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Abstract
AI systems’ ability to interpret human emotions
and adapt to variations is becoming more cru-
cial as AI gets embedded into everyone’s daily
lives. Emotion Recognition in Conversations
(ERC) is based on this fundamental challenge.
Current state-of-the-art technologies in ERC
are limited due to the need for future informa-
tion. We introduce High-Dimensional Tempo-
ral Fusion Transformer (HiTFT), a time-series
forecasting transformer that predicts pseudo-
future information to overcome this constraint.
This retains the models’ dynamic nature and
provides future information more efficiently
than other methods. Our proposed method
combines pseudo future embeddings with an
encoder that models the speaker’s emotional
state using past and pseudo-future information
as well as inter and intra speaker interactions;
these speaker states are then passed through a
decoder block that predicts the inferred emo-
tion of that utterance. We further evaluate our
method and show that it achieves state of the art
performance on three ERC datasets - MELD,
EmoryNLP, & IEMOCap.

1 Introduction

Directly or indirectly, chatbots and language mod-
els have become a crucial component of cyber in-
frastructure. With the high penetration of Large
Language Models (LLMs) in various domains,
such as healthcare, law, and many other safety-
critical systems, any unexpected output generated
by these models could lead to catastrophic conse-
quences. The goal of Affective Computing Sys-
tems is to correctly identify users’ emotions based
on their responses and direct future conversations
toward a desired emotion such as happiness or
neutrality. Emotion Recognition in Conversations
(ERC) is a field of active research in Affective Com-
puting. The ERC task goes beyond the conven-
tional recognition of emotions at the sentence level;

** Equal contribution.

Figure 1: In this conversation, the speaker is at turn
U3 and U1 & U2 are past dialogues. We predict future
context as pseudo-future, improving emotion inference
for U3.

it considers the complex interplay of conversational
context and speaker’s emotional states across mul-
tiple utterances. An example of our proposed ERC
system in action is described in Figure 1.

Researchers have developed several methods to
effectively exploit conversational features, from
prompt engineering (Lei et al., 2023) to sophisti-
cated speaker interaction tracking systems (Song
et al., 2023; Bao et al., 2022; Guo et al., 2024).
These systems depend on future dialogue discourse
to accurately predict the emotion of the current
utterance. This reliance limits their applicability
in real-time scenarios where such information is
unavailable. Wei et al. have explored the use of
pseudo-future contexts but with significant com-
putational overhead, as they rely on Pre-trained
LLMs with billions of parameters for extracting
these features. While pre-trained language models
offer extensive linguistic knowledge, their computa-
tional overhead limits system usability in real-time
edge systems equipped with low-power hardware.
This highlights the need for models that can oper-
ate efficiently without sacrificing the accuracy of
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ERC systems in real-time use cases.
This paper introduces a novel dynamic fore-

casting method that significantly reduces computa-
tional overhead while enhancing real-time respon-
siveness for ERC tasks. Unlike existing methods
that rely heavily on pre-trained LLMs for future
context prediction, our method leverages a Tempo-
ral Fusion Transformer (TFT)-based architecture
to generate pseudo-future embeddings. This time-
series approach to ERC, which forecasts emotional
contexts rather than relying on computationally
expensive LLMs, not only achieves comparable
or superior accuracy but also improves inference
speed and memory efficiency. Our contributions
are particularly focused on the following key areas:

1. Exploiting Pseudo-Future as a Time-Series
Forecasting Problem: We propose a novel
approach to model future context as a time-
series forecasting problem. Unlike previous
work that directly generates future utterances
using pre-trained LLMs, our method focuses
on forecasting future token embeddings based
on known current and past contexts. This ap-
proach not only reduces the need for large-
scale models but also significantly improves
computational efficiency, achieving real-time
performance with an average inference time
of 0.5s per utterance.

2. Speaker Modelling for Emotion Prediction:
Our Speaker State Encoder dynamically cap-
tures both intra-speaker and inter-speaker de-
pendencies, which are critical for emotion
recognition in conversations. By integrating
this with our pseudo-future context predic-
tion, we improve the system’s ability to track
emotional trajectories across multiple speak-
ers. This detailed speaker modeling allows us
to outperform previous state-of-the-art meth-
ods in handling longer, more complex dia-
logues, where emotional dynamics are harder
to predict.

Our approach represents a significant step for-
ward in balancing the trade-offs between efficiency
and accuracy in ERC systems. By reformulating
future context prediction as a time-series problem
and leveraging TFT’s capability to handle multi-
dimensional data, we create an ERC model that
not only achieves state-of-the-art performance on
challenging datasets but also operates efficiently on
real-time, low-power hardware.

2 Related Methods

Traditional approaches in Emotion Recognition in
Conversations (ERC) have primarily focused on
analyzing discrete emotions from static texts, often
overlooking the dynamic nature of conversations
and speaker interactions. The evolution towards
text-based ERC has seen the adoption of advanced
methodologies, particularly in modeling conversa-
tion context.
Use of RNNs and Transformers: Early ERC
studies relied on Transformer models and Recur-
rent Neural Networks (RNNs). These methods
captured the continuous and inter-related nature
of dialogues. DialogXL (Shen et al., 2020) uses
a memory-augmented Transformer XL to exploit
the hierarchical structure of conversations. Dia-
logueCRN (Hu et al., 2021) incorporates a reason-
ing module using RNNs for contextual features.
Advanced designs like SGED (Bao et al., 2022)
include a speaker-guided decoder network with
an attention-based speaker state encoding system.
However, RNNs suffer from vanishing gradient
issues, limiting modelling long-term context depen-
dencies, while transformers can be computationally
expensive, posing challenges for real-time applica-
tions.
Use of External Knowledge: External heteroge-
neous data has been used to improve ERC’s con-
textual relations. DialogueRNN (Majumder et al.,
2019) combines global representation embeddings
with RNNs. COSMIC (Ghosal et al., 2020) utilizes
COMET (Bosselut et al., 2019) embeddings to ad-
dress emotion changes and misclassification issues.
TODKAT (Zhu et al., 2021) integrates topic-driven
context modeling with COMET features. Recent
work by InstructERC (Lei et al., 2023) leverages
pre-trained LLMs like LLama2 (Touvron et al.,
2023) and GPT-3(Brown et al., 2020) for context
modelling. Despite these approaches’ impressive
performance, they have significant drawbacks. In-
tegrating external knowledge sources can cause
domain adaptation issues and increase memory
and storage requirements, limiting practical deploy-
ment.
Use of Pseudo-Future Knowledge: Use of
pseudo-future context is a relatively unexplored
domain. To the best of our knowledge, only one
work exploiting the pseudo-future context (Wei
et al., 2023b) achieves convincing results. This
work is also limited in its use as they leverage a
GPT-2(Sanh et al., 2019) model for future predic-
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tion, which limits its usability on low-power hard-
ware.

Contrastive Learning Solutions: Song et al. in-
troduces a method that uses contrastive learning
to improve emotional representation in dialogues,
leading to better performance. Similarly, Yu et al.
(2024) employs contrastive learning techniques to
capture dynamic conversational contexts more ef-
fectively. CoG-BART(Li et al., 2022) adapts super-
vised contrastive learning to make different emo-
tions mutually exclusive to identify similar emo-
tions better. These methods need careful sample
design and struggle with generalization across con-
versational scenarios, impacting model effective-
ness and adaptability.

3 Methodology

The primary goal of ERC systems is to identify
the underlying emotion for each utterance in a
dialogue. Formally, a dialogue in our context is
defined as a sequence of utterances, denoted as
D = {u1, u2, ..., uN} and corresponding emo-
tions E = {e1, e2, ..., eN}, where N represents
the total number of utterances in the conversation.
ei ∈ C where C = {C1, C2, ...Cm} for m emo-
tion classes. Each utterance ui consists of multiple
tokens(words), and each utterance is linked to a
unique speaker si. All speakers involved in dia-
logue D are represented by SD = {s1,s2,s3,..sk}
where k ≥ 1. For each utterance, we store a list of
speaker and utterance pairs in order of occurrence,
which helps us to map the speakers with their utter-
ances. This mapping is used later to decode inter
and intra-speaker dependency vectors.

3.1 Feature Extraction

For utterance-level feature extraction, we format
our input as suggested by (Kim and Vossen, 2021).
For each utterance ui, we prepend the speaker
name si linked to the utterance, enclosing this
with EOS tokens on each side. Before this EOS
token, we append the past eight utterances from
ui−1 to ui−8, the joint string is then enclosed by
EOS tokens. This formatted input is then passed to
the pre-trained RoBERTa Large model(Liu et al.,
2020). For any given utterance ui, the input array
is formed by appending a [CLS] token at the begin-
ning: [CLS], xi1, xi2, ..., xini , where xi is byte pair
encoded token(Devlin et al., 2019). This [CLS]
token serves as a context token, containing the rep-
resentation of that utterance. We extract the [CLS]

token in the final layer for each ui; we call it hi.
For a dialogue D = {u1, u2, ..., uN}, we extract
the corresponding context tokens represented by
Hd = [h1, h2, ..., hn].

3.2 Pseudo Future Extraction
Traditional sequence models like RNNs struggle
with extended temporal relationships. Our novel
High-Dimensional Temporal Fusion Transformer
(HiTFT) addresses this by accurately predicting
high-dimensional pseudo-future utterance embed-
dings to enhance emotion recognition. The stan-
dard Temporal Fusion Transformer (TFT) (Lim
et al., 2021) leverages transformer architecture to
implement a temporal attention mechanism, dy-
namically adjusting attention scores across pre-
vious time steps. TFTs, designed for multi-
variate time series forecasting, integrate known,
unknown, and static variables—combining time-
variant features with established correlations and
time-dependent features without direct correlations
with time-invariant attributes.

A key aspect of TFT is the Variable Selection
Network (VSN), which dynamically identifies rel-
evant variables at each time step. This allows the
model to adaptively concentrate on the most in-
formative features. Additionally, the TFT archi-
tecture incorporates attention encoders for known,
unknown, and static covariates. These encoders
capture the influence of both static and historical
features on the observed time series, enriching the
context for future time-step predictions. Lim et al.
describe the VSN network as follows:

GLU(x) = σ(Wx.x+ bx)⊙ (Wc.x+ bc) (1)

GRN(v, u) = Norm(v + GLU(Wv.µ+ bv))

µ = ELU(Wa.v + Wb.u+ ba))
(2)

VSN(λ, c) =
d∑

j=1

Softmax(GRN(λt, c))
(j)

⊙GRN(j)(λ
(j)
t , c)

(3)

Where, x represents the input at time step t
to the Gated Linear Unit (GLU). Wx,c, bx,c are
learnable parameters for the GLU with σ repre-
senting the sigmoid activation. GLUs provide
the flexibility to suppress any parts of the archi-
tecture that are not required for a given dataset.
Gated Residual Network (GRN) takes in a pri-
mary input v and an optional context vector u
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Figure 2: A detailed overview of the proposed method, where ui are input utterances formatted as described in
Section 3.1, hi is the feature vector extracted from Roberta. HiTFT predicts the pseudo future embeddings fi. After
that we pass it through our encoder and decoder to get our predicted emotion ei

and gives model the flexibility to apply non-linear
transformations only where needed. VSN does a
weighted addition of the overall input λ ∈ Rd and
optional static context c at each time-step. Per-
feature GRN(j), j ∈ {1, 2, ...d} blocks for both
static covariates and time-dependent covariates pro-
vide instance-wise variable selection. All static,
past and future inputs make use of separate VSNs
and are used to augment the context vector with
temporal and static features at time step t as Ht,
described in (Lim et al., 2021) as:

Ht = GRN(Lx,t ⊕At, Es) (4)

ŷt = FC(Norm(GLU(GRN(Ht)) + Lx,t)) (5)

L =
1

T

T∑

t=1

(yt − ŷt)
2 (6)

Here, Es ∈ Rd′s represents the encoded repre-
sentation of static covariates, Lx,t ∈ RT×d are
the locally enhanced features and At is the output
of the sequence model at time step t. The con-
text enrichment network is represented by another
GRN (Lim et al., 2021). Equation 5 represents the
forecasting step where, ŷt and t are the predicted
pseudo-future values and ground truth future val-
ues. L is the loss function, representing the mean
squared error between predictions and observed
future time-series variables.

Despite its strengths, TFT faces certain limita-
tions in natural language processing (NLP) appli-
cations: 1. Dependence on Known Future Vari-
ables: Predicting an observed variable at time-step
t̂ necessitates the corresponding known variable at
t̂. This dependency constrains its application in
real-time NLP scenarios, where only past and cur-
rent variables (text transcripts of conversations) and

static features (participating speakers) are available.
2. Scalability Issues: The original TFT architec-
ture struggles to handle the high dimensionality of
inputs and varying sequence lengths inherent in
NLP tasks during training. For instance, RoBERTa
embeddings are high-dimensional (1024), and con-
versation sequences can vary significantly in length,
posing challenges for direct application of the stan-
dard TFT model.

We address the first issue by making the future
observations independent from the known variables
during prediction. We modify the context enrich-
ment step to only include the static and historical
information and combine this with a multi head
self-attention block. This enables us to directly
parameterize the output on past context and also
predict multiple time steps in the future without
the need of known future context. To tackle the
second issue, we redesign the network to incorpo-
rate variable sequence lengths by introducing input
batching and sequence padding operations. This
modified HiTFT algorithm is given in Algorithm 1.

3.3 Speaker Emotion Encoder

To properly model context in Emotion Recogni-
tion in Conversations (ERC), we developed an en-
coder network that aims to capture both inter- and
intra-speaker dependencies. This section details
the formulation of these dependencies.

Intra-Speaker Dependency Formulation

For a given utterance ui linked to a speaker s(ui),
we concatenate the most recent state vector vi of
the same speaker alongside the entire previous con-
text Hp = [h1, h2, ..., hi] ∈ Rh×i. This approach
models the intra-speaker dependency by consider-
ing the flow of dialogue.
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Algorithm 1 Hi-TFT
Input: Observed time series y, known covariates
xk, unknown covariates xu, static features S

Output: Predicted future values ŷ
τ ← 5, b← 128
xk ← Pad(xk, τ), xu ← Pad(xu, τ)
Xk ← Stack([xk,1, xk,2...xk,b])
Xu ← Stack([xu,1, xu,2...xu,b])

X̂k ← VSN(Xk), X̂u ← VSN(Xu)
Ŝ ← VSN(S)

A← LSTM(X̂k ⊕ X̂u)
ES ← GRN(Ŝ)
LX ← GRN(X̂k ⊕ X̂u, ES)

LX ← LayerNorm(GLU(LX) +A)
H ← GRN(LX , ES)
M ← AttentionMask(H)

Ĥ ← SelfAttention(H, M)
Ĥ ← LayerNorm(GLU(Ĥ) +H)
Ĥ ← LayerNorm(GLU(Ĥ) + LX)
ŷ ← Linear(SelfAttention(Ĥ,M))

Initially, the process starts with the previous
speaker state vector of vi combined with the con-
text vector hi. We compute the intra-speaker query
vector qintrai as follows:

qintrai = W intra
q · [vi ⊕ hi] + bintraq , (7)

An attention mechanism is then introduced to
model the intra-speaker context, with the query
vector qintrai acting as the query and the previous
context ci serving as the key and value in the at-
tention framework. This mechanism generates the
intra-speaker state vector vintrai as follows:

αintra
i = softmax(W intra

1 · qintrai + b1), (8)

vintrai = αintra
i ◦ ci, (9)

Inter-Speaker Dependency Formulation
To model inter-speaker dependencies, we use the
context vector hi. The key vector ki for the at-
tention mechanism is calculated prior local infor-
mation {vj |j < i} linked to speaker s(ui). This
approach captures the latent inter-speaker depen-
dency. To derive the inter-speaker state vector for
ui, we apply the following procedure:

qinteri = W inter
q hi + binterq , (10)

αinter
i = softmax(W inter

a (qinteri ⊗ki)+b2), (11)

vinteri = αinter
i ◦ ki, (12)

Combining Speaker Vectors with Self-Attention
After obtaining the intra-speaker and inter-speaker
state vectors, vintrai and vinteri , we combine them
into a unified representation vcombined

i :

vcombined
i = vintrai ⊕ vinteri ,

Next, we apply a self-attention mechanism to the
combined vectors vcombined

i across all utterances in
the dialogue.

Vi = SelfAttention(V combined
i )

This final speaker state vector captures the com-
plete emotional context of the conversation, inte-
grating both intra-speaker and inter-speaker depen-
dencies, allowing the ERC system to make more
accurate predictions about the emotional states con-
veyed in each utterance.

3.4 Utilizing Future for ERC

To effectively utilize pseudo-future embeddings in
our ERC model, we experiment with various ar-
chitectural and simple ways. We evaluated several
hypothesis like creating a seperate branch to model
future and current context interplay, simple con-
catenation with current context. We decided to take
a straightforward approach, i.e. to concatenate the
pseudo-future context fi with the current context
hi. This new context vector h

′
i replaces hi in the

model. This method’s simplicity and low compu-
tational cost make it easy to implement, allowing
seamless integration of future information. Any
context modelling done on this concatenated data
will ensure that future information is not lost.

4 Decoder

Our decoder network employs a Gated Recurrent
Unit (GRU) architecture to maintain simplicity and
efficiency. When processing an utterance ui, we
align the speaker state vector with the utterance’s
representational vector:

mi = ReLU(vi ⊙ (Wmhi + bm)T ), (13)

where Wm and bm are model parameters.
The match vector mi is then concatenated with

the emotional embedding of the previously pre-
dicted emotion and passed to the GRU as suggested
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by (Wang et al., 2020) enabling the decoder to track
the dynamic interplay of emotions:

oi = GRU([mi ⊕ ei−1], oi−1), (14)

Finally, we combine the utterance representa-
tion with the GRU output and pass this through a
feedforward neural network to predict the emotion:

zi = ReLU(Wo[hi ⊕ oi] + bo), (15)

Pi = softmax(Wzzi + bz), (16)

yielding the predicted emotion ŷi.
For model training, we minimize the cross-

entropy loss:

L(θ) = −
M∑

j=1

Nj∑

t=1

logPj,t[yj,t], (17)

5 Implementation Details

In the pre-training step, our High-Dimensional
Temporal Fusion Transformer (HiTFT) was trained
for 100 epochs with initial learning rate of 1e-4
and weight decay of 1e-3. Once the pre-training is
complete, the HiTFT model parameters are frozen
during further fine-tuning of the speaker model-
ing encoder-decoder network. Additionally, the
speaker modeling network was fine-tuned on past,
current and pseudo-future predicted TFT embed-
dings, with an initial learning rate of 5e-5, followed
by a linear decay after a 20% epoch warm-up pe-
riod. We use the PyTorch framework for imple-
menting our method and use the AdamW optimizer.
The trained model processes dialogue data in real-
time with an average inference time of 0.5 millisec-
onds per conversation.

5.1 Datasets

Our research uses MELD (Poria et al., 2019),
IEMOCAP (Bansal et al., 2022), and EmoryNLP
(Zahiri and Choi, 2017), which offer unique
speaker modeling and emotion recognition char-
acteristics. Note that we only use text modality
from these datasets.

MELD:This dataset adds 1,400 dialogues and
13,000 utterances from "Friends." to EmotionLines.
It has auditory, visual, and textual data labeled with
anger, disgust, fear, joy, neutral, sadness, and sur-
prise. Its multimodality and extensive annotations
make it perfect for multimodal emotion identifica-
tion model training.

Figure 3: The graph shows the impact of varying the
number of predicted future time steps (τ ) for pseudo-
future utterances on wF1 as τ increases from one to six.
wF1 increases from 65.84 to 68.63 utterances at τ = 4,
then drops to 66.81.

IEMOCAP:IEMOCAP contains 12 hours of
audiovisual data, including professional actors’
scripted and unscripted dialogues. It lists anger,
happiness, sadness, and neutral. The dataset’s
detailed emotional annotations and various interac-
tions are necessary for robust emotion recognition
algorithms.

EmoryNLP:This dataset analyzes multi-party
discussions from "Friends," annotated with six
emotions: sad, mad, terrified, powerful, serene,
and cheerful. Textual and auditory data provide
complete emotion analysis. EmoryNLP’s multi-
party focus illuminates complicated emotional re-
lationships.

6 Results

To determine the optimal number of future time
steps for pseudo-future embeddings, we increment
the number of predicted future time steps τ from
one to six as shown in Figure 3 and evaluate model
performance on MELD dataset. Initially, wF1
scores rose exponentially due to valuable additional
information. However, further increases led to a
decline in wF1 scores as excessive data points in-
troduced noise, making it hard for the model to
decode anything from current utterance. We fix
τ = 4 for all further analysis.

6.1 Baselines
Table 1 provides a comparative analysis of var-
ious ERC models across MELD(Poria et al.,
2019), IEMOCAP(Bansal et al., 2022), and
EmoryNLP(Zahiri and Choi, 2017) datasets, us-
ing weighted F1 scores. Our method establishes a
new state-of-the-art on the IEMOCAP dataset, out-
performing InstructERC (Lei et al., 2023), which
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Model Name MELD
weighted F1

IEMOCAP
weighted F1

EmoryNLP
weighted F1 Type

SGED 2022 65.46 68.53 40.24 RNN based
InstructERC 2023 69.15 71.39 41.39 PLM based
EmoBERTA 2021 64.55 68.57 – Transformer based
CoG-BART 2021b 64.81 66.18 39.04 PLM based

SPCL 2022 67.25 69.24 40.94 Contrastive Learning based
SKAIG 2021a 65.18 66.98 38.88 GNN-based
EACL 2024 67.12 70.41 40.24 Contrastive Learning based

CoMPM 2022 66.52 66.33 38.93 Transformer Memory based
ERCMC 2023a 65.43 66.51 38.90 Transformer Memory based

Our: Enc+Dec+Real 66.34 66.24 40.23 RNN based
Our: Enc+Dec+HiTFT 68.63 77.34 42.94 Pseudo Future based

Table 1: Comparison of Our Model with various ERC Models on Three Datasets

uses a 7B parameter pre-trained LLM. Crucially,
our model achieves this with significantly fewer
parameters and resources.

Our approach surpasses models that incorpo-
rate future dialogue information, such as COG-
BART (Li et al., 2021a), EmoBERTa-large (Kim
and Vossen, 2021), and InstructERC (Lei et al.,
2023), by generating pseudo-future CLS token em-
beddings instead of full future utterances. This
reduces computational overhead and accelerates
inference without sacrificing accuracy, making it
more suitable for real-time applications compared
to COG-BART, which relies on generating future
utterances.

Additionally, our method establishes new bench-
marks on all three datasets, outperforming real-
time systems like SPCL (Song et al., 2022), EACL
(Yu et al., 2024), and SGED (Bao et al., 2022),
while maintaining computational efficiency. Our
model processes each utterance in 0.5 seconds, pro-
viding a 3x speedup over InstructERC’s 1.5 sec-
onds. It also requires just 12GB VRAM during
inference, compared to InstructERC’s 28GB, rep-
resenting a 50% reduction in memory usage, un-
derscoring its suitability for resource-constrained,
real-time environments.

HiTFT excels in leveraging the temporal dy-
namics of dialogues, evidenced by its enhanced
performance on datasets with longer dialogue se-
quences. On the IEMOCAP dataset, where the
average dialogue length is 52 utterances, integrat-
ing HiTFT-generated pseudo-future significantly
outperforms other models due to its superior abil-
ity to capture and predict long-term trends through
pseudo-future contexts. In contrast, on the MELD

dataset with an average dialogue length of just 9 ut-
terances, the pseudo-future integration shows only
a marginal performance increase, as the shorter se-
quences provide limited scope for trend modeling.
However, the model regains strong performance
on the EmoryNLP dataset, which features medium-
length dialogues averaging 16 utterances, aligning
well with HiTFT’s capabilities.

Parts wF1 MELD wF1 IEMO

Enc + Dec + HiTFT 68.63 77.34
Dec + HiTFT 67.60 74.63
Enc + HiTFT 66.62 73.85
Enc + Dec 66.26 66.24

Table 2: Ablation Study, analysing the impact of differ-
ent PFA-ERC components on overall performance for
two datasets

6.2 Ablation Study

We systematically dismantled our ERC model ar-
chitecture to assess the contributions of the En-
coder, Decoder, and HiTFT components, using
weighted F1 scores on MELD and IEMOCap
datasets. The full configuration achieved optimal
scores of 68.63 on MELD and 77.34 on IEMO-
Cap, establishing a strong baseline. Removing
HiTFT, responsible for integrating pseudo-future
contexts, led to a significant performance drop to
66.26 and 66.24, highlighting its role in enhanc-
ing the model’s anticipation of emotional shifts.
Interestingly, removing the Encoder improved re-
sults on MELD but not IEMOCap, suggesting
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Utt.No. Text Labels V1 V2

Dialogue 1

1 S1: Why did he invite her here? Angry Frustrated Angry
2 S2: Oh, God, line. Neutral Frustrated Neutral
3 S1: Why does that bother you? Neutral Neutral Neutral

4
S1: She’s been in New York three and
a half years. Why, all of a sudden–

Angry Angry Angry

Dialogue 2

1 S1: Hi, how can I help you? Neutral Neutral Neutral
2 S2:lost my luggage. Your airline– Frustrated Neutral Frustrated
3 S1: I’m sorry. Neutral Neutral Neutral

Dialogue 3

1
S1: Thank you for calling Sprint. We care
about everybody. How can I help you?

Frustrated Neutral Frustrated

2

S2: Hi. I’ve been on the phone for an hour
trying to get a little discrepancy on my bill
fixed. I was charged for two hundred
dollars worth of calls that I didn’t make.

Frustrated Frustrated Frustrated

3 S1: Are you sure you didn’t make them? Neutral Frustrated Frustrated

4
S2: I’m positive. They came from like
another state.

Frustrated Neutral Frustrated

Table 3: Case Study to demonstrate how Pseudo-Future V2 embeddings are more effective at capturing emotion
transitions when compared to Real V1 embeddings. Emotions with blue and red color represent correct and incorrect
predictions respectively.

that MELD’s shorter dialogues benefit less from
modeling speaker dependencies. Removing the
Decoder consistently reduced performance across
both datasets. These ablation studies confirm that
while each component contributes to performance,
integrating all three is critical for optimal ERC,
with HiTFT having the most substantial impact.

6.3 Case Study

To demonstrate the effectiveness of our HiTFT, we
compared two versions of our model: V1 uses real
future embeddings, and V2 uses pseudo-future em-
beddings. As shown in the results in Table 1, V2

consistently outperforms V1 by a significant mar-
gin, achieving superior emotion detection across
all datasets, with performance improvements up to
7%.

To further investigate the reasons behind V2’s im-
proved performance, we analyze their predictions
on selected utterances as a case study, as shown in
Table 3. In the examples, it is clear that V2 always
accurately predicts the utterance emotions at the
initial time steps. The gain in performance of V2 is

a result of V1 inability to effectively decipher rele-
vant information from future events, which leads
to the miss-classification of certain emotions at the
start of a dialogue . Another intriguing observation
is that V2 demonstrates the ability to effectively
decode emotions from ambiguous texts and easily
adapt to changes in emotions, this can be seen in
Dialogue 2. This strong adaptation to dialogue flow
can be attributed to the VSN which dynamically
weighs the importance of each feature, helping the
encoder and decoder to focus on relevant parts of
the context, thus yielding a better overall perfor-
mance.

To analyze this further, we conducted two ex-
periments focusing on the spectral properties and
temporal smoothness of the two embeddings.

Experiment 1: Power Spectral Density Analysis
While text embeddings are static representations at
individual time steps, they can be viewed as a multi-
variate time series when analyzed over a sequence,
such as in a dialogue. By treating this sequence
of embeddings as a temporal signal, we applied
Power Spectral Density (PSD) analysis to explore
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the distribution of frequency components. We com-
puted the PSD for both real future embeddings and
Hi-TFT pseudo-future embeddings to examine and
compare their temporal frequency characteristics.

Figure 4: Power Spectral Density comparison between
real future embeddings and Hi-TFT embeddings.

As depicted in Figure 4, the PSD curve for real
future embeddings exhibits significantly higher
power across most frequency bands, particularly
in the mid-frequency range. This elevated power
suggests the presence of substantial high-frequency
noise or rapid fluctuations within the embeddings.
This noise can introduce instability in tasks like
emotion recognition in conversations. For effective
modeling of emotional cues, consistent temporal
patterns are crucial, as they provide a more reliable
signal than transient or erratic fluctuations.

In contrast, the PSD curve for Hi-TFT future
embeddings remains consistently lower across all
frequency bands, indicating a smoother spectral
profile with reduced high-frequency content. This
decrease in temporal noise suggests that Hi-TFT
embeddings exhibit fewer fluctuations and greater
temporal stability, which is beneficial for the emo-
tion recognition in conversations task that relies on
modelling stable temporal dynamics.

Experiment 2: Mean Square Derivative Anal-
ysis To further assess temporal smoothness, we
analyzed the Mean Square Derivative (MSD) of the
embeddings, which measures the variance in their
temporal derivatives.

Figure 5 illustrates that real future embeddings
exhibit a wide range of MSD values, spanning from
0.1 to 0.7. This considerable variance indicates
significant fluctuations over time, reflecting less
smooth transitions and inconsistencies that could
impair model performance.

In contrast, Hi-TFT future embeddings demon-
strate extremely low MSD values, close to zero, sig-
nifying minimal variance in their temporal deriva-
tives. This finding confirms that Hi-TFT embed-

Figure 5: Mean Square Derivative comparison between
real future embeddings and Hi-TFT embeddings.

dings maintain a high degree of temporal smooth-
ness, ensuring consistent transitions that are benefi-
cial for downstream applications requiring stable
input representations.

7 Conclusion

In this study, we present a novel approach to ERC
using a cutting-edge Hi-Dimensional Temporal Fu-
sion Transformer (HiTFT) model built to forecast
pseudo-future utterance embeddings. This method-
ology improves the ERC task by combining dy-
namic temporal dependencies and speaker context,
making our proposed method better for modelling
long range conversational interactions. Our method
efficiently manages the complexities and varying
lengths of dialogues. It also adeptly addresses
the challenges of real-time processing and class
imbalance inherent in traditional ERC systems.
We perform rigorous evaluations of the proposed
method using IEMOCAP, MELD, and EmoryNLP
datasets and our model achieves state-of-the-art per-
formance on IEMOCAP and EmoryNLP datasets.

This research uses advanced approaches to bring
a fresh perspective to the ERC domain, creating a
new standard for future research and applications.
It will shape real-time, efficient ERC systems, en-
abling robust context-aware computing systems in
everyday interactions.

8 Limitations

Extensive testing has highlighted a few limitations
of our HiTFT-generated pseudo future embeddings,
particularly their modest impact on the MELD
dataset. This dataset’s short dialogue sequences
challenge HiTFT’s ability to model dialogue flow
effectively, as detailed in Section 6.3. HiTFT re-
quires a number of past known inputs equal to the
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future time steps it predicts. This condition ham-
pers its performance in scenarios involving short
dialogues, as it struggles to capture short-term se-
quence interactions.

To achieve minimal inference time for real-time
system applicability, we employed a frozen HiTFT
during training. This approach ensures that the en-
coder and HiTFT do not learn a shared embedding
space. Replacing the frozen HiTFT model with a
trainable version during the encoder and Hi-TFT’s
joint fine-tuning could promote a cohesive learn-
ing environment and further enhance the prediction
accuracy.

Additionally, our current framework is designed
to predict only four pseudo-future embeddings. To
predict more embeddings, we would have to retrain
the entire TFT, which poses scalability issues. Ad-
dressing this limitation could involve developing a
more flexible architecture that allows for adjusting
the number of embeddings without full retraining.

Lastly, training with a diverse dataset that in-
cludes a broad spectrum of dialogue lengths could
improve the robustness and generalizability of
HiTFT, making it more effective across different
real-world scenarios. These refinements could fur-
ther optimize HiTFT for varied applications by
enhancing its architecture and training process,
promising better performance and adaptability in
environments with fluctuating dialogue lengths.
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A Appendix

A.1 Risks

Deploying Emotion Recognition in Conversation
(ERC) systems poses privacy risks, as they process
sensitive data to analyze emotions, risking misuse
or unauthorized access. ERC’s accuracy varies by
demographic factors, potentially leading to biases
and discrimination in applications like hiring or law
enforcement. Over-reliance on ERC technology
may also degrade human judgment and empathy in
interpersonal interactions. Mitigating these risks
involves creating transparent, inclusive ERC sys-
tems with robust data protection and continuously
monitoring to prevent biases. This ensures that
ERC technology supports rather than undermines
fair and empathetic human communication.

A.2 Training Environment

All TFT models were trained for 400 epochs for
each of the analysed datasets. Speaker Encoder
and Decoder Networks are trained for 20 epochs
on MELD and 40 epochs on EmoryNLP and IEMO-
CAP, averaging results from the best-performing
epoch across 5 seeds. Experiments were conducted
on a server with 200GB RAM, 1x 50GB Nvidia
A6000 GPU, and 1x Intel Xeon Gold 6226R proces-
sor. The model training and evaluation for emotion
classification took around 12 hours each for the
three datasets.

A.3 Licences

License details for different components used in
the paper:

A.3.1 Datasets
We use three benchmark datasets MELD, IEMO-
Cap, EmoryNLP. We have GPL 3.0 license
for MELD and Custom (research-only, non-
commercial) for the rest two.

A.3.2 Pre-trained models
Our paper uses a few pre-trained models, their links
are as follows:

1. RoBERTa - MIT

2. EmoBERTa - MIT

A.3.3 Release
Upon acceptance, the PFA-ERC code will be
released on github under a research only non-
commercial liscence. The used datasets will not

be released will not be released as a part of source
code as it cannot be distributed by a third party.
Readers are encouraged to seek permission from
the original author for these datasets.
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