MetaMetrics-MT: Tuning Meta-Metrics for Machine Translation via Human Preference Calibration
David Anugraha, Garry Kuwanto, Lucky Susanto, Derry Tanti Wijaya, Genta Winata
Abstract
We present MetaMetrics-MT, an innovative metric designed to evaluate machine translation (MT) tasks by aligning closely with human preferences through Bayesian optimization with Gaussian Processes. MetaMetrics-MT enhances existing MT metrics by optimizing their correlation with human judgments. Our experiments on the WMT24 metric shared task dataset demonstrate that MetaMetrics-MT outperforms all existing baselines, setting a new benchmark for state-of-the-art performance in the reference-based setting. Furthermore, it achieves comparable results to leading metrics in the reference-free setting, offering greater efficiency.- Anthology ID:
- 2024.wmt-1.32
- Volume:
- Proceedings of the Ninth Conference on Machine Translation
- Month:
- November
- Year:
- 2024
- Address:
- Miami, Florida, USA
- Editors:
- Barry Haddow, Tom Kocmi, Philipp Koehn, Christof Monz
- Venues:
- WMT | WS
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 459–469
- Language:
- URL:
- https://preview.aclanthology.org/jlcl-multiple-ingestion/2024.wmt-1.32/
- DOI:
- 10.18653/v1/2024.wmt-1.32
- Cite (ACL):
- David Anugraha, Garry Kuwanto, Lucky Susanto, Derry Tanti Wijaya, and Genta Winata. 2024. MetaMetrics-MT: Tuning Meta-Metrics for Machine Translation via Human Preference Calibration. In Proceedings of the Ninth Conference on Machine Translation, pages 459–469, Miami, Florida, USA. Association for Computational Linguistics.
- Cite (Informal):
- MetaMetrics-MT: Tuning Meta-Metrics for Machine Translation via Human Preference Calibration (Anugraha et al., WMT 2024)
- PDF:
- https://preview.aclanthology.org/jlcl-multiple-ingestion/2024.wmt-1.32.pdf