
Proceedings of the 9th International Workshop on Computational Linguistics for Uralic Languages, pages 29–35
November 28-29, 2024 ©2024 Association for Computational Linguistics

Universal-WER: Enhancing WER with Segmentation and Weighted
Substitution for Varied Linguistic Contexts

Samy Ouzerrout
University of Orléans

France
samy.ouzerrout@etu.univ-orleans.fr

Abstract

Word Error Rate (WER) is a crucial metric
for evaluating the performance of automatic
speech recognition (ASR) systems. However,
its traditional calculation, based on Levenshtein
distance, does not account for lexical similarity
between words and treats each substitution in a
binary manner, while also ignoring segmenta-
tion errors.

This paper proposes an improvement to WER
by introducing a weighted substitution method,
based on lexical similarity measures, and in-
corporating splitting and merging operations to
better handle segmentation errors.

Unlike other WER variants, our approach is eas-
ily integrable and generalizable to various lan-
guages, providing a more nuanced and accurate
evaluation of ASR transcriptions, particularly
for morphologically complex or low-resource
languages.

1 Introduction

Automatic speech recognition (ASR) is now ubiqui-
tous in our daily lives, facilitating translation, video
transcription, note-taking, and interactions with
voice assistants. While advances in deep learning
models have significantly improved ASR system
accuracy, challenges remain, particularly for un-
derrepresented and morphologically complex lan-
guages. Despite these advancements, evaluating
the performance of ASR systems remains essential
to ensure their accuracy and reliability.

Word Error Rate (WER) is still the benchmark
metric for evaluating transcription quality, but it
relies on the Levenshtein distance, which does not
account for lexical imprecision or segmentation
errors, limiting its relevance in the face of linguistic
diversity.

Low-resource languages often exhibit complex
morphological structures (Lupyan and Dale, 2010),

making them particularly vulnerable to segmenta-
tion errors, especially in the case of agglutinative
languages.

WER applies a double penalty to these errors, ar-
tificially inflating the error rate. Furthermore, these
languages are often characterized by high dialectal
diversity, leading to inappropriate penalties for vari-
ations that are not inherently errors. Lastly, WER
treats all lexical substitutions in a binary manner,
overlooking minor variations that could be consid-
ered acceptable. These limitations highlight the
need for a more precise evaluation, better suited to
linguistic diversity.

Two main approaches stand out to improve
WER calculation: on the one hand, models
incorporating weightings based on word mean-
ing, such as the Weighted Word Error Rate
(WWER) (Shichiri et al., 2007), and on the
other hand, methods like the Phoneme Error
Rate (PER) (He and Radfar, 2021), which assess
recognition at the phonemic level. Recently,
evaluation methods based on language models
have also emerged. However, these solutions have
limitations, particularly in terms of implementa-
tion complexity and generalization to all languages.

Our work proposes an improved version of
WER, tailored to the specificities of ASR tran-
scriptions, by introducing weighted substitution
based on lexical similarity measures, as well as
splitting and merging operations to better handle
segmentation errors. This approach aims to ensure
adaptability to various languages and different
usage contexts.

2 Introducing WER and the Levenshtein
Distance

The Word Error Rate (WER), the main metric used
to evaluate the performance of ASR systems, cal-
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culates an error rate: he lower the rate (with a min-
imum of 0), the better the recognition. The maxi-
mum rate is unbounded and can exceed 1 (Wikipé-
dia, 2023). The WER formula is given by:

WER =
S +D + I

N

This calculation is based on the Levenshtein dis-
tance, an algorithm that measures the similarity
between two sequences by counting the minimum
number of operations required to transform one
sequence into another (Levenshtein, 1966). The
algorithm recognizes three operations:

• S is the number of substitutions (errors where
one word is replaced by another),

• D is the number of deletions (missing words
in the transcription),

• I is the number of insertions (extra words
added compared to the reference text),

• N is the total number of words in the refer-
ence text.

The algorithm works by constructing a matrix
where each cell represents the alignment cost (by
insertion, deletion, or substitution) of a segment
from the input sequence (transcription) with a seg-
ment from the target sequence (reference text). The
cost calculation is performed iteratively, comparing
the elements of the two sequences.

t a c
0 1 2 3

c 1 1 2 2
a 2 2 1 2
t 3 2 2 2

Figure 1: example of a matrix for aligning the sequences
"cat" and "tac".

2.1 Substitution Cost Calculation
The Levenshtein distance calculates the shortest
path in the matrix by combining the costs of in-
sertion, deletion, and substitution. The costs of
insertion and deletion are fixed at 1. Regarding
substitution, the algorithm assigns a cost of 0 if the
units being compared are identical and a cost of 1
if they differ.

This mechanism, called binary substitution,
means that the units are considered either entirely

identical or different. Each cell of the matrix is
defined as the minimum between:

D(i, j) = min





D(i− 1, j) + 1 (case of a deletion)
D(i, j − 1) + 1 (case of an insertion)
D(i− 1, j − 1)+

sub_cost(A[i], B[j]) (case of a substitution)

where the substitution cost is defined as:

sub_cost(A[i], B[j]) =

{
0 si A[i] = B[j]

1 si A[i] ̸= B[j]

Thus, minimum cost to transform one sequence
into anotherto another is obtained by following the
minimal cost path in this matrix. This mechanism
is essential for WER calculation, but it has several
limitations due to its application to whole words.

3 Challenges of WER Based on
Levenshtein Distance

This cost calculation method is effectively used
in the character error rate rate (CER), where the
comparison units are individual characters. In this
context, each character is compared to another, and
the substitution decision is naturally binary: either
the units are identical (cost of 0), or they differ
(cost of 1).

However, the WER, which compares entire
words, has significant limitations, as highlighted
by (Shigeki et al., 2023). Due to its binary ap-
proach, the WER mainly compares orthographic
forms rather than the words themselves, which pe-
nalizes minor variations, such as "advisor" and "ad-
viser."

These orthographic variations also include space
insertions, as in "doghouse" and "dog house,"
which are double-counted in WER calculation.
This type of situation is treated as a segmentation
error.

These limitations affect all languages, but they
are particularly pronounced in languages with com-
plex morphology, minority languages, and those
with limited resources.

3.1 Weaknesses of Binary Substitution
The binary logic of the Levenshtein distance in
substitution cost calculation is problematic in the
context of WER, as it treats words as homogeneous
entities, without considering their lexical similarity.
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For example, the words "hello" and "allo"
are phonetically and orthographically closer
than "hello" and "sunny." However, Levenshtein
distance assigns the same substitution cost (1) to
both word pairs, thus failing to distinguish minor
errors from major ones.

Traditional WER lacks any mechanism to weight
errors based on lexical similarity. As a result, two
words differing only by minor variations are treated
as if they were significantly divergent.

This approach oversimplifies linguistic errors,
significantly limiting WER’s ability to accurately
assess the performance of ASR systems.

3.2 Segmentation Errors
Levenshtein distance does not account for segmen-
tation errors, such as word splitting or merging,
which are common in ASR transcriptions.

For example, if "keyboard" is transcribed as "key
board," traditional WER calculation treats this as
two distinct errors: a substitution and an insertion.
However, this is actually a single splitting error.

Reference: keyboard

Transcription: key board

Substitution

+
Insertion

Figure 2: Double counting of segmentation errors.

Similarly, when a compound expression like "ice
cream" is transcribed as a single word "icecream,"
this constitutes a merging error.

Reference: ice cream

Transcription: icecream

Union

Figure 3: Merging error in transcription

The omission of segmentation errors leads to an
inaccurate evaluation of transcriptions, overlooking
aspects specific to speech recognition. Moreover,
these segmentation issues are often considered less
severe than insertions and deletions.

3.3 Morphologically complex languages
Morphological richness poses major challenges
for ASR systems, which struggle to handle word
inflections (prefixes, suffixes, etc.), thereby increas-
ing the number of lexical forms and creating rare
or unseen structures in training data (Morris, 2021).

In highly inflected languages, even small lexical
variations can have a disproportionate impact on
ASR performance. A simple error in a suffix or
internal inflection can significantly increase WER,
despite an otherwise accurate transcription. WER,
by treating each word as a whole unit, does not
account for this morphological variability.

Agglutinative languages, such as Finnish and
Estonian, present particular challenges for speech
recognition due to their morphological complexi-
ties. Words are formed by concatenating roots with
numerous affixes, resulting in long lexical units
and generating multiple word forms. This presents
several difficulties for ASR systems:

• Vocabulary explosion : For Finnish, a lexi-
con of 400,000 words can still lead to a high
rate of out-of-vocabulary words (Kurimo et al.,
2006). This complicates the accurate tran-
scription of these unknown words, and WER,
not accounting for this complexity, severely
penalizes variations that might be considered
minor in the context of these languages.

• Segmentation errors:A poorly trained ASR
system might split these elements into mul-
tiple words or merge them incorrectly, lead-
ing to multiple errors in the Word Error Rate
(WER) calculation.

3.4 Minority and Low-Resource Languages
Often characterized by complex morphology, mi-
nority languages are subject to the same constraints
mentioned earlier.

In evolutionary linguistics, (Lupyan and Dale,
2010) showed that languages spoken by large cos-
mopolitan communities, with many non-native
speakers, tend to simplify their morphology over
time. In contrast, minority languages, spoken
in smaller communities, generally retain complex
morphological structures. Native speakers of these
languages share an intuitive understanding of these
complex rules, allowing the language to preserve
these features.

Similarly, (Lindenfelser, 2020) explains that
languages with fewer non-native speakers or those
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that have not been significantly influenced as
a second language (L2) tend to retain or even
develop complex morphological systems, such as
elaborate inflection systems for nouns or verbs.

Although low-resource languages are often mi-
nority languages, some are also widely spoken.
This lack of data imposes various constraints on
ASR systems:

• Lack of diverse data:Limited and insuffi-
ciently diverse corpora affect the ability of
ASR models to correctly recognize lexical and
linguistic variations.

• Transcription errors related to data quality:
Errors often stem from poor quality or lack of
standardization in transcriptions, rather than
an intrinsic weakness of the system.

• Inability to handle dialectal variations: The
same word or phrase may be pronounced dif-
ferently depending on the region, dialect, or
speaker. Models trained on a standard form
(or specific dialect) often fail to recognize vari-
ants from other regions.

• Difficulty in handling accents: The phonetic
diversity is often vast but under-documented,
complicating ASR models’ ability to accu-
rately process these regional variations or ac-
cents.

• Low phonological standardization: The
lack of formal rules for pronunciation and seg-
mentation makes it difficult for ASR models
to manage words effectively.

These training limitations lead to multiple errors,
disproportionately increasing the WER, even when
the divergences do not reflect actual inaccuracies.

4 Proposed New Method for WER
Calculation

4.1 Lexical Measures for Substitution Cost
To overcome the limitations of binary substitution
in WER calculation, we introduce the use of lexical
similarity measures such as the Jaccard index, CER
(character error rate), or cosine similarity. These
measures calculate a continuous dissimilarity cost
between 0 and 1, reflecting the actual difference
between words.

sub_cost(A[i], B[j]) = similarity(A[i], B[j])

Table 1 presents the error rates (in percentage)
for different word pairs. the higher the value, the
more dissimilar the words are. The last column in-
dicates the algorithmic complexity of each method.

It is important to note that CER can exceed 100%
when the transcription is significantly longer than
the reference word, due to its calculation based on
Levenshtein distance, which penalizes excessively
long transcription sequences.

While these measures can be combined to offer
a holistic evaluation, this increases the complexity
of the process and, therefore, the execution time.

4.2 Split and Merge Operations
We introduce two new operations for WER calcu-
lation: splitting and merging. These operations
aim to correct common segmentation errors in
transcriptions produced by ASR systems. A word
may be incorrectly split into two segments or,
conversely, merged into one.

For example, when the word "input" is tran-
scribed as "in put," a single merging operation
would suffice to correct this error, rather than
treating it as two distinct errors. By incorporating
these operations into WER calculation, our
approach improves the accuracy of this metric by
accounting for word segmentation errors in ASR
transcriptions.

To incorporate these operations within the Leven-
shtein algorithm, we add the following conditions:

// Separation
if (j > 1 and (transcript[j] == reference[i-1] +

reference[i])) then
d[i, j] := min(d[i, j], d[i-2, j-1] +

seg_Cost)

// Union
if (i > 1 and (reference[i] == transcript[j-1] +

transcript[j])) then
d[i, j] := min(d[i, j], d[i-1, j-2] +

seg_Cost)

Splitting and merging errors, being less severe
than insertions and deletions,can be given a re-
duced cost. Moreover, these errors can be treated as
adding or removing a character from a word. The
cost can thus be calculated using the CER, which
is simplified in this configuration:

seg_cost =





1/len(reference) (cost based on CER)
1 (standard cost)
0.5 (reduced cost)

32



Method hello allo kitten sitting intention exe-
cution

diner dinner O(n)

Cosine similarity 36.7% 38.3% 38.5% 5.1% O(n+m)
Fuzzy Wuzzy 33.0% 38.0% 43.9% 8.9% O(n*m)
Jaro 21.7% 25.4% 36.3% 5.5% O(n*m)
Sorensen Dice 42.9% 63.6% 60.0% 11.1% O(n+m)
CER 50.0% 42.86% 55.55% 16.66% O(n*m)
LCS similarity 40.0% 42.86% 44.44% 16.66% O(n*m)
Jaccard LCS 50.0% 55.55% 61.54% 16.66% O(n*m)

Table 1: Comparison of similarity measures with complexity.

4.3 Experimental Analysis

In this study, we carried out transcriptions of
Finno-Ugric languages (Finnish, Meadow Mari,
and Hill Mari), as well as Dutch and Afrikaans,
using the MMS model. The performance of the
transcriptions was evaluated using WER, CER,
and our UWER version.

Language WER CER UWER
Finnish 0.691 0.136 0.161
Meadow Mari 0.636 0.151 0.242
Hill Mari 0.922 0.313 0.471
Afrikaans 0.384 0.106 0.141
Dutch 0.477 0.104 0.134

For UWER calculation, the segmentation cost
(seg_cost) was adjusted according to the CER.
Tests with costs set to 1 and 0.5 showed minimal
differences, as illustrated below:

cost = cer cost = 1 cost = 0.5
0.226 0.22837 0.22734
0.24172 0.2473 0.2441

To better visualize the impact of these error rate
differences, here are some examples of reference
sentences and their transcriptions, with the two
measures compared ( table 2).

5 Discussion

5.1 Improvement

• Acoustic versus linguistic errors: WER
does not distinguish between errors caused
by acoustic factors (noise, pronunciation) and
those of a linguistic nature, assigning them
equal weight in the score calculation.

Reference Transcription WER UWER
ja minä huokasin
kevennyksestä

ja mina huokasin
kevenyksest

0.50 0.10

kaisa syötteli por-
sasta

kaisa syoteli por-
sasta

0.33 0.08

oletpa tosiaan
lapsellinen

olet pa tosian
lapselinen

1.33 0.12

ik ben daar heel
blij mee

ik ben dar hel blij
me

0.50 0.12

de beatles waren
van liverpool

da bitels uaren fan
liverpul

1.00 0.36

naaktslakken
hebben geen
slakkenhuis

naktslaken heben
gen slakenhuis

1.00 0.14

Table 2: WER and UWER Comparison

• Equal penalty for all types of errors: Al-
though we introduced a dynamic penalty for
substitutions, it remains fixed for insertions
and deletions. a penalty proportional to the
length of inserted or deleted words could,
among other things, help mitigate the impact
of noise.

• Combined errors: Our experimental anal-
yses show that when segmentation and lex-
ical errors are combined, even our metric
no longer accurately reflects the transcription
quality. For exemple:

Reference Transcription WER UWER
tervetuloa tervet tuloa 2.00 1.34
slaapwel slap wel 2.00 1.43

To address this, segmentation operations
should be replaced by substitution_separation
and substitution_union, applied without the
requirement for equality.

The cost would then be:

33







seg_cost + similarity( ref[i− 1] + ref[i], hyp[j])
(for separation)
seg_cost + similarity( ref[i], hyp[j − 1] + hyp[j])
(for union)

5.2 Comparison with Other Methods

The Phoneme Error Rate (PER) and Weighted
Word Error Rate (WWER) are variants of WER
that attempt to address some of its limitations.

PER (Shichiri et al., 2007) focuses on errors at
the phoneme level, offering finer granularity than
WER. However, it requires phonetic transliteration
of both the transcription and the reference text,
making generalization more difficult.

WWER (He and Radfar, 2021), on the other
hand, assigns different weights to deletion,
insertion, and substitution errors, optimized
using dictionaries to weigh words based on their
importance. However, this approach relies on the
creation of specific linguistic resources and does
not sufficiently discriminate substitution costs,
limiting its effectiveness.

Apple’s "Humanizing WER" method (Apple,
2024) and the work of Hughes (Hughes, 2023)
use advanced language models to improve the
evaluation of speech recognition systems. HWER
weights errors according to their context, offer-
ing an evaluation closer to human perception.
Despite their potential, these approaches have
limitations: complexity of implementation,
lack of standardization, potential subjective
biases, and difficulty in applying to low-resource
languages due to their reliance on language models.

6 Conclusion and Future Directions

This study has highlighted the limitations of WER,
especially its inability to account for lexical nu-
ances and segmentation errors, making it unsuit-
able for morphologically complex or low-resource
languages.

We proposed an improved version of WER,
which introduces weighted substitution based on
lexical similarity, as well as splitting and merging
operations. Experimental results show that UWER
improves evaluation accuracy across several
languages.

Our approach aims to ensure WER’s adaptabil-
ity to the vast linguistic diversity while provid-
ing a simple-to-implement solution a simple-to-
implement solution, fully interchangeable with
WER, without requiring changes to current prac-
tices.

By increasing the precision of this metric, we
provide a more rigorous evaluation tool capable
of revealing the true performance of models,
especially for morphologically complex and
low-resource languages.

Furthermore, this approach can also be lever-
aged as a loss function to optimize ASR model
training. Although WER is not differentiable, adap-
tations such as differentiable approximation, rein-
forcement learning, or optimization via Minimum
Bayes Risk (MBR) can be considered to overcome
this limitation.
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