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Abstract

The recent development of fact verification sys-
tems with natural logic has enhanced their ex-
plainability by aligning claims with evidence
through set-theoretic operators, providing faith-
ful justifications. Despite these advancements,
such systems often rely on a large amount
of training data annotated with natural logic.
To address this issue, we propose a zero-shot
method that utilizes the generalization capabil-
ities of instruction-tuned large language mod-
els. To comprehensively assess the zero-shot
capabilities of our method and other fact ver-
ification systems, we evaluate all models on
both artificial and real-world claims, including
multilingual datasets. We also compare our
method against other fact verification systems
in two setups. First, in the zero-shot generaliza-
tion setup, we demonstrate that our approach
outperforms other systems that were not specifi-
cally trained on natural logic data, achieving an
average accuracy improvement of 8.96 points
over the best-performing baseline. Second, in
the zero-shot transfer setup, we show that cur-
rent systems trained on natural logic data do
not generalize well to other domains, and our
method outperforms these systems across all
datasets with real-world claims.

1 Introduction

In the context of fact-checking, fact verification
(FV) is a process of verifying whether a textual hy-
pothesis holds, based on retrieved evidence. While
many improvements have been made in this field
due to the recent rapid growth in NLP (Akhtar
et al., 2023; Guo et al., 2022; Nakov et al., 2021),
FV systems often employ pipelines with black-box
components that hide the underlying reasoning.

One line of research attempts to improve explain-
ability with attention-based methods (Shu et al.,
2019; Popat et al., 2018) and post-hoc summariza-
tions (Atanasova et al., 2020; Kotonya and Toni,
2020). However, these approaches do not provide

faithful justifications — explanations that accu-
rately reflect the model’s decision-making process
and the data it used (Jacovi and Goldberg, 2020).
In contrast, systems such as NaturalLI (Angeli
and Manning, 2014) and ProoFVer (Krishna et al.,
2022) provide faithful justifications by expressing
semantic relations between claim/evidence pairs.
Modeling these logical relations and their aggrega-
tion explicitly with natural logic (NatLog) allows
for the accurate processing of phenomena such as
double-negation and has resulted in more accurate
and robust fact-checking systems.

However, a limitation of natural logic-based FV
systems is that they require large amounts of train-
ing data annotated with entire natural logic proofs.
For example, ProoFVer (Krishna et al., 2022) was
trained on 145K instances artificially obtained from
structured knowledge bases such as PPDB (Gan-
itkevitch et al., 2013) and Wikidata (Vrandečić and
Krötzsch, 2014). While recent work (Aly et al.,
2023) attempts to alleviate this issue by proposing
a few-shot learning method trained on as few as
32 instances, human annotation of even a small
number of proofs can be impractical and expensive,
as it requires substantial linguistic knowledge and
familiarity with natural logic. Moreover, few-shot
systems require additional training data in order
to generalize effectively to new domains, further
increasing the costs.

To this end, we propose Zero-NatVer1, a zero-
shot fact verification approach for constructing
natural logic proofs that leverages prompting and
question-answering with instruction-tuned large
language models (LLMs). Zero-NatVer’s proof
generation process is illustrated in Figure 1. First,
a claim is chunked into smaller units of information.
Then, the units are aligned to relevant parts of the
evidence, and natural-logic operators are assigned

1Code is available at: https://github.com/
marekstrong/Zero-NatVer
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REFUTED

Oliver Twist, a novel by Dickens, was published before The
Pickwick Papers.

The Pickwick Papers, published in 1836, is a novel by Charles
Dickens that follows the humorous adventures and
misadventures of Samuel Pickwick and his companions in the
Pickwick Club. Oliver Twist, published in 1837, is a novel by
Charles Dickens that tells the story of an orphan boy who...
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Figure 1: Proof generation with natural logic in Zero-NatVer. Initially, the claim and evidence texts are chunked
and aligned. Zero-NatVer then assigns natural logic operators (NatOps), using a QA framework and alignment
signals parsed from the previous step. This process produces a proof sequence comprising (claim, evidence, NatOp)
triples. Lastly, NatOps act as transitions in the DFA, with the final state (here Refuted) determining the verdict.

to each claim-evidence pair. Lastly, the proofs
are executed on a finite state automaton (DFA) as
defined in natural logic inference, producing the
verdict.

Unlike previous NatLog-based approaches, our
method also addresses the problem of limited con-
text during the NatOp assignment stage by pro-
ducing alignment signals (e.g., support and refute)
and passing them to the next stage for NatOp as-
signments. This enables more accurate NatOp
predictions. Additionally, Zero-NatVer uses con-
strained decoding to prevent hallucinations, and it
uses question-answering (QA) ensembles to reduce
the variability of predictions.

We evaluate our method on real-world and ar-
tificial FV datasets, including Climate-FEVER
(Diggelmann et al., 2020), PubHealth (Kotonya
and Toni, 2020), SciFact (Wadden et al., 2020), and
Hover (Jiang et al., 2020). We also demonstrate
that Zero-NatVer can generalize to non-English
datasets by evaluating the system on the Dan-
ish dataset DanFever (Nørregaard and Derczyn-
ski, 2021), Mandarin Chinese dataset CHEF ((Hu
et al., 2022)), Arabic dataset Unified-FC (Baly
et al., 2018), and the Russian/Ukrainian portion
of the dataset RU22Fact (Zeng et al., 2024). In
a zero-shot setup, where models have not been
trained on any data labeled with natural logic, our
approach outperforms all NatLog baselines by 8.96
accuracy points when averaged across all English

datasets. It is also competitive with the direct QA
approach, where the model is prompted directly for
an answer. Thus, our method, which is based on
natural logic, provides both improved performance
on unseen domains and explainability via faithful
justifications.

2 Related Work

Natural logic (Van Benthem, 1986; Sanchez, 1991)
and NaturalLI (Angeli and Manning, 2014), com-
poses full inference proofs that operate directly
on natural language, capable of expressing more
complex logical relationships between claim and
evidence, such as double-negation. Krishna et al.
(2022) trained natural logic inference systems
for fact verification, achieving competitive perfor-
mance while remaining faithful and more explain-
able than its entirely neural counterpart. While
these neural-symbolic approaches require substan-
tial training data to perform well, Aly et al. (2023)
explored natural logic inference in a few-shot
setting by casting natural logic operators into
a question-answering framework, subsequently
making use of the generalization capabilities of
instruction-tuned language models. Although our
work also considers question-answering, we fur-
ther expand on this approach, addressing predic-
tion calibration issues frequently encountered in a
zero-shot setting (Kadavath et al., 2022; Jiang et al.,
2023). Other neuro-symbolic reasoning systems
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for FV use simple logical rules to aggregate verac-
ity information on a claim’s components to provide
simple faithful explanations (Stacey et al., 2022,
2023; Chen et al., 2022). However, these rules lack
the expressiveness of natural logic and thus cannot
inherently model more complex phenomena such
as double negation.

Previous work on zero-shot FV is limited and
largely relies on the generation of weakly super-
vised training samples and on knowledge of the
target domain (Pan et al., 2021; Wright et al., 2022).
Pan et al. (2023b) observe that typical FV systems
fail when transferred to unseen domains in a zero-
shot setting and propose a data augmentation tech-
nique to improve generalizability. Moreover, none
of the aforementioned zero-shot methods produces
(faithful) explanations. In a few-shot setting, sev-
eral recent works have explored the use of large
language models that produce explanations along-
side the verdict. Pan et al. (2023a) define a reason-
ing program consisting of a sequence of subtasks
to verify complex claims. Yao et al. (2023) pro-
pose chain-of-thought prompting complemented
by action operations to support the model’s reason-
ing and its explanation generation. Li et al. (2023)
propose to edit rationales generated via chain-of-
thought prompting by querying knowledge sources.
Unlike our work, these approaches still rely on
in-context examples.

3 Zero-NatVer

Given a claim c and evidence sentences
e1, e2, ..., ek ∈ E, our system determines
the veracity label y, which denotes whether the
information from E supports c, refutes c, or
whether there is not enough information to reach
a verdict. Zero-NatVer obtains the verdict in four
steps, executed by an instruction-tuned LLM.

In the first two steps, Zero-NatVer segments c
into several chunks (Sec. 3.1) and aligns each such
chunk with relevant information from E (Sec. 3.2).
This process results in a sequence of l claim-
evidence alignment pairs A = a1, a2, ..., al. As
part of this alignment process, we also generate
alignment explanations that are parsed for support-
ing/refuting signals. These signals are used in the
third stage of the pipeline where Zero-NatVer deter-
mines semantic relations of aligned pairs in terms
of natural logic. Thus, it generates a sequence of
natural logic operators O = o1, o2, ..., ol, which
correspond to alignment pairs in A (Sec. 3.3). Fi-

nally, O is used in the last stage to traverse a deter-
ministic finite automaton (DFA), which determines
the claim’s veracity. The following sections de-
scribe each step in more detail.

3.1 Chunking

"Oliver Twist, a novel by Dickens":
"Oliver Twist, published in 1837, is a novel by Charles
Dickens"
+ Supports the expression

"was published before":
"The Pickwick Papers, published in 1836,... Oliver Twist,
 published in 1837"
+ Refutes the expression, as Oliver Twist was published
   after The Pickwick Papers

"The Pickwick Papers":
"The Pickwick Papers, published in 1836, is a novel by
 Charles Dickens"
+ Refers to the same entity

Figure 2: Claim-evidence alignments with explana-
tions. The blue text indicates provided claim chunks.
The purple text represents generated evidence align-
ments, and the black text denotes alignment explana-
tions, which are later parsed for signals.

FV systems that are based on natural logic split
claims into smaller, more manageable pieces, also
called chunks (Krishna et al., 2022). These chunks,
typically consisting of only a few words, represent
a single atomic piece of information that can be
independently verified and linked to relevant infor-
mation in the evidence text.

We perform this task by prompting an LLM to
"Split the claim text into smaller chunks that can
be individually fact-checked." We then use con-
strained decoding to ensure the desired output for-
mat. Specifically, the model is allowed to either
generate consecutive characters from the provided
text or insert a special token (e.g., a newline charac-
ter) to denote the start of a new chunk. This process
is executed as follows:

1. The claim text c is pre-processed as a queue
of tokens QC .

2. The decoding is prefixed with an initial phrase
to encourage the generation of claim chunks.

3. The model is constrained to sample only one
of two outputs - the next token from QC or a
newline character.

4. Repeats step 3 until QC is empty (i.e., all
claim tokens are consumed).

Given the constraints at each decoding step, the
model cannot hallucinate new words, skip words,
or alter information in the claim.

17023



3.2 Alignment

In the second stage of the pipeline, each previously
generated claim chunk is aligned with the corre-
sponding information in the provided evidence sen-
tences. We use an LLM to perform this alignment
by prompting it with c, E, and all claim chunks (see
details in Appendix D). Furthermore, we prompt
the model to also generate alignment explanations
for each generated alignment. Figure 2 shows an
example of the model’s output.

To enforce the expected output format, we
use constrained decoding, switching between
three decoding modes: claim, evidence, and
alignment-explanation. In the claim mode, we sim-
ply insert the chunk text, and no further text is
generated. In the evidence mode, the model gen-
erates the alignment and is constrained so that it
cannot use tokens that occur only in C and not in E.
This constraint is meant to reduce hallucinations
and prevent the model from aligning chunks with
claim tokens. Lastly, the inference process is not
constrained in the alignment-explanation mode be-
cause explanations are only searched for keywords
and are not used in the following stages or as part
of the proof.

Although constraint decoding helps mitigate hal-
lucinations, it is important to note that the model
could still hallucinate in evidence mode, as it is
allowed to generate words not present in either
C or E. Indeed, we analysed all alignments and
found out that 12.4% of chunks contained at least
one token absent from E. To solve this issue, we
post-process the alignments and remove all text
that does not form sequences of tokens in evidence
sentences E. This post-processing step ensures
that the alignment process is faithful and that only
information from the evidence is used to verify the
claim. Alternatively, we could constrain the de-
coding process to generate only tokens present in
the evidence text. However, our empirical findings
showed that this approach struggles in situations
where it needs to combine two or more pieces of
information that are not adjacent in the evidence
text.

Lastly, the alignment explanations are parsed for
supporting and refuting signals, which are used by
the NatOp assigner. A simple keyword search was
sufficient to effectively determine the signals while
prioritizing precision over recall.

3.3 NatOp Assignment via QA Ensembles

Once the claim and evidence are aligned, the next
step is to determine a single NatOp for each claim-
evidence pair, which represents the semantic rela-
tion between the corresponding chunks.

We start by preparing the list of NatOp candi-
dates for each alignment pair, considering five ba-
sic operators, as shown in Table 1. This process
is guided by alignment signals from the previous
stage, and we define the candidate lists as follows:

• For a supporting signal, we use operators that
indicate the evidence chunk entails the claim
chunk: [≡,⊑].

• For a negative signal, we use operators that
indicate the claim chunk is not entailed by the
information in the evidence chunk: [¬,⊒, ⇃↾].

• In case of no signal, the full set of NatOps is
used: [≡,¬,⊑,⊒, ⇃↾].

This process allows for transferring some global
information from the aligner, which has access to
the full claim and evidence texts, to the NatOp as-
signer, which only sees chunks and thus has limited
knowledge. For example, in Figure 1, the aligner
aligns "was published before" with corresponding
years for each publication, describing the ordering
of events. While this alignment is reasonable for
a reader with access to the entire claim and evi-
dence texts, it becomes challenging to determine
its meaning if we only see the aligned sub-strings.

For each aligned pair, we then consider opera-
tors in the corresponding candidate lists, and this
process is detailed in Figure 3. Similar to Aly et al.
(2023), we treat these operators as relations that can
be inferred via questions over claim-evidence spans.
Thus, we prompt our model with Yes/No questions
to determine whether a relation can be expressed

NatOp Definition Template Example
Equivalence

(≡)
x = y Is X a paraphrase of Y?

Forward
Entailment

(⊑)
x ⊂ y

Given the premise X does
the hypothesis Y hold?

Reverse
Entailment

(⊒)
x ⊃ y

Does the expression Y en-
tail X?

Negation
(¬)

x ∩ y = ∅ ∧
x ∪ y = U

Is the phrase X a negation
of Y?

Alternation
(⇃↾)

x ∩ y = ∅ ∧
x ∪ y ̸= U

Does X exclude Y?

Table 1: Natural logic operators (NatOps) with set-
theoretic definitions and template examples.
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SUPPORT SIGNAL

Proof Selection

Oliver Twist, ... a novel by
Charles Dickens

Oliver Twist, a novel by Dickens

QA Prompt Ensembles
(10 questions / NatOp)Aligned claim/evidence pairs

Q: Does "was published before"
exclude "...published in

1836...published in 1837"?

Q: Is "Oliver Twist, a novel by Dickens"
a paraphrase of "Oliver Twist, ... a novel

by Charles Dickens"?

Q: Does the phrase "...published in
1836...published in 1837" logically

imply "was published before" ?

REFUTE SIGNAL

was published before

...published in 1836

...published in 1837

NO SIGNAL

The Pickwick Papers

The Pickwick Papers, ... a novel
by Charles Dickens

Figure 3: Proof generation process of Zero-NatVer. First, we utilize alignment signals, where available, to
identify the set of potential NatOp candidates (represented by orange blocks). Next, we apply prompt ensembles
and NatOp priority to select the final NatOp (depicted as green blocks).

by one of the NatOps. If none of these operators is
successfully determined by the QA framework, we
assign the independence operator #, which implies
that there is no semantic relation.

In order to reduce the variability of outcomes,
we use a large number of Yes/No questions to
prompt the model, thereby obtaining several micro-
judgements per NatOp, which are then aggregated
as a weighted average. In our experiments, we
employ 10 templates for each NatOp. Rather than
manually hand-crafting these question templates,
we employ the LLM to generate them. Conse-
quently, this approach allows for easy generation
of additional templates as needed.

For a given claim-evidence alignment pair a and
operator o, we compute a NatOp score so,a as a
weighted average over all micro-judgments:

so,a =

N∑

i=1

wi QA(Yes|Ti, a) (1)

where T is a collection of prompt templates, and
w represents confidence weights for each template,
with

∑N
i=1wi = 1.

We compute wi by iterating over the entire
dataset in a single pass and capturing the log-
likelihood scores for each template. For each in-
stance, we always capture only the Yes/No option,
which has the higher log-likelihood score (i.e., the
option that the model favors more).

Using Equation 1, we then compile a list of
NatOps candidates C, considering only those

where so,a > α, with α serving as a confidence
threshold. Since we are not using any validation
data to determine hyperparameters, we set α = 0.5,
as we are considering only two output classes.

Due to the ambiguity of natural language and
the complexity of alignments, it frequently occurs
that |C| > 1. Therefore, we must resolve this con-
flict and select a single NatOp from C. However,
we want to minimize the likelihood of incorrectly
choosing NatOps that lead to the Not Enough Ev-
idence state, from which there are no outgoing
transitions to other states. Thus, we use a NatOp
priority approach, selecting from the operators in
the following order: [≡,¬,⊑,⊒, ⇃↾]. We defined
this order by considering the natural ordering of
relations described in Icard (2012). For instance,
in a scenario where the candidate list C consists of
equivalence (≡) and alternation (⇃↾), we postulate
that identifying equivalence (i.e., assessing textual
similarity) is a simpler task compared to identify-
ing alternation (i.e., recognizing non-exhaustive
exclusion). This order was determined prior to our
experiments and was not further optimized.

4 Experimental Methodology

4.1 Zero-Shot Setups

To better assess the zero-shot capabilities of our
approach, we differentiate between two types of
zero-shot setups– zero-shot generalization and
zero-shot transfer. We define zero-shot general-
ization as a model’s ability to handle entirely new
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tasks or domains it has not encountered during
training. Conversely, zero-shot transfer refers to
training a model on a specific task or dataset and
subsequently applying it to a different but related
task or dataset without further training. For exam-
ple, consider a model trained on a broad spectrum
of general data (e.g., BART, T5, or Llama) that did
not include proofs with natural logic. Applying this
model to FV with natural logic then exemplifies
zero-shot generalization according to our defini-
tion. In contrast, if the same model is fine-tuned
on a dataset annotated with natural logic proofs
and then applied to perform FV with natural logic
on a different dataset, this would be an instance of
zero-shot transfer.

4.2 Datasets

Previous studies on NLI-based FV models have
primarily focused on evaluating performance us-
ing artificial claims from FEVER-like datasets (Kr-
ishna et al., 2022; Aly et al., 2023; Chen et al.,
2023). However, these datasets typically encom-
pass only general topics, and artificial claims tend
to be structurally simple. To achieve a more com-
prehensive assessment of zero-shot capabilities, we
have evaluated our models on both artificial and
natural claims, including non-English datasets.

For artificial claims, we evaluated models us-
ing claims from the multi-hop dataset Hover
(Jiang et al., 2020) and the Danish dataset
DanFEVER (Nørregaard and Derczynski, 2021).
For real-world claims, we included English datasets
Climate-FEVER (Diggelmann et al., 2020), Pub-
Health (Kotonya and Toni, 2020), and SciFact
(Wadden et al., 2020), as well as the non-English
datasets CHEF (Hu et al., 2022), Unified-FC (Baly
et al., 2018), and RU22Fact (Zeng et al., 2024). For
datasets that provide knowledge bases for retrieval,
we used BM25 (Robertson and Walker, 1994) to
retrieve evidence. Further details are provided in
Appendix A.

4.3 Baselines

Our NatLog baselines consist of ProoFVer (Krishna
et al., 2022) and QA-NatVer (Aly et al., 2023). We
always aim to use the largest possible backbone
LLMs to make our results more comparable. How-
ever, both baseline models have specific limitations
due to their current implementations.

ProoFVer currently supports only models from

the Fairseq1 toolkit2, and the largest supported
model is BART (Lewis et al., 2019). For zero-
shot transfer setups, we use ProoFVer with BART,
which was trained on 145K FEVER instances. For
non-English datasets, we use mBART (Liu et al.,
2020) instead.

QA-NatVer can use larger LLMs, such as Flan-
T5 (Chung et al., 2022), but its implementation cur-
rently supports training only for encoder-decoder
model architectures. Therefore, we were unable
to fine-tune QA-NatVer with Llama3 for zero-
shot transfer experiments and instead used Flan-T5
trained on 64 instances. For experiments on Dan-
FEVER, we used the mT0 (Muennighoff et al.,
2022) backbone. The zero-shot generalization
setup does not require any training, so we were
able to use Llama3-8B for inference.

For a non-NatLog baseline, we use the Llama3-
8B model, prompting it to directly assign a verdict
(i.e., Supported, Refuted, or Not Enough Informa-
tion), based on the provided claim and evidence
texts. We refer to this baseline as Direct-QA. The
prompting details are described in Listing 3.

Additionally, we include results reported by Pan
et al. (2023b) as a further baseline for zero-shot
transfer experiments. More details about our base-
lines can be found in Appendix B.

4.4 Implementation Details
We conducted our main experiments with the
Llama3-8B model (AI@Meta, 2024; Dubey et al.,
2024). Crucially, we did not fine-tune the model
on any specific dataset, and we did not tune
any hyperparameters. The only exposure to fact-
checking datasets was when we were designing
our prompts. For this purpose, we used a separate
dataset, Symmetric-Fever (Schuster et al., 2019).
We selected a small subset of 100 claims and tested
that our prompts generated responses in the desired
format. For hyperparameters, we have adopted the
recommendations of Perez et al. (2021) and did not
rely on hyperparameters from prior works. Further
details are provided in Appendix C.

5 Results

5.1 Zero-Shot Generalization
We report the main results for zero-shot general-
ization in Table 2. Zero-NatVer consistently out-
performs other NatLog-based baselines across all
datasets, including both synthetic and real-world

2https://github.com/facebookresearch/fairseq
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System Model
C-FEVER SciFact PubHealth Hover
F1 Acc F1 Acc F1 Acc F1 Acc

ProoFVer BART 26.63 34.75 25.58 34.67 38.15 39.27 47.13 49.76
QA-NatVer Flan-T5 22.20 36.86 23.56 40.67 44.42 48.73 35.65 50.85
QA-NatVer Llama3-8B 32.6 36.5 37.18 43.67 63.66 68.79 49.95 54.93
Zero-NatVer Llama3-8B 46.02 51.12 54.58 58.33 69.21 70.01 60.26 60.27
Direct-QA Llama3-8B 51.27 58.58 52.76 57.00 78.18 78.18 55.34 57.00

Full Supervision - 75.7 - 71.1 - 85.88 86.93 - 81.2

Table 2: Zero-shot generalization results for English datasets. Macro-F1 and accuracy scores for systems
that were not specifically trained on FV datasets. Where possible, we also report available SOTA results with
fully-supervised models trained on in-domain data as a reference.

System Model Train size
(FEVER)

C-FEVER SciFact PubHealth Hover
F1 Acc F1 Acc F1 Acc F1 Acc

Pan et al. BERT 800 40.60 - 50.71 - 60.06 - - -
ProoFVer BART 145K 40.70 43.35 45.57 49.16 57.78 61.22 57.08 57.89
QA-NatVer Flan-T5 64 44.74 47.43 52.02 56.67 61.8 61.8 62.44 63.48
Zero-NatVer Llama3-8B None 46.02 51.12 54.58 58.33 69.21 70.01 60.26 60.27

Table 3: Zero-shot transfer results for English datasets. Macro-F1 and accuracy scores for systems trained on the
FEVER dataset. For each system, we report the provided language model and the size of the training data. The
results presented in Pan et al. (2013) do not include accuracy scores and do not cover the Hover dataset.

claims. Averaging results across all datasets, it
achieves an accuracy of 59.93 points, surpass-
ing ProoFVer by 20.32 accuracy points. When
compared to the version of QA-NatVer that uses
the same backbone model (Llama3-8B) as Zero-
NatVer, our method demonstrates an average im-
provement of 8.96 accuracy points.

We also report results for the Direct-QA setup,
a non-NatLog approach, where the Llama3-8B
model directly assigns the verdict. Table 2 shows
that Zero-NatVer outperforms Direct-QA on Sci-
Fact and Hover, demonstrating its competitive per-
formance while improving the model’s explainabil-
ity through the generation of proofs. Addition-
ally, the results for Direct-QA might be overly opti-
mistic, given that Llama3 was trained on 15 trillion
tokens, making it likely that some datasets were
included in its training data. Since Zero-NatVer
does not use Llama3 to directly predict verdicts,
and the final verdict is derived from NatLog proofs,
its performance is likely to be more representative.

We also report state-of-the-art (SOTA) results
for each dataset to highlight the performance gap
between models fully supervised on in-domain data
and zero-shot approaches. Each reported SOTA re-
sult comes from a separately trained model, and
there is no guarantee that this performance will
generalize to other datasets or languages. The re-
ported metrics, including F1 and Accuracy scores

where available, represent the best results to our
knowledge. Our findings indicate that Zero-NatVer
helps close this gap while maintaining the advan-
tage of using a single model that does not require
fine-tuning.

5.2 Zero-Shot Transfer

We report the main results for zero-shot transfer
in Table 3. Zero-NatVer consistently outperforms
both ProoFVer and the results reported by Pan et al.
(2023b) across all datasets, despite these baselines
being trained on NatLog data and ProoFVer’s sub-
stantial training set of 145K instances. These find-
ings highlight the robust generalization capabilities
of Llama3, which our method effectively leverages.

Zero-NatVer also surpasses QA-NatVer on all
datasets except Hover, exceeding QA-NatVer by
an average of 2.59 accuracy points. This indicates
that while NatLog baselines trained on FEVER
data generalize effectively to similar domains, such
as Hover and DanFEVER (the latter is discussed
further below), their performance does not extend
well to real-world claims. Therefore, in practical
applications, it may be more advantageous to al-
locate computational resources to more powerful
language models rather than to fine-tuning.
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System Model
DanFEVER CHEF Unified-FC RU22Fact

Da Zh Ar Ru/Ukr
F1 Acc F1 Acc F1 Acc F1 Acc

ProoFVer mBART 29.8 41.97 20.16 38.57 49.18 49.85 43.66 57.74
QA-NatVer mT0 35.68 37.05 - - - - - -
QA-NatVer Llama3-8B 48.92 55.35 - - - - - -
Zero-NatVer Llama3-8B 53.9 62.55 47.94 53.2 57.23 57.35 79.89 86.57
Direct-QA Llama3-8B 52.77 61.7 19.5 24.04 62.42 63.98 84.41 87.95
Full Supervision - 90.2 - 67.62 - 89.9 91.0 60.56 -

Table 4: Zero-shot generalization results across non-English multilingual datasets. Macro-F1 and accuracy
scores for systems that were not specifically trained on FV datasets. QA-NatVer currently does not support non-
English languages, except for Danish. Where possible, we also report available SOTA results with fully-supervised
models trained on in-domain data as a reference.

System Model Train size
(FEVER)

DanFEVER CHEF Unified-FC RU22Fact
Da Zh Ar Ru/Ukr

F1 Acc F1 Acc F1 Acc F1 Acc
ProoFVer mBART 145K 36.12 55.22 20.18 37.72 39.67 48.04 51.77 81.68
QA-NatVer mT0 64 63.64 68.41 - - - - - -
Zero-NatVer Llama3-8B None 53.9 62.55 47.94 53.2 57.23 57.35 79.89 86.57

Table 5: Zero-shot transfer results across non-English multilingual datasets. Macro-F1 and accuracy scores for
systems trained on the FEVER dataset. For each system, we report the provided language model and the size of the
training data. QA-NatVer currently does not support non-English languages, except for Danish.

5.3 Multilingual Experiments

Our experimental results on non-English datasets
in the zero-shot generalization and transfer setups
are presented in Tables 4 and 5, respectively.

Generalization As shown in the results,
Zero-NatVer outperforms both NatLog-based base-
lines, ProoFVer and QA-NatVer, across all datasets
in the generalization setup. Zero-NatVer also
demonstrates competitive performance compared
to Direct-QA. Since QA-NatVer uses separate,
language-specific models for text chunking, our
experiments were limited to the available chunkers,
specifically for English and Danish. This limitation
highlights Zero-NatVer’s broader applicability,
as it leverages a single model without requiring
additional components like a chunker. Lastly,
Dubey et al. (2024) note that while Llama3-8B was
pre-trained on multilingual data, it was primarily
intended for English. This may explain the weaker
performance of some systems using the model.
However, Zero-NatVer still achieved better results
compared to other baselines with multilingual
backbones like mBART and mT0.

Transfer In the transfer setup, Zero-NatVer out-
performs ProoFVer with a multilingual backbone

1 2 3 4 5 6 7 8 9 10
Ensamble Size per NatOp

49

50
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Figure 4: The averaged Macro-F1 scores for different
ensemble sizes, calculated from 20 independent runs for
each size.

across all datasets but falls behind QA-NatVer
on DanFEVER, where QA-NatVer achieves 5.86
more accuracy points. Nonetheless, our results
show strong performance, especially given that the
baselines use multilingual models and are directly
trained on NatLog data.

5.4 Further Experiments

Ensemble Size To assess the impact of prompt
ensemble size (Section 3.3), we conducted an ex-
periment measuring performance for various en-
semble sizes. For each ensemble size S, we ran-
domly sampled S prompts for each NatOp from
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System
C-FEVER SciFact PubHealth Hover
F1 Acc F1 Acc F1 Acc F1 Acc

Zero-NatVer 46.02 51.12 54.58 58.33 69.21 70.01 60.26 60.27
- weighted templates 45.72 50.40 54.28 58.00 68.51 69.30 60.22 60.22
- QA templates 40.60 49.89 46.49 52.00 68.20 69.20 57.17 57.50
- constrained decoding 41.85 45.69 52.65 57.00 65.26 66.46 59.26 59.30
- alignment signals 40.62 43.66 52.27 55.00 54.94 55.22 58.72 58.73

Table 6: Ablation study of Zero-NatVer.

our prompt bank. This process was repeated 20
times, and we report the means and standard de-
viations for each ensemble size in Figure 4. The
results show that prompt ensemble size substan-
tially affects the variability of outcomes. When
using only one prompt per NatOp and sampling
different prompts, the Macro-F1 scores have a stan-
dard deviation of 3.53 points. However, an en-
semble of just four prompts reduces this variation
by more than half. While performance mostly im-
proves as the ensemble size increases, a few sam-
ple instances performed better than the 10-prompt
average. This suggests that the performance of
Zero-NatVer could be further improved by select-
ing the best-performing combination of prompts on
a validation set. However, we refrained from using
a validation set due to our zero-shot setup.

Macro-F1 Accuracy
Llama2-7B 20.57 41.67
Llama2-13B 30.96 42.16
Llama2-70B 57.47 60.33
Llama3-8B 54.58 58.33
GPT-3.5-Turbo 49.21 53.00

Table 7: SciFact results for LLMs of various sizes.

Model Size Table 7 compares the performance
of our method across various sizes and versions
of Llama models, demonstrating a substantial im-
provement as the model scales up. We also eval-
uated our method using the proprietary model
ChatGPT-3.5 (OpenAI, 2023). Although ChatGPT-
3.5 is purportedly larger than Llama3-8B, our
method performed better with the Llama model.
This discrepancy may be due to API limitations,
which prevented the use of constrained decoding
and weighted prompting. Details on prompting are
provided in Appendix D.

Ablation Study As reported in Table 6, we per-
formed four ablation studies to assess the impor-

tance of individual components in Zero-NatVer.
First, we evaluated the performance without using
weighted ensemble prompts and observed a slight
decline of 0.45 accuracy points on average. Second,
we ablated our method by omitting prompt ensem-
bles and using a single randomly sampled prompt
instead. This resulted in a drop in performance by
2.79 accuracy points, which aligns with our pre-
vious findings regarding ensemble sizes. Third,
we ablated Zero-NatVer by using unconstrained
generation during decoding, leading to an average
accuracy drop of 2.82 points. Lastly, we ablated
our method by removing alignment signals, which
caused a substantial drop of 6.78 accuracy points
on average.

6 Conclusion

We have presented Zero-NatVer, a zero-shot fact
verification method grounded in natural logic. Our
method leverages the generalization capabilities of
instruction-tuned LLMs and generates faithful justi-
fications for proofs without relying on training data
annotated with natural logic. We have evaluated
Zero-NatVer in two zero-shot setups, outperform-
ing our baselines on most datasets. The ablation
study shows the importance of individual design
choices, and our comparison with the direct non-
NatLog approach shows that natural logic provides
competitive performance while providing explain-
ability via faithful justifications. We hope that the
methods and analyses presented here enable fur-
ther progress toward improving the efficiency and
explainability of fact verification systems.
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Limitations

Natural logic is useful for explainability but is less
expressive than semantic parsing methods such as
lambda calculus (Zettlemoyer and Collins, 2005).
This paper doesn’t address natural logic’s limita-
tions. Furthermore, our method generates proofs,
which are meant to be processed by the DFA from
left to right. Nevertheless, natural logic-based in-
ference is not constrained to such execution.

Ethics Statement

Intended Use and Misuse Potential. Our mod-
els can potentially captivate a wider audience and
substantially reduce the workload for human fact-
checkers. Nevertheless, it is crucial to acknowledge
the possibility of their exploitation by malicious
actors. As such, we strongly advise researchers to
approach them with caution.

Accuracy and Infallibility. Our approach im-
proves the clarity of FV models, enabling indi-
viduals to make better-informed decisions about
trusting these models and their assessments. How-
ever, it is crucial for users to remain critical while
interpreting the results of these systems and not
mistake explainability for accuracy. We clarify that
our evaluations do not determine the factual ac-
curacy of a statement in the real world; instead,
we use sources like Wikipedia as the basis for evi-
dence. Wikipedia is a great collaborative resource,
yet it has mistakes and noise of its own, similar to
any encyclopedia or knowledge source. Therefore,
we advise against using our verification system to
make definitive judgments about the veracity of the
assessed claims, meaning it should not be relied
upon as an infallible source of truth.
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A Dataset Processing

To effectively assess the zero-shot capabilities of
FV systems, it is important to evaluate the perfor-
mance on real-life claims and consider domains
requiring various domain expertise. We evaluated
all models on datasets covering natural claims and
domains such as climate change, biomedical sub-
jects, government healthcare policies, and scien-
tific literature. We chose datasets that mainly focus
on three-way classification, i.e., using three labels
Suppports, Refutes, or Not Enough Information:

Climate-FEVER (Diggelmann et al., 2020)
dataset comprises 1535 real-life climate change
claims, each annotated with five evidence sentences
retrieved from Wikipedia. Each evidence sentence
was labeled by five human annotators as support-
ing, refuting, or inconclusive regarding the claim’s
veracity, resulting in 5 votes for each evidence sen-
tence. These votes were then aggregated to micro-
verdicts for each retrieved evidence sentence, and
micro-verdicts were further aggregated to a single
macro-label for the claim. In our data processing,
we combined all evidence sentences into a single
paragraph and paired them with the macro-label as-
sessment. Besides the standard three labels, some
claims in the datasets are labeled as DISPUTED
if they are paired with both supporting and refut-
ing micro-verdicts. Since our work focuses on
three-label class prediction, we removed those 154
claims from the dataset.

PubHealth (Kotonya and Toni, 2020) is a dataset
with natural claims in the public health domain.
These claims are accompanied by evidence that
requires subject matter expertise, along with expert
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CLAIM: {C}
EVIDENCE: {E}

−−−−−
Align the following claim expressions with relevant substrings from the evidence text:
* {CH−1}
* {CH−2}
...
* {CH−N}

The aligned substrings should either support the expression, refute it, or simply refer to the same entity.
Where possible, provide an explanation following each alignment.
If no relevant alignment exists, write "None".

Listing 1: Prompt template for the alignment task. Placeholders {E} and {C} get replaced by corresponding evidence
and claim texts, respectively. Placeholders {CH-1} to {CH-N} get replaced by corresponding claim chunks, which
were generated in the previous chunking step.

explanations (judgments). The dataset contains
four labels True, False, Unproven, and Mixture.
However, the classes are heavily unbalanced and
the labels Unproven and Mixture cover less than
10% of the data in total. Therefore, we use test set
claims with only True and False labels, resulting
in 987 claims paired with expert explanations as
evidence.

SciFact (Wadden et al., 2020) is a dataset of
expert-written scientific claims paired with evi-
dence that was extracted from academic papers.
We collect the claims with supporting and refuting
rationale and construct claim-evidence pairs with
SUPPORT and REFUTE labels. Claims lacking a
specific rationale are categorized as NEI, and we
pair them with the entire abstract text. We evalu-
ate our pipeline on a test set that consists of 300
claims.

Hover (Jiang et al., 2020) is an open-domain,
multi-hop FV dataset, containing artificial claims
built from the Wikipedia corpus. Its claims
are labeled as either SUPPORTED and NOT-
SUPPORTED. We use the development set, which
consists of 4000 claims. In order to obtain evi-
dence for all claims, we use the BM25 retriever
(Robertson and Walker, 1994).

DanFEVER (Nørregaard and Derczynski, 2021)
is a Danish dataset of counterfactual claims con-
structed from Danish Wikipedia. It consists of 6407
instances and provides gold evidence for Supported
and Refuted claims. To obtain evidence for NEI
claims, we use the BM25 retriever (Robertson and
Walker, 1994).

CHEF (Hu et al., 2022) is a Chinese dataset of
real-world claims. We use their development set,
which consists of 703 claims.

Unified-FC (Baly et al., 2018) is an Arabic
dataset for fact-checking and stance detection.
It contains 219 false claims from the VERIFY
project3, and 203 true claims from REUTERS4.
Each claim in the dataset is paired with relevant
articles retrieved via the Google Search API. For
each claim, we concatenated all related articles and
used them as gold evidence.

RU22Fact (Zeng et al., 2024) is a multilingual
fact-checking dataset covering four languages: En-
glish, Chinese, Russian, and Ukrainian. For our
multilingual study, we used their development set
and extracted only claims in Russian and Ukrainian.
While the original dataset classifies claims into
three categories—Supported, Refuted, and Not
Enough Information—the Russian and Ukrainian
claims were limited to just two labels: Supported
and Refuted. As a result, our post-processed dataset
consisted of 581 claims, and we approached the
task as a binary classification problem.

B Baselines

ProoFVer (Krishna et al., 2022) is a seq2seq
FV model that generates natural logic proofs as
sequences of (claim, evidence, NatOp) triples.
ProoFVer is based on GENRE (De Cao et al., 2020),
an end-to-end entity linking model that was ob-
tained by fine-tuning the BART language model

3https://verify-sy.com/
4http://ara.reuters.com/
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(Lewis et al., 2019). ProoFVer was trained on a
large collection of 145,449 claims from FEVER
that were heuristically annotated with natural logic
proofs.

QA-NatVer (Aly et al., 2023) is also based on
natural logic but uses a question-answering frame-
work to determine proofs. As a few-shot method,
QA-NatVer was trained only on a small subset of
FEVER data. It uses 64 training instances, which
were further manually annotated with natural logic
proofs.

QA-NatVer currently supports BART0 (Lin et al.,
2022), Flan-T5 (Chung et al., 2022) and mT0
(Muennighoff et al., 2022) backbones.

Pan et al. Pan et al. (2023b) recently published
an extensive analysis of zero-shot FV over 11 FV
datasets. In their work, they experimented with
different combinations of datasets for training and
testing. While Pan et al. (2023b) consider their ex-
periments as zero-shot generalization tasks, in our
work, we consider them as zero-shot transfer be-
cause they train their models on other FV datasets.
Their results show useful zero-shot baselines over
most of our datasets, providing a comparison with
FV models that are not based on natural logic.

C Models

Llama models For experiments with Llama3
(AI@Meta, 2024), we ran the 8B parameter model
in 16-bit precision for inference. For experiments
with Llama2, we locally ran the 7B, 13B, and 70B
parameter models and used the GPTQ (Frantar
et al., 2022) version of these models with 4-bit
quantization to reduce computational requirements
and accelerate inference.

Hyperparameters When decoding with Llama
models, we did not tune any hyper-parameters and
used the values described in Touvron et al. (2023).
Specifically, in the question-answering task for
NatOPs, we set temperature to 1.0 and use nucleus
sampling (Holtzman et al., 2019) with top-p set to
0.9. For all other tasks, we change temperature to
0.1.

Experimental Setup All experiments using
Llama3 as the instruction-finetuned LLM were run
on a machine with a single Quadro RTX 8000 with
49GB memory and 64GB RAM memory.

D Prompting

Listings1 show prompt templates for the evidence-
rephrasing task, and the chunking and alignment
task, respectively. These prompt templates were
used for all experiments with Llama3 and ChatGPT
models.

NatOp assignment Listing 2 shows the prompt
templates used in the question-answering task for
NatOps. Given a claim-evidence pair, we gener-
ated 10 distinct questions for each NatOp in sepa-
rate prompts, replacing X with the claim text and
Y with the evidence text. Additionally, we added
the phrase "Answer Yes or No." at the end of each
prompt to encourage the Yes/No output format.
Lastly, we used the default system prompt "You
are a helpful assistant." for all prompts.

ChatGPT We used OpenAI’s API (Brockman
et al., 2020) to query gpt-3.5-turbo-1106 and used
the same hyperparamteres as with Llama3 models.
Due to the API limitations, we were unable to use
constrained decoding for rephrasing, chunking, and
alignment. Moreover, we could not use weighted
prompt ensembles due to the inability to access
the model’s log-likelihood scores. Otherwise, we
could replicate all the steps of our method with
ChatGPT.
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Equivalence
Is X a paraphrase of Y?
Are X and Y semantically equivalent in meaning?
Is the meaning of X effectively the same as Y?
Do X and Y function as synonyms or paraphrases of each other?
Does X serve as a paraphrase or an alternative expression for Y?
Are X and Y synonymous or nearly synonymous in meaning?
Do X and Y mean the same, without using external knowledge or assumptions?
Are X and Y semantically identical when considered independently of external knowledge?
Considering just X and Y, do these expressions have the same meaning?
Comparing X with Y, are they semantically equivalent based solely on their respective content?

Entailment
Given the premise Y does the hypothesis X hold?
Does the expression Y entail X?
Does the phrase Y logically imply X?
Is it true that if Y then X?
Is X a valid inference from Y?
Can X be inferred from the statement Y?
Given just the statements Y and X, does the first statement logically and necessarily imply the second without any external
information?
Is it true that the statement Y logically entails X based solely on the information within the statements?
Does Y imply X when only the information within these statements is considered?
Is it accurate to say that Y categorically entails X, without external interpretations?

Negation
Is the phrase X a negation of Y?
Do X and Y represent mutually exclusive states, where the presence of one negates the possibility of the other?
Is the relationship between X and Y binary, such that if X is true, Y must necessarily be false, and vice versa?
Do X and Y negate each other completely?
Are X and Y in a dichotomous relationship, where the existence of one implies the non−existence of the other?
Is there a mutually exclusive relationship between X and Y, indicating that only one can be true at any given time?
In the context of X and Y, does the affirmation of one mean the automatic negation of the other?
Do X and Y form a binary opposition, where one categorically negates the other?
Are X and Y opposites in such a way that they cannot be true simultaneously?
Is the relationship between X and Y characterized by a strict either/or dichotomy?

Alternation
Does X exclude Y?
Do X and Y represent distinct alternatives, but not the only possibilities in their category?
Are X and Y exclusively different without negating the existence of additional states or options?
Do X and Y denote exclusive but not exhaustive options within a larger set of possibilities?
In comparing X and Y, are they distinct yet not limiting the possibility of other variations or alternatives?
Are X and Y distinct entities or states that exclude each other without forming a complete, exhaustive set?
Are X and Y different entities or states, but not in a way that negates the possibility of other, different entities or states?
Are X and Y distinct entities or states that exclude each other without forming a complete, exhaustive set?
In comparing X and Y, are they exclusive in nature but not necessarily covering all possible alternatives?
Do X and Y define separate, non−intersecting options, while not encompassing all possible scenarios?

Listing 2: Template questions for determining NatOps.

Given the claim "{C}" and the evidence "{E}", determine if the evidence supports, contradicts, or is insufficient to conclude about
the claim.

Choices:
(A): Supports
(B): Refutes
(C): Not Enough Information

Listing 3: Prompt template for FV experiments in a direct multiple-choice setup. Placeholders {E} and {C} get
replaced by corresponding texts.
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