Sharif-STR at SemEval-2024 Task 1: Transformer as a Regression Model for Fine-Grained Scoring of Textual Semantic Relations
Seyedeh Fatemeh Ebrahimi, Karim Akhavan Azari, Amirmasoud Iravani, Hadi Alizadeh, Zeinab Taghavi, Hossein Sameti
Abstract
This paper explores semantic textual relatedness (STR) using fine-tuning techniques on the RoBERTa transformer model, focusing on sentence-level STR within Track A (Supervised). The study evaluates the effectiveness of this approach across different languages, with promising results in English and Spanish but encountering challenges in Arabic.- Anthology ID:
- 2024.semeval-1.151
- Volume:
- Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
- Month:
- June
- Year:
- 2024
- Address:
- Mexico City, Mexico
- Editors:
- Atul Kr. Ojha, A. Seza Doğruöz, Harish Tayyar Madabushi, Giovanni Da San Martino, Sara Rosenthal, Aiala Rosá
- Venue:
- SemEval
- SIG:
- SIGLEX
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 1043–1052
- Language:
- URL:
- https://preview.aclanthology.org/jlcl-multiple-ingestion/2024.semeval-1.151/
- DOI:
- 10.18653/v1/2024.semeval-1.151
- Cite (ACL):
- Seyedeh Fatemeh Ebrahimi, Karim Akhavan Azari, Amirmasoud Iravani, Hadi Alizadeh, Zeinab Taghavi, and Hossein Sameti. 2024. Sharif-STR at SemEval-2024 Task 1: Transformer as a Regression Model for Fine-Grained Scoring of Textual Semantic Relations. In Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 1043–1052, Mexico City, Mexico. Association for Computational Linguistics.
- Cite (Informal):
- Sharif-STR at SemEval-2024 Task 1: Transformer as a Regression Model for Fine-Grained Scoring of Textual Semantic Relations (Ebrahimi et al., SemEval 2024)
- PDF:
- https://preview.aclanthology.org/jlcl-multiple-ingestion/2024.semeval-1.151.pdf