore, relying solely on the information in-
herent within KGs is insufficient for effectively
learning and performing EA. This limitation signif-
icantly leads to the degradation in performance of
these models when applied to real-world datasets.

To enhance EA performance on real-world
datasets, we propose the Domain Adaptive Entity
Alignment (DAEA) method. This innovative ap-
proach aims to enhance the model’s adaptabil-
ity and accuracy in diverse real-world environ-
ments by leveraging rich knowledge from source
datasets. We first propose a multi-source KGs se-
lection mechanism that strategically selects rele-
vant dataset from multiple source KGs. If source
data is selected for transfer learning without care-
ful consideration, it may cause negative transfer.
Therefore, the mechanism selects the source KGs
that are most similar to the target KGs for domain
adaptation, taking into account both semantic and
structural information. By incorporating insights
gained from synthetic benchmarks, the mechanism
strengthens the model’s ability to align entities
more accurately, even in the face of complex and
diverse KGs.

Additionally, we design a domain adaptive entity
alignment loss function that plays a crucial role dur-
ing the training phase of the model by reducing the
distance between corresponding entities, thereby
aligning them more closely. Simultaneously, it also
works to minimize the distributional disparities be-
tween benchmark data, which is often idealized or
standardized, and real-world data, which contains
more variability and noise. In summary, the main
contributions of this paper are as follows:

• We propose a multi-source KGs selection
mechanism that fully leverages the valuable
information available in benchmark datasets

to enhance entity alignment in real-world
datasets.

• We design a domain adaptive entity alignment
loss function with a dual focus on both en-
tity alignment and domain adaptation, which
helps in achieving a more holistic improve-
ment in model performance.

• To the best of our knowledge, this is the first
instance of applying domain adaptation tech-
niques from transfer learning specifically to
the task of EA. Extensive experiments demon-
strate that our DAEA method outperforms
SOTA models on real-world datasets.

2 Related Work

2.1 Entity alignment
Currently, the majority of Entity Alignment (EA)
methods are grounded in knowledge representa-
tion learning, and can be primarily categorized
into either translation based methods or based on
GNNs/GCNs. Translation based methods, such
as MTransE (Chen et al., 2017), JAPE (Sun et al.,
2017), KECG (Li et al., 2019), BootEA (Sun et al.,
2018), Multi-mapping Relations (Shi and Xiao,
2019), TransEdge (Sun et al., 2019), JarKA(Chen
et al., 2020), and CTEA(Yan et al., 2020), princi-
pally constrain the entity embeddings into a fixed
distribution by translation-based knowledge graphs
embedding methods. Based on the observation that
entities sharing similar neighboring structures tend
to be aligned, EA approaches based on GCNs dis-
tribute and consolidate entity information across
graphs. GCN-Align (Wang et al., 2018) is the first
to use GCN to jointly embed the entity structure
and entity attributes. Building upon this founda-
tion, many approaches have enhanced GCNs to
address issues such as noise propagation (HGCN
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(Wu et al., 2019b)), heterogeneity (MuGNN (Cao
et al., 2019), Alinet (Sun et al., 2020), NMN (Wu
et al., 2020), MRAEA (Mao et al., 2020)), and
better utilization of relationship and attribute infor-
mation (RDGCN (Wu et al., 2019a), RAGA (Zhu
et al., 2021a), RNM (Zhu et al., 2021b), EPEA
(Wang et al., 2020)). The ExEA (Tian et al., 2024)
framework is designed to generate high-quality ex-
planations for a given embedding-based EA model
while also improving EA results through repair.
CAECGAT (Xie et al., 2021) jointly learns cross-
KG embeddings by propagating information across
different KGs, and DuGa-DIT (Xie et al., 2020)
bridges the semantic gap between KGs by lever-
aging both neighborhood features and cross-KG
alignment information. And some temporal entity
alignment methods, like TS-align (Zhang et al.,
2024), Simple-HHEA (Jiang et al., 2024). Simple-
HHEA highlights the challenge of entity alignment
in heterogeneous knowledge graphs and introduces
a new time-aware heterogeneous knowledge graph
entity alignment dataset.

With the rise of pre-trained language mod-
els like BERT (Kenton and Toutanova, 2019),
HMAN+BERT (Yang et al., 2019), SDEA (Zhong
et al., 2022), and BERT-INT (Tang et al., 2020)
treat entity alignment as a downstream task for
fine-tuning BERT.

Due to the high heterogeneity and limited avail-
able information in real-world datasets, existing
entity alignment methods, despite showing supe-
rior performance on benchmarks, experience sig-
nificant performance degradation when applied to
real-world datasets. Consequently, we propose
DAEA approach, which incorporates domain adap-
tation techniques to enhance entity alignment per-
formance in real-world datasets.

2.2 Domain Adaptation
Domain adaptation (DA) is a key area within trans-
fer learning (Pan and Yang, 2009), aiming to adapt
models from a source domain to a target domain
with differing distributions. Techniques in DA
focus on extracting domain-invariant representa-
tions by utilizing distance metrics like Maximum
Mean Discrepancy (MMD) (Gretton et al., 2012)
and Correlation Alignment (CORAL) (Sun and
Saenko, 2016), as well as employing adversar-
ial methods such as Domain-adversarial Neural
Network (DANN) (Ganin et al., 2016) and Multi-
adversarial Domain Adaptation (MADA) (Pei et al.,
2018) to align these distributions. For more com-

plex scenarios involving multiple sources, multi-
source domain adaptation (MDA) is necessary. In
entity linkage topic, AdaMEL (Jin et al., 2021)
leverages attribute information to adapt labeled
data from different source datasets to target dataset.
Research in multi-source graph domain adaptation
(GDA) includes models like NESTL (Fu et al.,
2020), which trains individual models for each
source based on topological similarity, and MSDS
(He et al., 2023), which selects the most transfer-
able sources using mixed discrepancy metrics. Ad-
ditionally, Meta-GDN (Ding et al., 2021) facilitates
few-shot network anomaly detection by transfer-
ring meta-knowledge from multiple networks.

Although there has been much research on GDA,
there has been no research on domain adaptation
for entity alignment where the datasets not only
contain graph pairs, but also have heterogeneous
structures, presenting more challenges.

3 Task Definition

Definition 1 (Knowledge Graph) A knowl-
edge graph (KG) is denoted as G =
(E,R,A, V, Tr, Ta), where E = {e1, e2, ...em},
R = {r1, r2, ...rn}, A = {a1, a2, ...ap}, and
V = {v1, v2, ..., vq} represent entity set, relation
set, attribute set, and value set, respectively, and
m,n, p, q are the number of entities, relations,
attributes, and attribute values, respectively.
Tr ⊆ E × R × E is the relation triple set, and
Ta ⊆ E × A × V is the attribute triple set.
Relational triples can also be represented as
(h, r, t), where h is called the head entity and t is
called the tail entity.
Definition 2 (Entity Alignment in KGs) Given two
KGs G1 = (E1, R1, A1, V 1, T 1

r , T
1
a ), and G2 =

(E2, R2, A2, V 2, T 2
r , T

2
a ), the aligned entity pairs

(training set) is denoted as S = {(e1i , e2j )|e1i ∈
E1, e2j ∈ E2, e1i ≡ e2j}, where ≡ stands for equiv-
alence, i.e., the entity e1i and entity e2j refer to the
same thing in the real world. The goal of the EA
task is to find the remaining equivalent entity pairs
of these two KGs.
Definition 3 (Source and Target KGs) The source
KGs Gsl refers to a graph pairs {(G1

sl
, G2

sl
)}.

Here l means source dataset number. The
superscript of graph pairs means the order
of graph. There are multiple source KGs:
GS = {Gs1 = (G1

s1 , G
2
s1), ..., Gsu =

(G1
su , G

2
su)}, and target KGs GT = (G1

t , G
2
t ),

u is the number of source KGs, where
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G1
s1 = (E1

s1 , R
1
s1 , A

1
s1 , V

1
s1 , T

1
rs1 , T

1
as1) and G1

t =
(E1

t , R
1
t , A

1
t , V

1
t , T

1
rt, T

1
at). The aligned entity

pairs (training set) are denoted as Ssl =
{(e1isl , e

2
jsl

)|e1isl ∈ E1
sl
, e2jsl ∈ E2

sl
, e1isl ≡ e2jsl}

and St = {(e1it, e2jt)|e1it ∈ E1
t , e

2
jt ∈ E2

t , e
1
it ≡

e2it}, where ≡ stands for equivalence.

4 Methodology

The DAEA model primarily comprises of two com-
ponents: Multi-Source KGs Selection (Figure 2)
and Domain Adaptation (Figure 3).

Multi-Source KGs Selection is employed to iden-
tify which source KGs from the benchmark are

most suitable to do transfer learning to the target
KGs. In Figure 2, the optimal KGs for transfer
learning are selected by calculating the semantic
and structural distances between various KGs. Se-
mantic and structural information are captured us-
ing GloVe (Pennington et al., 2014) embeddings
and Graph Attention Networks (GATs) (Velickovic
et al., 2017) respectively, with the latter employing
an unsupervised contrastive learning loss. A more
detailed discussion will be provided in Section 4.1.

Figure 3 details the process of domain adapta-
tion. Initially, data input is expanded on the basis of
BERT-INT architecture to include both source and
target KGs. During the training phase, the model
not only employs pairwise margin loss to approxi-
mate the corresponding entities in the source and
target KGs but also computes domain adaptive loss
between the training sets of the source and target
KGs. More details will be discussed in Section 4.2.

4.1 Multi-source KGs selection
To more comprehensively assess the similarity be-
tween KGs, we consider both semantic and struc-
tural information. Let DGsGt represent the distance
between the source KGs (GS) and the target KGs
(GT ). Specifically, we define DGsGt as follows:

DGsGt = {DGs1Gt , . . . ,DGsuGt} (1)

The smaller the distance between source and target
KGs, the higher their similarity. Therefore, we
select the source KGs with the smallest distance as
the optimal. DGsiGt for each individual component
i = 1, . . . , u is given by:

DGsiGt = dSEGsiGt + dSTGsiGt (2)
5893



Here, dSEGsiGt and dSTGsiGt represent the se-
mantic and structural distances, respectively, and
are computed as:

dSEGsiGt = dSEG1
si
G1

t
+ dSEG2

si
G2

t
(3)

dSTGsiGt = dSTG1
si
G1

t
+ dSTG2

si
G2

t
(4)

4.1.1 Semantic Distance
We employ the widely-used word embedding tool,
GloVe, to obtain the embedding representations
of entity names within the KGs. The semantic
embedding representations of the source and tar-
get KGs are denoted by SEG1

si
, SEG2

si
, SEG1

t
,

SEG2
t
, respectively. We utilize the Jensen-Shannon

(JS) distance (Fuglede and Topsoe, 2004), a widely
adopted metric, to assess similarities across KGs.
dSEG1

si
G1

t
is computed as:

dSEG1
si
G1

t
=

√
JS(SEG1

si
, SEG1

t
) (5)

where JS(SEG1
si
, SEG1

t
) can be computed as :

JS(SEG1
si
, SEG1

t
) =

1

2
D(SEG1

si
∥ M) +

1

2
D(SEG1

t
∥ M)

M =
1

2
(SEG1

si
+ SEG1

t
)

(6)

Here, D(P ∥ Q) for P and Q, can be computed
as:

D(P ∥ Q) =
∑
i

Pilog(
Pi

Qi
) (7)

The calculation method for dSEG2
si
G2

t
follows

the same approach.

4.1.2 Structural Distance
A two-layer GAT is employed to extract the struc-
tural information from KGs. Specifically, with a
standard GAT layer, the hidden state hi for entity
ei at each layer is performed as follows.

hi = ReLU(
∑
j∈Ni

αijWhj) (8)

where Ni denotes the set of neighbors of ei, hj
denotes the embedding of entity ej obtained by this
layer, W is a trainable weight matrix, αij are the
attention coefficients computed as:

αij =
exp(Γ(aT [Wei ⊕Wej ]))∑

k∈Ni
exp(Γ(aT [Wei ⊕Wek]))

(9)

where Γ is the LeakyReLU nonlinear activation
function, a is a trainable parameter, ⊕ denotes the
concatenation operation.

In order to better accommodate the entity align-
ment task, we utilize an unsupervised contrastive
learning loss during the training process when ap-
plying GAT to individual graph data. For each en-
tity, the goal is to maximize the distance between
it and its neighbouring entities.

Lc =
1

|Ni|
∑
ej∈Ni

max(0,M − Eu(ei, ej)) (10)

where |Ni| is the number of Ni, and M is the mar-
gin, Eu is the Euclidean distance.

Structural embeddings, denoted as GATG1
si

,
GATG1

si
, can be obtained through the trained GAT.

Subsequently, the structural distance dSTG1
si
G1

t
can

be calculated as described in Equation (5).

4.2 Domain Adaptation

In the domain adaptation stage, DAEA follows
BERT-INT and treats entity alignment as the down-
stream task to fine-tune a pre-trained BERT model.
Initially, we expand the input data into source KGs
and target KGs. Subsequently, we compute the
pairwise losses for both the source KGs and the
target KGs, as well as the domain adaptive loss
between the source KGs and the target KGs. The
sum of these three losses constitutes the total loss
of the entire model. It can be denoted as:

Loss = Ls + Lt + LDA (11)

4.2.1 Pairwise Loss

For each entity pairs (e1i , e
2
j ) in training set S, for

entity e1i , we treat e2j as a positive example, and a
negative example e2−j randomly sampled from E2.
Let Ls and Lt respectively represent the pairwise
loss for the source KGs and the target KGs. Ls can
be computed as follows.

Ls =
∑

(e1i ,e
2
j ,e

2−
j )∈S

max{0, l1(e1i , e2j )− l1(e
1
i , e

2−
j ) +M} (12)

where M is the margin, l1(e1i , e
2
j ) is the L1 distance

between e1i and e2j . The calculation of Lt follows
the same methodology as above.
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4.2.2 Domain Adaptive Loss
We compute the distribution distance between the
training sets of the source KGs and the target KGs
to serve as the domain adaptive loss.

Given a source training set Ss =
{(e1is, e2is, e

2−
is )|e1is ∈ E1

s , e
2
is ∈ E2

s , e
2−
is ∈ E2

s , }
and a target training set St = {(e1jt, e2jt, e

2−
jt )|e1jt ∈

E1
t , e

2
jt ∈ E2

t , e
2−
jt ∈ E2

t , }. When computing the
domain adaptive loss, we minimize the distance
between positive examples from the source and
target KGs, as well as the distance between
negative examples from the source and target
KGs. Let DAP and Let DAN denote the domain
adaptive loss of one positive and negative pairs,
respectively. They are denoted as:

DAP =

|Ss|∑
i=1

|St|∑
j=1

(d(e1is, e
1
jt) + d(e2is, e

2
jt)) (13)

DAN =

|Ss|∑
i=1

|St|∑
j=1

d(e2−is , e2−jt ) (14)

where | · | represents the size of a set.
To effectively measure the distance between

source and target distributions, we employ MMD
(Gretton et al., 2012), which is one of the
most widely used metrics in domain adaptation.
d(e1is, e

1
jt) is computed as:

d(e1is, e
1
jt) = E[k(e1is, e1

′
is)] + E[k(e1jt, e1

′
jt)]

− 2E[k(e1is, e1jt)] (15)

where k refers to kernel function, which is Gaus-
sian kernel (Elen et al., 2022) in our case. e1

′
is and

e1
′

jt are samples from source and target. E is the ex-
pected value. d(e2is, e

2
jt) and d(e2−is , e2−jt ) are com-

puted with a similar way. Eventually, the domain
adaptive loss is denoted as:

LDA = DAP +DAN (16)

5 Experiment

5.1 Experiment Settings
5.1.1 Datasets
The widely used benchmark, DBP15K, is consid-
ered as an ideal synthetic dataset for entity align-
ment, comprising three multilingual sub-datasets:
ZH-EN, JA-EN, and FR-EN. In this study, we
adopt DBP15K as the source KGs, while utilizing
two real-world datasets, DOREMUS (Lisena et al.,
2018) and AgroLD (Venkatesan et al., 2018), as the

Datasets Entities Rel. Rel.Triples Attr. Attr.Triples Pairs
DBP15K

ZH-EN
ZH 19388 1701 70414 7780 379684

15000
EN 19572 1323 95142 6933 567755

JA-EN
JA 19814 1299 77241 5681 354619

15000
EN 19780 1153 93484 5850 497230

FR-EN
FR 19661 903 105998 4431 528665

15000
EN 19993 1208 115722 6161 576543

Real-World Data

DOREMUS
G1 2057 19 5057 3 1775

238
G2 1889 20 4659 4 884

AGROLD
G1 96117 7 21029 6 28895

11555
G2 51488 4 139546 12 225060

Table 1: Details of the datasets. Rel., Rel.Triples,
Attr., Attr.Triples, and Pairs represent relations, rela-
tion triples, attributes, attribute triples, and entity pairs
respectively.

target KGs, which are introduced by (Raoufi et al.)3.
DOREMUS is a multilingual dataset focused on
classical music, and AGROLD is a large dataset
for plant science. From Table 1, it is evident that
nearly 80% of entities can find their corresponding
counterparts in DBP15K, whereas only about 10%
of entities have aligned counterparts in real-world
data.

5.1.2 Baselines
Methods are classified into three categories
based on differences in their embedding modules:
translation-based methods, GNN-based methods,
and BERT-based methods. We have chosen 7
SOTA EA methods that encompass diverse em-
bedding modules. Translation-based methods:
TransEdge (Sun et al., 2019), MultiKE (Zhang
et al., 2019). GNN-based methods: RDGCN (Wu
et al., 2019a), NMN (Wu et al., 2020). BERT-
based methods: SDEA (Zhong et al., 2022),
BERT-INT (Tang et al., 2020). We also compare
the method in Attr-Int (Yang et al., 2024) that cal-
culates only the overlap of attribute value sets.

Although many recent multi-modal entity align-
ment methods have been developed, like MCLEA
(Lin et al., 2022), MEAformer (Chen et al., 2023a),
UMEA (Chen et al., 2023b), we do not compare
our approach with these methods due to the lack of
images in real-world datasets.

5.1.3 Implement details
For each dataset, we divide the aligned entity pairs
into training and test sets with a ratio of 3:7. To
cover all data from both source and target KGs
in one epoch, the batch size for the source KGs
are set to 24, and for AGROLD, it is set to 19.

3https://github.com/EnsiyehRaoufi\Create_
Input_Data_to_EA_Models
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However, due to the significant disparity in data
volume between the source KGs and DOREMUS,
we expand the DOREMUS training set to six times
its original size to ensure a thorough traversal of
the source KGs. This is achieved by repeating the
original training set six times without introducing
new data, and the batch size is set to 1.

5.1.4 Evaluation Metric
To facilitate comparison with previous methods, we
adopt ranking-based evaluation metrics for entity
alignment, specifically Hits@k and mean recipro-
cal rank (MRR). Hits@k measures the proportion
of correct alignments among the top k matches
(k = 1, 10). Note that higher Hits@k and MRR in-
dicate better performance. We use H@1 and H@10
to present Hits@1 and Hits@10 in this paper.

Methods DOREMUS AGROLD
Emb.Modules Names H@1 H@10 MRR H@1 H@10 MRR

TransE
TransEdge 0.60 4.19 0.036 0.01 0.02 0.001
MultiKE 2.70 8.70 - 2.30 5.7 -

GCN
RDGCN 1.2 10.9 - 0.02 0.30 -

NMN 0.0 4.14 - 0.01 0.12 -

BERT
SDEA 38.69 55.95 0.461 0.01 0.02 0.001

BERT-INT 47.9 59.28 0.515 21.50 25.03 0.229
None Attr-Int 48.74 76.47 0.587 14.33 20.36 0.167

BERT DAEA 77.84 88.62 0.815 27.14 34.85 0.300
↑29.94 ↑29.34 ↑0.3 ↑5.64 ↑9.82 ↑0.071

Table 2: Entity alignment results on Real-World Data

5.2 Experimental Results

5.2.1 Main Results
The experimental results of DAEA compare to
other methods on two real-world datasets are
shown in Table 2. It is observable that, compared
with other methods, DAEA achieves the best per-
formance. Except for BERT-INT and Attr-Int, the
performance of the other compared models is rela-
tively suboptimal. The reason for this phenomenon
is attributed to the fact that these models incorpo-
rate the neighboring entities when calculating the
embeddings of entities, whereas BERT-INT only
utilizes entity names and descriptions for embed-
ding representation, and Attr-Int merely computes
the overlap of attribute value sets. This suggests
that in real-world datasets, the neighboring entities
of the corresponding entities are highly heteroge-
neous, introducing noise when neighbor informa-
tion is included, thus leading to poor alignment
results.

To further validate whether the real-world
datasets are highly heterogeneous, we employ the
method described in (Yang et al., 2024) to calculate
the coverage rate of corresponding entities in the

real-world datasets compared to those in the bench-
mark. Let (e1i , e

2
j ) be an entity pair, N(e1i ) and

N(e2j ) be the sets of neighboring entities of e1i and
e2j respectively, then the coverage rate C(e1i ,e

2
j )

of

the entity pair (e1i , e
2
j ) is calculated by C(e1i ,e

2
j )

=

|N(e1i ) ∩N(e2j )|/min
(
|N(e1i )|, |N(e2j )|

)
, where

| · | represents the size of a set.
As illustrated in Figure 4, it can be seen that the

neighbours of the corresponding entities in the real-
world datasets are completely different, whereas
most corresponding entities in the benchmark have
the same neighbors. However, most previous mod-
els are based on the assumption that identical enti-
ties have similar neighboring entities. As a result,
these models experience a significant decline in
performance on real-world datasets.

Figure 4: Percentage of coverage rate of entity pairs
in each stage of the benchmark datasets and real-world
datasets. The x-axis represents the coverage rate of
entity pairs, while the y-axis represents the proportion
of all benchmark datasets.

5.2.2 Ablation Study
The DAEA model comprises of two main com-
ponents: multi-source KGs selection and Domain
Adaptation. To validate the effectiveness of these
components, we conduct ablation studies.
Multi-Source KGs Selection: In the multi-source
KGs selection phase, we select source KGs based
on the computed distance DGsGt described in Sec-
tion 4.1, positing that a shorter distance indicates
a closer relationship between source and target
datasets. As illustrated in Table 3, we quantify
the distances between three benchmark datasets
(FR-EN, ZH-EN, JA-EN) and two target KGs. No-
tably, the FR-EN source KGs are closest to the
two target KGs and exhibit the best alignment per-
formance. A trend is observed wherein increasing
distances between source and target KGs correlated
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with decreasing results in entity alignment. This
demonstrates the effectiveness of our multi-source
KGs selection strategy.

Methods
DOREMUS AGROLD

DGsGt H@1 H@10 MRR DGsGt H@1 H@10 MRR
FR-EN 67.51 77.84 88.62 0.815 77.64 27.14 34.85 0.300
ZH-EN 90.72 71.25 85.03 0.756 91.85 22.65 29.26 0.292
JA-EN 105.71 70.65 83.83 0.740 104.55 20.25 28.19 0.231

Table 3: Entity alignment results on Real-World Data
with different source KGs.

Domain Adaptation: During the domain adapta-
tion phase, the training process involves the com-
putation of the domain adaptive loss between pos-
itive and negative examples from the source KGs
and target KGs. To validate the efficacy of the
domain adaptive loss and to assess the individ-
ual impacts of positive and negative examples, we
conduct various experiments. The results are pre-
sented in Table 4, where ’DA’ denotes domain adap-
tive loss, ’P’ indicates using only positive exam-
ples, and ’N’ represents using only negative ex-
amples. Table 4 illustrates that without domain
adaptive loss results in a notable decrease in per-
formance on DOREMUS, with a less significant
decline observed on AGROLD. This variation in
outcomes can be attributed to the differing sizes of
the datasets; AGROLD possesses a considerably
larger data volume compared to the source KGs,
whereas DOREMUS has a smaller data set. We
believe that smaller datasets exhibit simpler data
distributions, while larger datasets feature more
complex distributions. Consequently, when per-
forming transfer learning with the same source
KGs, smaller datasets align more easily with the
source KGs, and experimental results tend to be
relatively better.

Additionally, on the DOREMUS dataset, the
best H@1 score is achieved when both positive
and negative examples are transferred. However,
on the AGROLD dataset, using only negative ex-
amples yields better results. This indicates that in
practical transfer learning scenarios, different tar-
get datasets cannot be treated uniformly. Instead,
the transfer learning approach should be tailored
to the specific characteristics and requirements of
each target dataset to optimize outcomes.

5.2.3 The impact of dataset size for domain
adaptation

To examine the impact of transferring different
amounts of data from source KGs to target KGs on
entity alignment, we conduct experiments using a

Methods
DOREMUS AGROLD

H@1 H@10 MRR H@1 H@10 MRR
DAEA 77.84 88.62 0.815 27.14 34.85 0.300

-w/o DA 71.86 83.23 0.750 26.24 36.04 0.299
-w P 76.05 89.82 0.801 26.87 36.11 0.303
-w N 72.46 84.43 0.762 27.97 37.37 0.315

Table 4: Ablation results. ’w/o’ means without and ’w’
means with. ’DA’ means domain adaptive loss. ’P’ indi-
cates using only positive examples, and ’N’ represents
using only negative examples.

fixed training set (30%) in the target KGs, while
varying the proportion of entity pairs selected from
the source KGs at 30%, 50%, 80%, and 100%. The
experimental results are depicted in Figure 5. On
the DOREMUS dataset, optimal performance is
achieved when 50% of the source data was trans-
ferred. Performance do not improve and slightly
declines as the transferred data exceeded 50%, sug-
gesting that more source data does not necessarily
lead to better alignment. This decline in perfor-
mance when the source data substantially exceeds
the target data may be attributed to an increase in
noise within the transferred data.

Conversely, on the AGROLD dataset, the perfor-
mance improved with an increase in the amount of
transferred data. Given the large volume of data
in AGROLD, more source data is required for ef-
fective transfer learning. In fact, even when 100%
of the entity pairs from the source KGs are uti-
lized, the source data volume do not significantly
exceed the target data (as opposed to the case for
DOREMUS dataset). This suggests that for ef-
fective entity alignment through transfer learning,
having a larger volume of source data compared to
target data is beneficial, as long as the source data
maintains a high level of quality and the volume
remains within an optimal range.

Figure 5: The impact of using training sets of varying
sizes from the source KGs for domain adaptation on EA
performance.
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5.3 Distribution visualization and analysis

To assess the impact of domain adaptation on en-
tity alignment, we compare the DOREMUS entity
embeddings before and after the integration of do-
main adaptation. We visualize the entity embed-
dings using Principal Components Analysis (PCA)
(Maćkiewicz and Ratajczak, 1993), as shown in
Figure 6. It can be observed that without domain
adaptation (represented in red and blue), the entities
are clustered together with almost indistinguishable
distances between them, which is a primary cause
of suboptimal entity alignment performance. Af-
ter incorporating domain adaptation (represented
in orange and purple), the distances between enti-
ties significantly increased, facilitating easier iden-
tification of corresponding target entities during
alignment and thereby yielding improved entity
alignment results.

Figure 6: PCA of entity embeddings in DOREMUS.
BERT-INT-G1 and BERT-INT-G2 represent the en-
tity embeddings obtained without domain adaptation,
DAEA-G1 and DAEA-G2 represent the entity embed-
dings obtained with domain adaptation.

6 Conclusion

In this paper, we address the issue that current en-
tity alignment models perform well on benchmarks
but perform suboptimally on complex real-world
datasets. We introduce the DAEA model, which
enhances the performance of entity alignment in
real-world datasets by leveraging data characteris-
tics from benchmarks through multi-source KGs
selection and domain adaptation strategies. Exten-
sive experiments demonstrate that DAEA achieves
state-of-the-art performance.

Limitations

While the DAEA model has demonstrated sig-
nificant improvements in entity alignment perfor-
mance on real-world datasets, there are still limita-
tions that merit further exploration.

Firstly, the current implementation of DAEA pri-
marily computes the domain adaptive loss on the
training sets of the source and target KGs, without
extending this transfer learning to the neighboring
entities or the entire entity set of the KGs. This
constrained scope of domain adaptation may limit
the model’s ability to fully leverage the structural
and semantic richness of the entire KG, potentially
affecting the robustness and generalizability of the
alignment. Future work will investigate the impact
of expanding transfer learning to encompass the
complete graph data, aiming to enhance the com-
prehensiveness and accuracy of entity alignment.

Secondly, the improvements achieved by DAEA
are more pronounced on the smaller dataset,
DOREMUS, compared to the larger dataset,
AGROLD. This disparity suggests that the current
domain adaptation strategies may not scale as effec-
tively with increasing data volume. Addressing this
challenge, future research will focus on develop-
ing new transfer strategies that are better suited to
large-scale datasets, thereby improving the model’s
performance across varying data sizes and com-
plexities.

These limitations highlight the need for ongoing
refinement and adaptation of the DAEA model to
better address the diverse and dynamic nature of
real-world data environments.

Acknowledgement

We sincerely thank the anonymous reviewers for
their valuable and insightful feedback, which has
greatly contributed to improving the quality of this
work. This work is supported by the National Nat-
ural Science Foundation of China (62276057), and
Sponsored by CAAI-MindSpore Open Fund, de-
veloped on OpenI Community. Furthermore, we
gratefully acknowledge the additional financial sup-
port provided by the China Scholarship Council.
Finally, we extend our appreciation to Baskerville
for their resources and technical assistance, which
played an essential role in the successful comple-
tion of this research.

5898



References
Antoine Bordes, Nicolas Usunier, Alberto Garcia-

Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems.

Yixin Cao, Zhiyuan Liu, Chengjiang Li, Juanzi Li, and
Tat-Seng Chua. 2019. Multi-channel graph neural
network for entity alignment. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1452–1461.

Bo Chen, Jing Zhang, Xiaobin Tang, Hong Chen, and
Cuiping Li. 2020. Jarka: Modeling attribute inter-
actions for cross-lingual knowledge alignment. In
Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pages 845–856. Springer.

Muhao Chen, Yingtao Tian, Mohan Yang, and Carlo
Zaniolo. 2017. Multilingual knowledge graph em-
beddings for cross-lingual knowledge alignment. In
Proceedings of the 26th International Joint Confer-
ence on Artificial Intelligence, pages 1511–1517.

Zhuo Chen, Jiaoyan Chen, Wen Zhang, Lingbing Guo,
Yin Fang, Yufeng Huang, Yichi Zhang, Yuxia Geng,
Jeff Z Pan, Wenting Song, et al. 2023a. Meaformer:
Multi-modal entity alignment transformer for meta
modality hybrid. In Proceedings of the 31st ACM
International Conference on Multimedia, pages 3317–
3327.

Zhuo Chen, Lingbing Guo, Yin Fang, Yichi Zhang,
Jiaoyan Chen, Jeff Z Pan, Yangning Li, Huajun Chen,
and Wen Zhang. 2023b. Rethinking uncertainly miss-
ing and ambiguous visual modality in multi-modal
entity alignment. In International Semantic Web Con-
ference, pages 121–139. Springer.

Kaize Ding, Qinghai Zhou, Hanghang Tong, and Huan
Liu. 2021. Few-shot network anomaly detection via
cross-network meta-learning. In Proceedings of the
Web Conference 2021, pages 2448–2456.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko
Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. 2014. Knowledge
vault: A web-scale approach to probabilistic knowl-
edge fusion. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 601–610.
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