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Abstract

Large Language Models (LLMs) have led to
significant improvements in the Knowledge
Base Question Answering (KBQA) task. How-
ever, datasets used in KBQA studies do not
capture the true complexity of KBQA tasks.
They either have simple questions, use synthet-
ically generated logical forms, or are based on
small knowledge base (KB) schemas.

We introduce the SPINACH dataset, an expert-
annotated KBQA dataset collected from discus-
sions on Wikidata’s “Request a Query” forum
with 320 decontextualized question-SPARQL
pairs. The complexity of these in-the-wild
queries calls for a KBQA system that can dy-
namically explore large and often incomplete
schemas and reason about them, as it is infeasi-
ble to create a comprehensive training dataset.

We also introduce an in-context learning KBQA
agent, also called SPINACH, that mimics how
a human expert would write SPARQLs to han-
dle challenging questions. SPINACH achieves a
new state of the art on the QALD-7, QALD-9
Plus and QALD-10 datasets by 31.0%, 27.0%,
and 10.0% in F1, respectively, and coming
within 1.6% of the fine-tuned LLaMA SOTA
model on WikiWebQuestions. On our new
SPINACH dataset, the SPINACH agent outper-
forms all baselines, including the best GPT-4-
based KBQA agent, by at least 38.1% in F1.1

1 Introduction

Wikidata (Vrandečić and Krötzsch, 2014), one of
the largest publicly available knowledge bases, cur-
rently contains 15 billion facts and is estimated to
grow at a rate of 1 billion triples per year (Me-
diaWiki, 2024b). It is of significant value to

*Equal contribution
§Work conducted while at the Wikimedia Foundation
1Code and data available at https://github.com/

stanford-oval/spinach. The SPINACH agent is publicly
available at https://spinach.genie.stanford.edu/ and
on Wikidata as SpinachBot.
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Figure 1(a): An example forum discussion

Question: Who are the doctoral advisors of Leonhard Euler,
and their advisors, and so on? In addition, who are his doctoral student,
grand-student, great-grand-student, and great-great-grand-students?
Each tuple in the result should contain both the student and the doctoral advisor.

SPARQL: SELECT ?doctor ?doctorMaster WHERE {
{ ?root (wdt:P184*) ?doctor. }
UNION
{ ?root (wdt:P185/(wdt:P185?)/(wdt:P185?)/(wdt:P185?)) ?doctor. }
?doctor wdt:P184 ?doctorMaster.
VALUES ?root {

wd:Q7604
}

}

Figure 1(b): The corresponding decontextualized example
included in the validation set of the SPINACH dataset. The
SPARQL is based on the “Refined SPARQL” proposed by
the user TomT0m. Projection fields asking for labels and the
optional image clause are removed in accordance with our
methodology in Section 3.1.

many scientific communities, including Mathemat-
ics (Scharpf et al., 2021), Biology (Mitraka et al.,
2015; Pfundner et al., 2015), Education (Sigalov
and Nachmias, 2023), Linguistics (Turki et al.,
2017; lu Yu and Qiao, 2017), and the Social Sci-
ences (Kapsalis, 2019; Zhao, 2022), among many
others (Farda-Sarbas and Müller-Birn, 2019; Turki
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et al., 2023). Effective access to Wikidata data can
be challenging. To address this, the Wikidata Re-
quest a Query forum2 has been created so that users
can ask questions, propose solutions, and partici-
pate in follow-up conversations. Figure 1(a) shows
one such conversation, in which a user wants to
obtain the academic genealogy of Leonhard Eu-
ler. Note that in SPARQL, entities and properties
are uniquely identified by QIDs and PIDs, respec-
tively. Here P184 and P185 represent the “doctoral
advisor” and “doctoral student”, respectively, and
Q7604 is Leonhard Euler. Readers are referred to
Wikidata (2024) for more information.

Although numerous datasets have been proposed
for Knowledge Base Question Answering (KBQA)
task, they either contain only simple questions (Yih
et al., 2016; Bordes et al., 2015; Usbeck et al.,
2017; Perevalov et al., 2022; Usbeck et al., 2023;
Xu et al., 2023; Korablinov and Braslavski, 2020;
Rybin et al., 2021) or synthetically generated com-
plex logical forms (Bao et al., 2016; Gu et al., 2021;
Talmor and Berant, 2018; Keysers et al., 2020; Cao
et al., 2022a; Dubey et al., 2019). Datasets with
synthetically generated logical forms often lead to
an overestimate of the performance of KBQA sys-
tems; performing well on them does not translate
to real-world queries (Oren et al., 2021; Campagna
et al., 2022). Thus, the community needs a high-
quality dataset with organic, real-world queries that
capture the true complexity of KBQA tasks.

In this paper, we propose using the Wiki-
data Request a Query forum to build and evalu-
ate next-generation KBQA systems. We intro-
duce the SPINACH dataset, a new, expert-
annotated KBQA dataset featuring decontex-
tualized question-SPARQL pairs derived from
complex discussions on a real-world forum. Fig-
ure 1(b) is the example obtained from the discus-
sion in Figure 1(a).

As we show in this paper, current KBQA ap-
proaches (Xu et al., 2023; Sun et al., 2024a) can-
not handle the complexity of these real-world
queries. The state-of-the-art (SOTA) approach,
ToG (Sun et al., 2024a), which integrates LLMs
with KG reasoning, scores only 1.8 EM and
7.2 F1 on this data set. Therefore, we pro-
pose a new LLM-augmented KBQA approach,

SPINACH: SPARQL-Based Information
Navigation for Challenging Real-World Questions,

2https://www.wikidata.org/wiki/Wikidata:
Request_a_query

which is designed with the primary goal of mim-
icking how an expert would tackle the task. We
show that SPINACH establishes a new state of the
art on popular datasets such as QALD-7, QALD-
9, and QALD-10 and comes within 1.6% of the
fine-tuned SOTA on WikiWebQuestions. On the
SPINACH dataset, our agent outperforms all base-
lines, including the best GPT-4-based KBQA agent,
by at least 38.1% in F1.

2 Related Work

2.1 KBQA Benchmarks

Over the past decade, numerous Knowledge Base
Question Answering (KBQA) benchmarks with
logical forms have been introduced and can be clas-
sified into two categories:

Datasets with natural questions originally
collected through search engines or crowd-
sourcing. This includes the popular dataset We-
bQuestionSP (Yih et al., 2016), along with the
QALD datasets (Usbeck et al., 2017, 2018, 2023;
Perevalov et al., 2022), RuBQ (Korablinov and
Braslavski, 2020), and SimpleQuestions (Bordes
et al., 2015), among others;

Datasets with synthetically generated logi-
cal forms and questions, where some datasets
paraphrase synthetically generated questions via
crowdsourcing. This category includes Com-
plexWebQuestions (Talmor and Berant, 2018),
GrailQA (Gu et al., 2021), KQA Pro (Cao et al.,
2022a), CFQ (Keysers et al., 2020), and LC-QuAD-
2 (Dubey et al., 2019), among others.

Some of the aforementioned datasets were origi-
nally based on Freebase (Bollacker et al., 2008) or
DBPedia (Lehmann et al., 2015). Recently, how-
ever, the KBQA community has shifted toward
using Wikidata as the underlying knowledge base
for KBQA datasets, due to its larger size and con-
tinuous updates from community contributions.3

Several datasets have been converted to use Wiki-
data: WebQuestionSP has been converted to Wiki-
WebQuestions (Xu et al., 2023); SimpleQuestions
has a Wikidata version (Diefenbach et al., 2017b);
and CFQ has been converted to MCWQ (Cui et al.,
2022).

In Table 1, we present quantitative statistics
on these datasets. Existing datasets with natu-
ral questions typically involve relatively simple
queries (e.g., 2.63 clauses per query for WikiWeb-

3For more on why Wikidata is better suited for KBQA
benchmarks, refer to Section 1.1 of Usbeck et al. (2023).
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Avg. Clauses Avg. Projs Avg. Rels Avg. Subjs Avg. Preds Avg. Objs Avg. Lits

Natural questions w/ annotated logical forms

WikiWebQuestion (Xu et al., 2023) 2.63 1 1.53 1.25 1.52 1.53 0.04
QALD-9 Plus (Perevalov et al., 2022) 3.14 1 1.77 1.26 1.70 1.78 0.05
QALD-10 (Usbeck et al., 2023) 2.38 1 1.27 1.19 1.17 1.32 0.05
RuBQ (Korablinov and Braslavski, 2020) 2.17 1 1.12 1.03 1.11 1.07 0.01
SimpleQuestionsWikidata (Diefenbach et al., 2017b) 2.00 1 1.00 1.00 1.00 1.00 0.00

Synthetic logical forms w/ synthetic or paraphrased questions

CWQ (Talmor and Berant, 2018) 5.19 1 2.80 1.87 2.62 3.38 0.11
GrailQA (Gu et al., 2021) 7.10 1 3.02 1.97 2.43 3.90 0.08
KQA Pro (Cao et al., 2022a) 6.34 1 5.01 2.77 3.94 2.43 2.37
MCWQ (Cui et al., 2022) 6.34 1 5.09 2.67 3.53 3.37 0.00
LC-QuAD-2 (Dubey et al., 2019) 3.65 1 2.07 1.51 2.05 2.07 0.22

Natural logical form w/ annotated questions

SPINACH (Ours) 8.89 2.50 4.03 1.76 3.55 4.53 0.46

Table 1: Quantitative comparison of KBQA datasets on average number of Clauses, Projections, Relations, Subjects,
Predicates, Objects, and Literals. For datasets originally based on Freebase, we calculate their corresponding
datasets in Wikidata, if available. Refer to Appendix A for definitions of each metric.

Questions). In contrast, synthetically generated
datasets generally contain more complex queries
by design. However, due to the limited natural
language variety between training and evaluation
data, models can achieve artificially high accuracy.
For instance, a simple semantic parser based on the
BART (Lewis et al., 2020) model can achieve an
accuracy of over 90% on KQA-Pro even without
doing entity linking (Cao et al., 2022a). Further-
more, systems that excel at synthetic datasets do
not necessarily perform well in natural, complex
tasks (Oren et al., 2021; Campagna et al., 2022).
Additional details on the number of properties
and unique query patterns of existing datasets and
SPINACH are presented in Appendix B. This shows
the need for a high-quality dataset with both natural
questions and natural complex logical forms in the
KBQA community.

2.2 KBQA Approaches

Current KBQA systems can be classified into three
categories: (1) subgraph retrieval using vector em-
beddings (Sun et al., 2018, 2019; Sen et al., 2021;
Verga et al., 2021; Mavromatis and Karypis, 2022),
(2) semantic parsing (Yih et al., 2015, 2016; Luo
et al., 2018; Lan and Jiang, 2020; Das et al., 2021;
Ye et al., 2022; Cao et al., 2022b; Gu and Su, 2022;
Xu et al., 2023), and more recently, (3) LLM-based
graph exploration (Sun et al., 2024a; Xiong et al.,
2024). Some works use a combination of these
techniques (Yu et al., 2023; Luo et al., 2024a,b).

Due to the sheer size of Wikidata, embedding its
entire graph is prohibitively expensive. Subgraph
retrieval approaches therefore limit the problem to a
small fixed subset of Wikidata. Xiong et al. (2024),

for instance, create and search through embeddings
of the graph patterns (triples) for relevant patterns
and conduct experiments on a tiny subgraph cov-
ering only 0.01% of Wikidata (i.e. containing 17K
QIDs instead of the full 111,568K). This limitation
renders them inapplicable to real-world scenarios
as it leaves much of the knowledge graph unac-
cessible to users. Among semantic parsing sys-
tems, Xu et al. (2023) fine-tune LLaMA (Touvron
et al., 2023) with a modified SPARQL syntax and
achieve state-of-the-art results on 2 KBQA bench-
marks. Among LLM-based approaches, Sun et al.
(2024a) instruct an LLM to dynamically explore
the graph to fetch answers, achieving SOTA on 6
KBQA datasets. In Section 5, we evaluate these
two systems on our new SPINACH dataset.

3 The SPINACH Dataset

The archives of the Wikidata Request a Query from
July 2016 to the present date are available4. These
conversations are real and organic, reflecting the
kind of queries that practitioners are interested in.
Additional details on the forum and analysis of the
conversations can be found in Appendix C.1.

Out of the discussions up to May 2024, 2780 dis-
cussions include at least one valid SPARQL query.
We keep conversations whose last-mentioned
SPARQL query returns non-empty results under
10 MB. Of the 2171 discussions left, we randomly
sample 920 conversations spanning many domains
for consideration. These conversations typically do
not specify the exact natural language correspond-
ing to the SPARQLs. Thus, manual processing is

4https://www.wikidata.org/wiki/Wikidata:
Request_a_query/Archive

15979

https://www.wikidata.org/wiki/Wikidata:Request_a_query/Archive
https://www.wikidata.org/wiki/Wikidata:Request_a_query/Archive


required to convert them to a KBQA dataset. Three
Wikidata experts among the authors of this paper
manually inspected these conversations to produce
a dataset with 155 examples in the validation and
165 examples in the test set, as described below.

Additional discussions on the size and statistical
power of SPINACH dataset can be found in Ap-
pendix C.2. More information on the process of
converting source conversations and SPARQLs into
a KBQA dataset can be found in Appendix C.3.

3.1 Choosing and Trimming the Queries
We design the dataset to focus on end-users rather
than Wikipedia and Wikidata contributors inter-
ested in obscure optimizations or formatting. As
such, we manually remove the following SPARQL
clauses:

Wikimedia presentation queries: We filter
out clauses for analyzing or improving Wikime-
dia projects themselves, such as asking which
Wikipedia articles exist in one language but not
another.

Questions on complex SPARQL code. We ex-
clude conversations where users ask for help with
debugging overly complicated SPARQL queries,
when their meaning is already difficult to accurately
convey in natural language.

Queries obscured by optimizations: Because
Wikidata restricts query runtime to 60 seconds (Me-
diaWiki, 2024a), users may include clauses to opti-
mize the performance, which are often not directly
relevant to answering the question. We remove
these clauses.

Formatting clauses: We remove clauses that only
format the results.

Appendix C.4 and C.5 show specific examples
of these modifications and exclusions.

3.2 Annotating Natural Questions
For each conversation, the experts annotate a self-
contained, decontextualized natural language ques-
tion that accurately captures the meaning of the
user-written SPARQL. We follow these steps:

Disambiguate entities and properties: Entities
and properties are important parts of a query. For
ambiguous entities, the verbalization includes addi-
tional information to resolve the ambiguity. As for
the properties, the verbalization should distinguish
between similar properties. For example, instead of
asking “where a movie takes place”, we distinguish
between the “narrative location” and the “filming
location”; instead of asking “where a person comes

from”, we distinguish between the “country of citi-
zenship” vs. “country of birth”.

Natural verbalizations: Whenever possible, to
the extent that no ambiguities are introduced, the
question should refrain from directly using entity
and property names, instead using a more natural
way to express the meaning. For instance, instead
of asking “what is the point of time of the goal?”, a
more natural question with the same level of accu-
racy like “when does the goal take place?” should
be used.

Accurately capturing optional clauses and pro-
jections: In SPARQL, OPTIONAL clauses are used
to include additional data that may or may not exist
for queried items without excluding results lacking
this optional data.5 The verbalization should spec-
ify which fields are optional with clauses such as
“if available”. Similarly, the verbalization should
accurately capture what is requested in the projec-
tions, using phrases like: “For each result, return
their name and location” if necessary.

As illustrated in Table 1, the SPINACH dataset
is the first dataset with both natural and com-
plex logical forms, which represents the real-world
KBQA needs of Wikidata users. Relative to pre-
vious datasets, there are more unique properties
and unique logical forms per query. Additional
details on the popularity of the query topics in the
SPINACH dataset can be found in Appendix C.6.

4 The SPINACH Agent

The SPINACH agent is an LLM-augmented knowl-
edge graph exploration agent, where an LLM is
instructed to explore the knowledge graph until an
appropriate answer is found or another stop condi-
tion is met. However, unlike prior work, we design
SPINACH with the primary goal of mimicking a
human expert writing a SPARQL query. An ex-
pert starts by writing simple queries and looking up
Wikidata entity or property pages when needed, all
to understand the structure of the knowledge graph
and what connections exist. This is especially im-
portant for Wikidata due to its anomalous struc-
ture (Shenoy et al., 2022). An expert then might
add new SPARQL clauses to build towards the fi-
nal SPARQL, checking their work along the way
by executing intermediate queries and eyeballing
the results. Potentially, they might go back to the
drawing board and double-check their assumptions

5https://www.wikidata.org/wiki/Wikidata:
SPARQL_tutorial#OPTIONAL
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if a query fails.
Following this design principle, SPINACH im-

proves upon the following aspects of previous
agent-based KBQA systems:

First, SPINACH uses the full expressiveness of
SPARQL for exploration. This contrasts with
Sun et al. (2024a); Xiong et al. (2024); Sun et al.
(2024b), which explore the knowledge graph one
edge at a time. That is, SPINACH weaves together
the exploration and the writing of SPARQL. It is
instructed to try many SPARQLs and fail early. It
learns about the structure of the knowledge graph
from the results of its queries (or lack thereof), or
realizes its incorrect assumptions, and decides to
revisit them. This is a key difference from Sun
et al. (2024b,a), where the answer is generated only
when exploration is done.

Second, during its exploration, SPINACH does
not keep track of a subgraph as its state. Instead,
we define the state to be the full history of actions
and their results so far. Limiting the state to a sub-
graph (Sun et al., 2024b,a) means that the agent
would categorically not support questions whose
answer contains a large number of entities (e.g.
“Which actors graduated from Harvard?”) or com-
putation (e.g. “What is the tallest mountain?”).

Third, while most KBQA agents start their explo-
ration from entities they detect from the question,
SPINACH does not assume access to entities. This,
for example, gives the agent the flexibility to start
by searching for relevant relations if that is a more
suitable way to explore.

Concretely, SPINACH agent runs for N time
steps. At time step n, it takes the current state
as input and outputs a thought (Yao et al., 2023)
tn and one of the possible actions an from the set
of all possible actions. The action is then executed
outside of the agent, and the results are returned to
the agent as observation on. In the rest of this sec-
tion, we go into the details of the SPINACH agent.
Figure 2 shows an example of how SPINACH an-
swers a question.

4.1 Exploration State
The exploration state at time step n is Sn =
{t1, a1, o1, ..., tn−1, an−1, on−1}, that is, the list of
all thoughts, actions, and observations up to and
including the previous time step. S1 is set to ∅.

Complex KBQA tasks require high reasoning
ability. One promising approach to improve the
reasoning capabilities of LLMs is ReAct prompt-
ing (Yao et al., 2023), in which the LLM is in-

structed to output its reasoning trace in natural lan-
guage first, before selecting an action. We require
the agent to output a thought at the beginning of
each time step.

At time step n, the SPINACH agent takes an, one
of the following five actions, and receives the result
of the execution as observation on. These actions
are selected for their similarity to what a human
expert can do.
search_wikidata(string) is equivalent to using
the text search box at wikidata.org. This action
searches Wikidata for items (entities or properties)
that match a given string using the Wikidata API6

wbsearchentities. This API finds matches using
human-readable labels and aliases. The main use
for this action is to find relevant QIDs and PIDs.
get_wikidata_entry(QID) is equivalent to visit-
ing the Wikidata page for an entity, e.g. https:
//www.wikidata.org/wiki/Q219563. This ac-
tion retrieves all outgoing edges, i.e. linked entities,
properties, and qualifiers of a specified Wikidata
entity using its QID.
get_property_examples(PID) provides a few
examples demonstrating the use of the specified
property in Wikidata. The main use of this action
is to understand how a property is used in Wikidata,
if it is not clear from its label alone.
execute_sparql(SPARQL) is equivalent to using
the Wikidata Query Service at https://query.
wikidata.org/. It runs a SPARQL query on Wiki-
data and returns its results. Executing this action
gives the agent one of the following four types of
feedback signal:

1. The query returns non-empty results. We have
observed that LLM is capable of reasoning
over these results to choose the next action.

2. The query returns empty results. We have ob-
served that the agent often attempts to debug
the query clause-by-clause or attempts to take
alternative actions.

3. The query has a syntax error. We show the
specific syntax error message that the Wiki-
data Query API returns to the agent. We have
observed that the agent can use the syntax
error message to correct its previous syntacti-
cally incorrect SPARQL.

4. The query execution times out. The Wikidata
Query API caps the execution at 60 seconds.
When a timeout occurs, we have observed that

6https://www.wikidata.org/w/api.php
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the agent attempts to simplify the SPARQL
query in some way to avoid timeouts

stop() marks the last executed SPARQL query as
the final answer and ends the process.

Importantly, the results of the execution of each
action are put in a human-readable format to make
it easier for the LLM to process. To limit the
amount of information that the agent has to process,
we limit the output of search results to at most 8
entities and 4 properties, and limit large results of
SPARQL queries to the first and last 5 rows. The
outputs of get_wikidata_entry() are pruned us-
ing a separate few-shot prompt (Prompt 13) to only
keep entries that are relevant to the question.

4.2 Policy

The policy of SPINACH is implemented using a
zero-shot prompt that only includes high-level in-
structions such as “start by constructing very sim-
ple queries and gradually build towards the com-
plete query” and “confirm all your assumptions
about the structure of Wikidata before proceeding”
(Prompt 12). The decision of selecting the action
at each time step is left to the LLM. This decision
is made after experimenting with more restrictive
policies, but we empirically observe that account-
ing for all various edge cases might confuse the
agent and hurt the performance.

In each round of exploration, the agent con-
structs the exploration state and uses the policy
prompt to ask LLM to output a thought and an
action. It then executes the action and adds the
observation to the state. In practice, the LLM can
occasionally (1) fall into a cycle of repeating the
same action and argument over and over again, or
(2) deviate from its instructions and call stop even
though the last SPARQL execution did not return
any results. To remedy this, the agent checks for
these potential problems and resets the exploration
state to the one before the repetition or the devia-
tion, and continues from there.

Note that the policy LLM is run using sampling
with high temperature of 1.0 to encourage explo-
ration, so rerunning from a previous state does not
repeat the exact same sequence of actions. The
agent loop continues until either (1) the stop()
action is selected, or (2) 15 actions is taken after
taking “rollbacks” into account, or (3) a total of 30
actions.7.

7The agent has a budget of 15 actions to take, and an
extra 15 actions to spend on these “rollbacks”, to a total of 30

Figure 2: The sequence of 13 actions that the SPINACH
agent takes to answer a sample question from the
SPINACH validation set. Here, the agent goes through
several distinct phases, only with the high-level instruc-
tion in Section 4.2. Note that every step includes a
thought, action and observation, but some are omitted
here for brevity. Full version available in Listing 1.

In the example in Figure 2, SPINACH goes
through the following four phases, just by follow-
ing the high-level instruction we provided: it (1)
looks up relevant PIDs and QIDs, (2) attempts to
write the SPARQL in one go, which fails due to a

actions. For instance, the agent can take 9 actions, get rolled
back by 4 actions, then take another 10 actions and stop. This
means the final solution has 9− 4 + 10 = 15 ≤ 15 actions,
but the total number of actions is 9 + 4 + 10 = 23 ≤ 30
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hallucinated QID that the agent did not previously
check, (3) starts the debugging process by execut-
ing simpler SPARQL queries, and double-checking
its assumptions. It realizes its mistake after looking
at the result of a get_wikidata_entry, and finally
(4) moves on to write the correct SPARQL query.

Discussion In our initial experiments with impos-
ing low-level control over the selected actions, we
found that it does not improve the accuracy of the
agent. There are many possible states that the agent
can encounter, and programming the best action in
each one is challenging, especially in our zero-shot
setting and without methods that can directly learn
from large amounts of policy data.

Therefore, we leave most of the action selec-
tion to the LLM, and only impose have high-level
control via the “policy prompt” (Prompt 12) with
instructions like “Confirm all your assumptions
about the structure of Wikidata before proceed-
ing.”, which encourages search_wikidata and
get_wikidata_entry in the beginning, before ex-
ecuting any SPARQLs via execute_sparql. This
way, we leverage the underlying LLM’s common
sense and world knowledge to reason over its ob-
servations. For example, we saw empirically that
the LLM is capable of determining if the result of
a SPARQL query appears to be implausible (e.g.
returning a long list of entities when the question
is about “the oldest”).

5 Experiments

5.1 Evaluation Metrics
Prior works mostly use two metrics: Exact Match
(EM) and F1 (Yih et al., 2016; Usbeck et al., 2023).
As shown in Table 1, the SPINACH dataset contains
2.5 projections on average for each query, whereas
prior datasets all only contain only one field in
projection. This means that naively applying EM
and F1 is not possible; therefore, we propose a
generalization of these metrics.

From the user’s perspective, answers contain-
ing more than the minimum information which
help clarify or enrich the answer are welcome. For
the query “what is the county with most people in
South Dakota?”, a LLM-based system can choose
to return the top county along with its population,
even though the gold answer contains only the
county. In other words, answers that contain ad-
ditional projection columns from the gold should
not be penalized. To reflect this, we introduce a
row-major generalization of EM and F1 to handle

matrix-wise comparisons in real-life KBQA tasks,
where each row is andled such that extra columns
are not penalized.

Consider the general case where the answer of a
query consists of m projections of n results. Let

y =



y11 · · · y1m

...
. . .

...
yn1 · · · ynm


 y′ =




y′11 · · · y′1m′
...

. . .
...

y′n′1 · · · y′n′m′




be the gold and predicted result, respectively.
We first define the recall between a row in gold

and a row in predicted such that additional columns
in the predicted result are not penalized. Let yi and
y′j be the i and j rows in the gold and predicted
results, respectively.

recall(yi, y′j) =
|yi ∩ y′j |

|yi|
To calculate the recall between the full

gold and the predicted answer, we first
find assignment (SciPy, 2024) A(y,y′) =
{(i1, j1), ..., (ir, jr)} where row yik is matched
with y′jk such that the sum of the recall between
the matched rows is maximized. (Matching rows
with 0 recall is disallowed.)

For the calculation of F1, given y with
n rows, y′ with n′ rows, and A(y,y′) =
{(i1, j1), ..., (ir, jr)}, the number of true positives,
false negatives, and false positives are, respectively:

tp =
∑

(i,j)∈A(y,y′)

recall(yi, y′j)

fn = n− r +
∑

(i,j)∈A(y,y′)

1− recall(yi, y′j)

fp = n′ − r

The row-major F1 between y and y′ is:

2tp
2tp + fp + fn

EM is defined to be 1 if the row-major F1 score
is 1 and 0 otherwise. Note that with this definition,
EM and F1 are exactly equal to the tradition al
definition of EM and F1 when there is only one
projection.

5.2 SPINACH Agent on Prior Datasets
We evaluate our approach on four previous Wiki-
data datasets. We experiment with three QALD
challenges that have annotated Wikidata SPAR-
QLs: QALD-7 (task 4 for Wikidata) (Usbeck et al.,
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QALD-7 (Task 4) QALD-9 Plus (en) QALD-10 (en) WikiWebQuestions
Test Test Full Test Set Subset in ToG Dev Test

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

STAGG (Yih et al., 2016) - 19.0 - - - - - - - - - -
GGNN (Sorokin and Gurevych, 2018) - 21.3 - - - - - - - - - -
LingTeQA (To and Reformat, 2020) - 34.0 - - - - - - - - - -
Baramiia et al. (2022) - - - - - 42.8 - - - - - -
Shivashankar et al. (2022) - - - - - 49.1 - - - - - -
QAnswer (Diefenbach et al., 2017a) - 40.0 - 44.6 - 57.8 - - - - - -
SPARQL-QA (Borroto et al., 2022) - - - - - 59.5 - - - - - -
Liu et al. (2024) - - - - 56.5 - - - - - - -
0-shot ToG (GPT-4) (Sun et al., 2024a) - - - - - - 54.7 - - - - -
Fine-tuned WikiSP (Xu et al., 2023) 38.0 43.6 - - - - - - 75.6 76.9 65.5 71.9

0-shot SPINACH agent (GPT-4o) (Ours) 62.2 74.6 58.3 71.6 63.1 69.5 64.7 72.4 61.2 72.3 59.9 70.3

Table 2: Performance of the SPINACH agent and prior works on 4 prior datasets. Sun et al. (2024a) only evaluated on
the subset of non-boolean questions of QALD-10 test set, which we denote as “Subset in ToG”. SPINACH achieves
the new SOTA on QALD-7, QALD-9 Plus, and QALD-10. On WikiWebQuestions, it comes within 1.6% F1 to the
SOTA WikiSP fine-tuned on the dataset.

Dev Test
EM F1 EM F1

Direct GPT-4o Question Answering 0.0 3.9 0.0 4.0
GPT-4o Generating SPARQL 1.3 5.4 0.6 3.9
Fine-tuned WikiSP (Xu et al., 2023) 1.3 3.5 1.2 7.1
0-shot ToG (GPT-4) (Sun et al., 2024a) 3.9 9.8 1.8 7.2

0-shot SPINACH agent (GPT-4o) (Ours) 21.4 46.4 16.4 45.3

Table 3: Evaluation of the SPINACH agent and prior works on the SPINACH dataset.

2017), QALD-9 Plus (Perevalov et al., 2022), and
the English subset of QALD-10 (Usbeck et al.,
2023). In addition, we also evaluate with WikiWeb-
Questions (Xu et al., 2023), the Wikidata version
of the popular WebQuestionSP dataset.

As shown in Table 2, the SPINACH agent
achieves new SOTA on the three QALD datasets
and comes within 1.6% F1 of the fine-tuned SOTA
(WikiSP) on WikiWebQuestion. In particular, our
0-shot agent outperforms WikiSP by 24.2% EM
and 31.0% F1 on Qald-7 (Task 4), showing its
impressive cross-dataset generalization capability
compared to a fine-tuned model. Our approach
also outperforms the GPT-4-based ToG (Sun et al.,
2024a) by 10.0% EM on the same subset of QALD-
10 used for evaluation in its paper.

5.3 Results on the SPINACH Dataset

We benchmark the performance of four baseline
systems on the SPINACH dataset. These baselines
are: (1) directly asking GPT-4o to answer the ques-
tion without writing SPARQL, (2) directly asking
GPT-4o to write a SPARQL query, (3) WikiSP (Xu
et al., 2023) which is a fine-tuned LLaMA (7B-
parameter) model, and (4) the GPT-4-based ToG
agent (Sun et al., 2024a).

WikiSP expects a Named Entity Disambigua-

tion (NED) module to predict the relevant entities
given a question. The original NED module was
based on a fine-tuned version of ReFinED (Ayoola
et al., 2022). To make the task easier for Wik-
iSP, we directly use the gold entities that appear
in the annotated SPARQL as inputs. Similarly, the
ToG (Sun et al., 2024a) pipeline uses LLM to ex-
tract “topic entities” from the input question as
the starting point of its knowledge graph explo-
ration. We observed that using all the gold entities
as topic entities, the model was unable to return any
exploration paths for the first 80 questions in the
validation set and simply defaulted to GPT-4. To
make the task even easier for ToG, we sample up
to 20 entities from the results of the gold SPARQL
queries as the topic entities. Additional details on
our setup and comparison of baseline systems can
be found in Appendix D.

As shown in Table 3, the SPINACH agent dras-
tically outperforms all baselines. In particular,
we highlight that the low accuracy of the GPT-4o
QA system shows that this dataset mainly consists
of long-tail knowledge unfamiliar to LLMs. For
reference, GPT-4 was able to achieve 90.5% EM
on WebQuestionSP (Tan et al., 2023). Although
SPINACH was able to achieve the SOTA on this
dataset, the relatively lower performance compared
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to those achieved on previous dataset indicates that
there is a lot of room for improving KBQA systems
in the future.

5.4 Error Analysis
We randomly sample 20 cases on the SPINACH

dataset where the SPINACH agent achieves less
than 0.05 F1 and conduct an error analysis. We
observe that:

• Property-related problems: 40% of errors
are due to problems with properties. This in-
cludes cases when the SPINACH agent fails to
fetch the correct property or incorrectly uses
a property (e.g. using it as a wdt: relation as
opposed to the correct ps: or pq: qualifier).

• Complicated SPARQL: 30% of errors are
due to the failure of the SPINACH agent to
write complex SPARQL to fetch results, e.g.,
a complicated filter for finding people born in
a specific month.8

• Not enough exploration: 15% of errors are
due to insufficient exploration performed by
the LLM after reaching the maximum allowed
number of actions.

• Inaccurate semantic parsing: 10% of er-
rors are due to the LLM injecting an extra
clause. For instance, when asked “what items
were published in ...”, the LLM assumes that
the results have to be an instance of the do-
main entity “book”, but there are many other
types of results returned by the gold query
(e.g. “printed matter” and “legal act”).

• Formatting issues: 5% of errors are due to
format errors. An example is the LLM return-
ing the date in full (“June 23 2021”) when
only the year is requested (“2021”).

5.5 Ablation Study and Analysis
We created the set of agent actions from our own
experience in writing SPARQL. To understand how
each action contributes to the performance of the
SPINACH agent, we remove the actions one at a
time (except execute_sparql and stop, without
which the agent would never return a SPARQL
query). The results on the SPINACH dev set are
reported in Table 4. This ablation shows that all
actions together contribute to the performance of

8An interesting observation is that in 2 cases, GPT-4o
ended the reasoning with “I will fetch all related records and
proceed to filter the results in Python” after observing its
previous SPARQL returned no results, suggesting there may
be benefits to leveraging programming languages that are more
familar to LLMs.

the SPINACH agent. We also report the distribution
of the number of actions the SPINACH agent took
to answer questions from the SPINACH dev set in
Table 5 and the distribution of the number of tokens
in Appendix D.1.

EM F1

SPINACH agent 21.4 46.4
w/o get_wikidata_entry 11.7 36.4
w/o get_property_examples 10.4 29.4
w/o search_wikidata 4.6 25.3

Table 4: Ablation study of SPINACH agent without each
of its actions on the SPINACH dev set.

# of actions Percentage

3-5 28.6%
6-8 33.8%

9-11 11.0%
12-14 7.1%

15 19.5%

Table 5: Distribution of the number of actions (without
counting rollbacked actions) the SPINACH agent takes
to answer a question from the SPINACH dev set.

6 Conclusion

We propose the expert-annotated SPINACH dataset
drawn from real-world queries and introduce the
SPINACH agent that mimics how a human ex-
pert writes SPARQL queries. Experiments on
prior works show that the SPINACH agent achieves
the new SOTA on 3 QALD datasets and comes
within 1.6% F1 to the fine-tuned SOTA model
on WikiWebQuestions. On the new SPINACH

dataset, our agent outperforms the best LLM
agent approach, ToG, by 35.68% F1 on the test
set. The performance of 16.4% EM and 45.3%
F1 on the test set suggests ample opportunity
for further improvement. Fortunately, as our
SPINACH agent diaplays all its intermediate steps,
users can continue the conversation and revise
their queries to help the agent derive the answer.
We have deployed the SPINACH agent at https:
//spinach.genie.stanford.edu/ and on Wiki-
data at https://www.wikidata.org/wiki/User:
SpinachBot as a community resource to facilitate
the access of data in Wikidata.

Limitations

Since SPINACH agent makes multiple LLM calls
for each question, its latency and cost are higher
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compared to simpler systems. Other multi-stage
KBQA pipelines with LLMs like Sun et al. (2024a)
suffer from the same limitations. This seems to be
the price for a more accurate KBQA system. How-
ever, recently, model distillation has been shown to
be effective in improving model efficiency (Sem-
nani et al., 2023). We leave the exploration of this
direction for future work.

As observed in recent works (Kamalloo et al.,
2023; Zhang et al., 2024), automatic metrics such
as EM and F1 often fail to accurately measure the
capabilities of LLM-based systems. By verbalizing
the SPARQL queries as accurately as possible, we
aim to minimize the difference between automatic
metrics and manual inspection. We thus expect
these automatic metrics to still play a pivotal role
in the evaluation of future work on the SPINACH

dataset.
Annotated datasets can also suffer from annota-

tion errors and mistakes (Zang et al., 2020). We
address this limitation by having experts annotate
the dataset and independently cross-validating each
other’s annotations, as discussed in Appendix C.3.

Ethical Considerations

We release the SPINACH dataset in this paper. This
dataset is built using publicly available data in the
Wikidata Request Query forum, which is licensed
under the Creative Commons CC0 License. We
don’t expect any harm being produced from the
usage of this dataset. The generation and annota-
tion of the dataset were done by the authors of this
paper.

No GPU-based training was carried out in our
experiments, as we mainly used the OpenAI API
to call the GPT-4o model. To evaluate the LLaMA
baseline from Xu et al. (2023), we used a Linux
server with one NVIDIA A100 GPU for <1 hour.

To facilitate further research, we release our code
and data for the SPINACH agent and the SPINACH

dataset. The SPINACH agent is released under
Apache License, version 2.0. The SPINACH dataset,
derived from the Wikidata Request a Query forum,
is released under the CC BY-SA 4.0 license, the
same license that covers the forum.
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A Definition of metrics used in Table 1

For each query, we define the number of clauses as
the number of atomic nodes of a SPARQL abstract
syntax tree (AST), where an atomic node is defined
as one of: a projection clause (i.e., SELECT ...
WHERE), a single subject-relation-object clause, a
group by clause, a having by clause, a filter clause,
a sorting clause, a MINUS clause, and a join clause.
The number of projections is defined as the number
of fields in the final SELECT ... WHERE clause.
The number of relations is defined as the number
of subject-relation-object clauses. The number of
subjects is defined to be the number of uniquely
occuring subjects (either variables or entities) in
each subject-relation-object clause. The number
of predicates is defined to be the unique number
of properties (i.e. a PID of the form P...). The
number of objects is defined to be the number of
uniquely occuring objects (either variables or enti-
ties) in each subject-relation-object clause, where
we also count the number of y occuring in each
VALUES clause of the form VALUES ?x {y}. The
number of literals is defined to be the unique num-
ber of strings (e.g. “wikidata”) or numerical num-
bers (e.g. 123.45). The number of unique prop-
erties is the number of Wikidata properties across
all queries in a dataset (e.g. P123). The number of
unique forms is the number of unique query pat-
terns that occur in a dataset when one ignores all
unique query variables, property IDs (PIDs), entity
IDs (QIDs), numbers, and string literals and simply
counts the resulting patterns.

Similar to prior work (Gu et al., 2021), we use
hand-crafted rules (including regular expressions)
to retrieve these metrics.

B Additional Comparison between
SPINACH and Prior KBQA Datasets

Datasets with synthetically generated SPARQL
queries typically attempt to cover the space of pos-
sible SPARQLs using heuristics, resulting in rela-
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tively easy SPARQL structures repeated over and
over again. To quantitatively show this difference,
we calculate the number of unique query patterns
similar to what was proposed for SQL in Finegan-
Dollak et al. (2018). Specifically, we de-duplicate
SPARQL queries after ignoring all query variables,
property IDs (PIDs), entity IDs (QIDs), numbers,
and string literals and count the resulting patterns.
Table 6 shows the comparison of the number of
unique query patterns for SPINACH and several
other KBQA datasets. As shown here, even though
synthetic datasets such as GrailQA, KQA-Pro, and
CWQ contain many more data points, a small por-
tion of query patterns are repeated over and over
again. SPINACH, on the other hand, features or-
ganic queries found in the wild where each query
is structurally unique and poses a new challenge.

Dataset Size UQPs UQPs
/ Size

GrailQA (train+dev) 51100 116 0.227%
KQA-Pro 117970 1689 1.432%
CWQ 34689 402 1.159%
WikiWebQuestions 4316 176 0.041%
SPINACH 320 320 100.0%

Table 6: Comparison of Unique Query Patterns (UQPs)
in SPINACH and prior works.

We also report the number of unique properties
in SPARQL queries of the SPINACH dataset and
prior Wikidata datasets in Table 7. Datasets that
repeat the same few properties over and over again
have a low diversity of logical forms. Datasets that
synthesize their logical forms like MCWQ espe-
cially have a low count of unique properties and do
not properly test the ability of systems to explore
the knowledge graph as they can simply memo-
rize all of them during training. As shown here,
SPINACH contains the most unique properties, and
is quite diverse in this sense.

Dataset # UPs Dataset Size

MCWQ 27 124187
QALD 9 158 507
QALD 10 177 394
RUBQ 251 2910
WikiWebQuestions 189 4316
SPINACH 298 323

Table 7: Comparison of number of Unique Properties
(UPs) in SPINACH and prior works.

C Additional Details on SPINACH Dataset

C.1 Additional Details on the Request a
Query Forum

We have found that posters on the Request a Query
forum generally come to the forum with a clear
understanding of what they would like to query, or
even have a sample SPARQL query in a different
field that they would like to adapt (e.g. converting
a query about basketball statistics to baseball statis-
tics, or converting a query about museums in the
San Francisco area to operas in the Paris). In other
words, most questions are already very complex in
the first post on the forum.

We have analyzed the source conversations of
data points in the SPINACH dataset to derive the dis-
tribution of conversation lengths, where longer con-
versations may have more back-and-forth between
users who are asking questions and users who are
attempting to respond to those questions. We ex-
clude conversations from the Request a Query fo-
rum that have no responses, as well as conversa-
tions that do not contain any SPARQL queries as
there is no good candidate SPARQL to use for
annotation. Shorter conversations (1-3 responses)
comprise 57% of the dataset, medium length con-
versations (4-6 responses) comprise 31.9% of the
dataset, and longer conversations (7 or more re-
sponses) comprise 11.1% of the dataset. A detailed
breakdown is available in Table 8. The length of
a conversation is defined to be the number of re-
sponses posted.

length of conv. percentage

1 13.9%
2 14.9%
3 28.2%
4 13.3%
5 13.0%
6 5.6%
7 4.0%
8 1.9%
9 2.2%

>10 3.1%

Table 8: Distribution of the length of conversations for
each of data point in the SPINACH.

C.2 Discussion on Size and Statistical Power
of SPINACH

NLP datasets are often used to differentiate be-
tween two proposed systems, for example, to deter-
mine if a new system outperforms the state-of-the-
art or not. The size of the validation/test set deter-
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mines the minimum detectable effect (MDE) (Card
et al., 2020), i.e. the minimum improvement in a
metric (like exact match) that will yield sufficiently
powered comparisons. Following the approach in
Card et al. (2020), we estimate that the SPINACH
dev set is sufficiently large to differentiate between
the SPINACH agent and systems that are 9.0% or
more better than it. Meaning, that if a future pa-
per presents a system scoring 30.4% EM or higher
on the dev set of SPINACH, their experiment will
be statistically significant with the commonly used
significance level (alpha) of 5%. Separately, we
also note that all the improvements we report com-
pared to our baselines in Table 3 are statistically
significant.

Many influential datasets in the LLM era con-
tain fewer examples than traditional ML datasets,
often because they are only meant to serve as a
validation and test set instead of a training set.
The SPINACH dataset calls for systems that can
dynamically explore large and often incomplete
KB schemas and reason about them, as opposed
to relying on training data. The poor performance
of Xu et al. (2023), a model fine-tuned on a larger
training set, showcases that models fine-tuned on
often larger datasets do not necessarily generalize
well (Table 3). Furthermore, many recent LLM-
based systems (e.g. one of our baselines, ToG (Sun
et al., 2024a)) only evaluate on smaller datasets,
or small subsets of larger datasets, due to the high
cost of LLM APIs.

For these reasons, we believe the SPINACH
dataset is a good middle ground that keeps the cost
of our expert annotation and running multiple ex-
periments in future papers manageably low, while
being reasonably powered to differentiate between
and track the progress of future systems that use
this dataset.

C.3 Additional Details on Annotation
Expert annotations: The SPINACH dataset is an-
notated by 3 authors of this paper who are experts
with extensive knowledge in SPARQLs and Wiki-
data. The 3 experts first engaged in a long discus-
sion with specific examples to standardize the anno-
tation procedure. 2 experts first annotated the dev
and test sets, with the 3rd expert double-checking
and validating the annotations.

LLM suggestions: To facilitate the annotation
process, we used GPT-4o to generate preliminary
annotation suggestions to the experts. For each ex-
ample, the experts are shown with (1) the original

SPARQL query and with properties & entities sub-
stituted with labels, (2) link to the specific forum
discussion, (3) two LLM-suggested verbalizations
(one more verbose and one more natural), and (4)
an LLM suggestion of whether to modify, include,
or exclude the query with its reasonings. For each
data example, the experts executed numerous in-
termediate SPARQL queries on the Wikidata site
to verify the query’s validity and finalize the anno-
tated SPARQL.

Automatic exclusion of mwapi in queries:
Some SPARQL queries on the forum make use
of mwapi9. The usage of these APIs are mostly for
optimization or are otherwise very specific to the
structure of Wikimedia sites. We note that some-
times, removing these APIs would lead to small
changes in the results (most likely due to the out-
dated discrepancy between the API outputs and
Wikidata-direct outputs). To standardize the dataset
and avoid issues during evaluation, we use regex to
delete all occurrences of mwapis in the SPARQLs
before executing them.

C.4 Examples of queries modified
The following are examples of how we modify
target SPARQLs.

Wikimedia presentation queries: This dicsussion,
titled “Two-letter genera, on Wikispecies” in July
of 2020, involves the following snippets of retriev-
ing information from species.wikimedia.org
for certain taxa:

?wikispecies schema:about ?item .
?wikispecies schema:isPartOf

<https :// species.wikimedia.org/> .

This, however, is very specific to the structure
of different Wikimedia sites. Removing these two
clauses does not modify the core parts of the mean-
ing. We thus remove these two clauses and the
corresponding target ?wikispecies in the projec-
tion. The resulting SPARQL is then included in the
SPINACH validation set.

Queries obscured by optimizations: This discus-
sion, titled “Persons from a certain time period and
country” in Septempter of 2020, contains a query
that makes use of the following optimization:

int:Prior hint:rangeSafe true .

which is used to speed up the succeeding filter.
Removing this optimization in this case does not
significantly increase SPARQL executing time. We

9https://en.wikibooks.org/wiki/SPARQL/SERVICE_
-_mwapi
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thus remove this clause and include the example in
the SPINACH validation set.

Formatting clauses: This discussion, titled
“Query all taxons which are trees”, results in a
SPARQL of the following structure:

SELECT
?taxon ?sample (GROUP_CONCAT(DISTINCT

str(? commonname); separator =
"//") as ?commonnames)

WHERE
{
...
}
GROUP BY ?taxon ?sample

Using a group by, it is trying to concatenate all
commonnames into one single string, separated by
"//". However, it is very difficult to accurately
capture this in natural language, and a system could
return the results in different orders, raising issues
for evaluation. We thus exclude this concatenation
and instead change it to a counting operation:

SELECT
?taxon ?sample (COUNT(? commonname) as

?commonnamecount)
WHERE
{
...
}
GROUP BY ?taxon ?sample

The resulting SPARQL is then included in the
SPINACH validation set.

C.5 Examples of queries excluded

The following are examples of when, after modi-
fications, no meaningful part of the SPARQL re-
mains. The discussions are thus excluded from our
dataset.

Wikimedia presentation queries: The discussion,
titled “?item =wd:QXXX” in April of 2020, results
in a SPARQL that is only trying to fetch wikipedia
pages that are about the item “Gambling, Gods
And LSD”. The usage of schema:about property
is very specific to Wikimedia and could raise con-
fusion on the meaning of “about”. It is thus ex-
cluded. The discussion, titled “Bengali Wikipedia
articles with no Wikidata statement ” in March of
2018, results in a SPARQL trying to fetch Wiki-
data items with no statements that are the topic
of discussion of Bengali Wikipedia articles. The
usage of wikibase:statements, schema:about,
schema:isPartOf, and wikibase:sitelinks
properties are all very specific to the structure
of Wikimedia sites and can create confusions for
KBQA systems. It is thus excluded.

Questions on complex SPARQL code: This dis-
cussion, titled “Scatterplot query” in March of
2021, is an example where the original requester
comes in with a SPARQL that is complicated
whose meaning is already difficult to acurately ex-
press in English. The final SPARQL from the con-
versation (hyperlinked in “ a bit more baroque, with
axes”) only adds to the complexity.

Queries obscured by optimizations: This discus-
sion, titled “Section “P31wdt:P279 wd:Q16917 in
wdt:P131wdt:P131 wd:Q25 (query optimization)”,
involves only the refactoring of a query into using
two sub-queries which are then joined together to
avoid timing outs. The two queries are semanti-
cally equivalent. Due to reproducibility challenges
from this refactoring, this discussion is excluded.

Formatting clauses: The discussion, titled “pre-
ferred format for id” in Feburary of 2022, only
contains discussions on differnt ways for string pro-
cessing in SPARQL and is thus excluded. The dis-
cussion, titled “Custom link formatting in WDQS
results” in June of 2018, only contains results in
a SPARQL that focuses on converting string for-
mats after minimal use of Wikidata (fetching the
sitelinks of one item) and is thus excluded.

C.6 Analysis of the Popularity of Queries

Following the method in Semnani et al. (2023)
and Mallen et al. (2023), we estimate and re-
port the popularity of queries in the SPINACH

dataset. Specifically, for each unique entity in
the gold SPARQL queries of the SPINACH dataset,
we obtain the number of page views for its En-
glish Wikipedia page in the past year (July 2023
- June 2024), counting those without an English
Wikipedia page as 0. We show in Table 9 a dis-
tribution of the page views, sorted from higher to
lower page views, where the gold entity is shown
in bold. As shown here, the dataset contains a wide
range of entities, from popular ones like Norway
at 3,606,300 page views per year to tail entities like
Administrative divisions of Moscow at 44 page
views per year.

D System and Evaluation Details

Unless otherwise specified, LLMs are used with
greedy decoding, i.e. with temperature = 0, with
the exception of SPINACH agent’s policy prompt,
which is run with temperature = 1 and nucleus
sampling (Holtzman et al., 2019) with p = 0.9

The ToG agent by default builds a local version
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Percentile Page Views Per Year Example question in the SPINACH dev set

10th 3,499,391 Who are citizens of Norway that have held a position as a teacher or a subclass of
teacher, along with their labels, dates of birth (if available), and Norwegian historical
register of persons IDs (if available)?

25th 873,067 What are the Nazi concentration camps or subcamps? Include the following way of
finding such a camp: (1) those that are classified as a Nazi concentration camp, (2)
those that are considered the subcamps, and (3) subsidiaries of Nazi concentration
camps. For each one, also find its coordinates (e.g. literals such as Point(9.1978
49.1686)). Each pair of camp and coordinate should only appear once.

50th 131,131 What are the religious buildings located in the region of Molise, Italy?

75th 44 What are the current municipal districts, urban districts in Russia, or administrative
districts of Moscow located within Perm Krai?

90th 0 Who are the members of the historic Lower House and Upper House of the Parlia-
ment of Sweden, whose party’s Swedish label contains the string "vilde" in their
party name? For each person, also return the associated party, and the start (if
available) and end (if available) times of the party.

Table 9: Distribution of page views for the entity’s English Wikipedia page in July 2023 - June 2024 for each entity
in SPINACH’s gold SPARQL queries.

of Wikidata using the simple-wikidata-db li-
brary10. However, building this index from scratch
is extremely computationally expensive. Sun et al.
(2024b) report that they need to deploy the Wiki-
data dump across five AWS EC2 instances, each
consisting of a 768GB machine with 48 cores. Fahl
et al. (2022) reported various other methods of host-
ing Wikidata locally. We attempted using Qlever
as the SPARQL Engine but failed to do so on the
latest Wikidata dump. For the evaluation of ToG,
we re-implemented the same logic using dynamic
Wikidata API calls.

We adopted the same hyperparameters for ToG
as used in the original paper. For the experiment in
Section 5.3, we used D=3 and T=3 as the hyperpa-
rameters for graph exploration.

The GPT-4 and ToG systems return results in
strings of the entities instead of entity IDs; we con-
vert the gold SPARQL output to only contain their
English labels and calculate EM and F1 metrics.

D.1 Token Distribution for the SPINACH
Agent

Table 10 and Table 11 show the distribution of input
and output tokens needed to answer questions from
the SPINACH dev set, respectively. On average,
running SPINACH agent on each question costs
$0.1253 using GPT-4o.

E Prompts used in the SPINACH system

The policy prompt and the prompt used to prune
the output of get_wikidata_entry() are shown

10Github: neelguha/simple-wikidata-db

# of Tokens Percentage

4912.50 - 10330.50 16.23%
10330.50 - 15748.50 24.03%
15748.50 - 21166.50 18.18%
21166.50 - 26584.50 8.44%
26584.50 - 32002.50 6.49%
32002.50 - 37420.50 5.84%
37420.50 - 42838.50 10.39%
42838.50 - 48256.50 7.14%
48256.50 - 53674.50 1.30%
53674.50 - 59092.50 1.95%

Table 10: Distribution of total input tokens needed to an-
swer a question (including all intermediate steps) from
the SPINACH dev set.

# of Tokens Percentage

164.00 - 445.30 33.77%
445.30 - 726.60 27.92%

726.60 - 1007.90 14.29%
1007.90 - 1289.20 11.04%
1289.20 - 1570.50 6.49%
1570.50 - 1851.80 3.90%
1851.80 - 2133.10 1.30%
2133.10 - 2414.40 0.65%
2414.40 - 2695.70 0.00%
2695.70 - 2977.00 0.65%

Table 11: Distribution of total output tokens needed
to answer a question (including all intermediate steps)
from the SPINACH dev set.

in Table 12 and Table 13, repsectively.

F Full Example Trace of the SPINACH
Agent

Listing 1 contains a full sequence of thoughts, ac-
tions and observations of the SPINACH agent for
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# instruction
Your task is to write a Wikidata SPARQL query to answer the given question. Follow a step -by -step process:

1. Start by constructing very simple fragments of the SPARQL query.
2. Execute each fragment to verify its correctness. Adjust as needed based on your the observations.
3. Confirm all your assumptions about the structure of Wikidata before proceeding.
4. Gradually build the complete SPARQL query by adding one piece at a time.
5. Do NOT repeat the same action , as the results will be the same.
6. The question is guaranteed to have an answer in Wikidata , so continue until you find it.
7. If the user is asking a True/False question with only one answer , use ASK WHERE to fetch a True/False answer at the very

end.
8. In the final SPARQL projections , do not only ask for labels. Ask for the actual entities whenever needed (e.g. instead of

doing `SELECT xLabel `, do `SELECT x`).
9. If the final result was contained in last round 's `get_wikidata_entry ` and you are ready to stop , use `execute_sparql ` and

generate a SPARQL to retrieve that results.

Form exactly one "Thought" and perform exactly one "Action", then wait for the "Observation ".

Possible actions are:

- get_wikidata_entry(QID): Retrieves all outgoing edges (linked entities , properties , and qualifiers) of a specified Wikidata
entity using its QID.

- search_wikidata(string): Searches Wikidata for entities or properties matching the given string.
- get_property_examples(PID): Provides a few examples demonstrating the use of the specified property (PID) in Wikidata.
- execute_sparql(SPARQL): Runs a SPARQL query on Wikidata and returns a truncated result set for brevity.
- stop(): Marks the last executed SPARQL query as the final answer and ends the process.

# input
Question: {{ question }}

{% if action_history %}
{% for i in range(0, action_history|length) %}

{{ action_history[i] }}
{% endfor %}
{% endif %}

Output one "Thought" and one "Action ":

Table 12: The policy prompt of the SPINACH agent.

the given input question.
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# instruction
At each turn , you are given a Wikidata entry and a question.
You want to write a SPARQL query that answers the question.
As the first step , remove the parts of the Wikidata entry that could not be potentially helpful when writing the SPARQL.
The output should be a json object containing part of the Wikidata entry.

# few -shot example 1, input
Wikidata entry for OneRepublic (Q1438730 , 'OneRepublic ' is an American pop rock band formed in Colorado Springs , Colorado , in

2002):
{

"instance of (P31)": "musical group (Q215380)",
...
"social media followers (P8687)": {

"3134158": {
"Qualifiers ": [

{
"point in time (P585)": "4 February 2023"

}
]

},
"3276596": {

"Qualifiers ": [
{

"point in time (P585)": "6 January 2021"
}

]
},
"3178896": {

"Qualifiers ": [
{

"point in time (P585)": "2 March 2022"
}

]
},
"3720919": {

"Qualifiers ": [
{

"point in time (P585)": "10 May 2018"
}

]
}

}
}

Question: "What is the title of the second single on OneRepublic 's third album Native ?"

# few -shot example 1, output
{

"instance of (P31)": "musical group (Q215380)",
"record label (P264)": "Columbia Records (Q183387)",
"discography (P358)": "OneRepublic discography (Q935670)",

}

# few -shot example 2, input
Wikidata entry for Barack Obama Sr. (Q649593 , Barack Obama Sr. was an economist and the father of Barack Obama jr.):
{

"place of birth (P19)": {
"Nyang 'oma Kogelo (Q1027168)": {

"Qualifiers ": [
{

"country (P17)": "Kenya Colony"
}

]
}

},
...

}

Question: "where did barack obama sr. attend school ?"

# few -shot example 2, output
{

"place of birth (P19)": {
"Nyang 'oma Kogelo (Q1027168)": {

"Qualifiers ": [
{

"country (P17)": "Kenya Colony"
}

]
}

},
"place of death (P20)": "Nairobi (Q3870)",

...
}

# input
Wikidata entry for "{{ entity_and_description }}":
{{ outgoing_edges }}

Question: "{{ question }}"

Table 13: The 2-shot prompt used to prune the output of get_wikidata_entry() action. Here we omit parts of
the few-shot example inputs for space.
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"""
Question: SteplanI hav
"""

Thought: First , I need to identify the properties and entities related to
people affiliated with the University of Washington School of Music ,
their educational background , and the musical instruments they play.
This will help in formulating the final SPARQL query.

>> search_wikidata("University of Washington School of Music")
Observation: University of Washington School of Music (Q98035717): school of

music

Thought: Now that I have identified the entity for the University of
Washington School of Music , I need to find the properties that can help
me identify people affiliated with it and the properties related to
their education and musical instruments.

>> get_wikidata_entry("Q98035717")
Observation:

{
instance of (P31): {

faculty (Q180958): {
Qualifiers: [

{
of (P642): University of Washington (Q219563)

}
]

},
music school (Q1021290): {}

},
field of work (P101): [

higher education (Q136822),
postgraduate education (Q141212),
musicology (Q164204),
music (Q638),
research (Q42240),
ethnomusicology (Q208365)

],
located in the administrative territorial entity (P131): Seattle (Q5083),
location (P276): Music Building (Q98690890),
has subsidiary (P355): University of Washington Laboratory for Music

Cognition , Culture & Learning (Q101157561),
part of (P361): University of Washington College of Arts and Sciences

(Q7896566),
has part(s) (P527): University of Washington Laboratory for Music

Cognition , Culture & Learning (Q101157561),
parent organization (P749): University of Washington College of Arts and

Sciences (Q7896566)
}

Thought: To find people affiliated with the University of Washington School
of Music , I need to look for properties that define such an affiliation.
Additionally , I need to identify properties related to their education
at the University of Washington and the musical instruments they play. I
will start by searching for the property that links people to their
affiliations.

>> search_wikidata("affiliation")
Observation:

- affiliation (Q46135267)
connection , formally or informally , with an organization or intellectual

movement
- filiation (Q5861944)
system for recognizing the lineage or kinship of a person in anthropology
- affiliation (Q2620373)

archaic term for the legal establishment of paternity
- affiliated entity (Q69467106)

inverse property label item for P1416
- Affiliation (Q93774359)

scholarly article
- Affiliations Committee (Q46815761)

Wikimedia community -run committee
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- Wikimedia Affiliations Committee wiki (Q33120941)
Wikimedia private wiki

- Affiliation and participation (Q107433952)
master 's thesis of Hannah Marie Mayfield

- affiliation (P1416)
organization that a person or organization is affiliated with (not

necessarily member of or employed by)
Data Type: wikibase -item

- affiliation string (P6424)
qualifier to provide the published string form of affiliation attached

to an author
Data Type: string

- Olympedia affiliations ID (P9447)
identifier for the affiliation of athletes in Olympedia athlete database
Data Type: external -id (Represents an identifier used in an external

system .)

Thought: The property `affiliation (P1416)' seems to be the most relevant
for linking people to the University of Washington School of Music.
Next , I need to identify the property for their education at the
University of Washington and the property that links people to the
musical instruments they play.

>> search_wikidata("educated at")
Observation:

- educated at (P69)
educational institution attended by subject
Data Type: wikibase -item

Thought: I have identified the property `educated at (P69)' to link people
to the University of Washington. Next , I need to find the property that
links people to the musical instruments they play.

>> search_wikidata("musical instrument")
Observation:

- musical instrument (Q34379)
device created or adapted to make musical sounds

- heraldic musical instrument (Q56877088)
category of heraldic charges

- Musical instrument (Q102413357)
Oil of canvas by Alla Grigoryan

- Musical Instrument (Q102413736)
painting by Musical instrument

- Musical instrument (Q86150836)
sculpture in the church Brother Klaus in the city of Bern , Switzerland

- Musical Instrument (Q80002888)
musical instrument by unknown artist (1929.322)

- Musical instrument (Q123046258)
US patent 11482197

- musical instrument maker (Q1955150)
manufacturer of musical instruments

- instrument (P1303)
musical instrument that a person plays or teaches or used in a music

occupation
Data Type: wikibase -item

- MIMO instrument ID (P3763)
identifier for a musical instrument , on the instrument keyword thesaurus

from Musical Instruments Museums Online
Data Type: external -id (Represents an identifier used in an external

system .)

Thought: I have identified the relevant properties: `affiliation (P1416)' to
link people to the University of Washington School of Music , `educated
at (P69)' to link people to the University of Washington , and `musical
instrument (P1303)' to identify the instruments they play. I will now
construct a SPARQL query that combines these properties to get the
required information.

>> execute_sparql("""
SELECT ?instrument (COUNT (*) AS ?count) WHERE {

?person wdt:P69 wd:Q1063349;
wdt:P1416 wd:Q98035717;
wdt:P1303 ?instrument.
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}
GROUP BY ?instrument
"""

)
Observation:

Query returned empty result.

Thought: It appears that the query returned an empty result. This could be
due to several reasons: either there are no people matching all
criteria , or the properties might not be used exactly as I assumed. To
ensure accuracy , I will individually verify if there are people
affiliated with the University of Washington School of Music who have
also been educated at the University of Washington.

>> execute_sparql(
"""
SELECT ?person WHERE {

?person wdt:P69 wd:Q1063349;
wdt:P1416 wd:Q98035717.

}
LIMIT 10
"""

)
Observation: Query returned empty result.

Thought: The absence of results could indicate that the properties or the
specific entities used in the query might not be correct or commonly
utilized in this context. I will check if there are people who have been
educated at the University of Washington (Q1063349) and then see if I
can refine the affiliation aspect.

>> execute_sparql(
"""
SELECT ?person WHERE { ?person wdt:P69 wd:Q1063349. }
LIMIT 10
"""

)
Observation: Query returned empty result.

Thought: Since my previous queries returned empty results , I need to verify
if there are any individuals in Wikidata who have been educated at the
University of Washington (Q1063349). This will help me confirm if I am
using the correct properties and entities.

>> get_wikidata_entry("Q1063349")
Observation:

{
country (P17): Russia (Q159),
instance of (P31): hamlet (Q5084),
located in the administrative territorial entity (P131): Tavtimanovsky

selsoviet (Q4449505),
population (P1082): {

11: {
Qualifiers: [

{
point in time (P585): 1 January 2010,
determination method (P459): census (Q39825)

},
{

determination method (P459): census (Q39825),
point in time (P585): 1 January 2002

}
]

},
9: {

Qualifiers: [
{

point in time (P585): 1 January 2009,
determination method (P459): census (Q39825)

}
]

}
}
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}

Thought: The query results indicate that there may be an issue with the QID
I used for the University of Washington (Q1063349). It seems to
correspond to a location in Russia rather than the university. I should
search for the correct QID for the University of Washington.

>> search_wikidata("University of Washington")
Observation:

- University of Washington (Q219563)
public research university in Seattle , Washington , United States

- University of Washington Collection (NAID 931) (Q59502962)
collection in the National Archives and Records Administration 's holdings

- University of Washington Department of Chemistry (Q97958839)
academic department at the University of Washington

- University of Washington Department of Architecture (Q98844905)
academic department at the University of Washington

- University of Washington Department of Civil and Environmental
Engineering (Q97990078)

academic department at the University of Washington
- University of Washington Department of Chemical Engineering (Q99196105)

academic department at the University of Washington
- University of Washington Paul G. Allen School of Computer Science &

Engineering (Q98186807)
school of the University of Washington

- University of Washington School of Music (Q98035717)
school of music

Thought: The correct QID for the University of Washington is Q219563. I
should now update my SPARQL query to use this correct QID for
identifying people who have been educated at the University of
Washington and who are affiliated with the University of Washington
School of Music.

>> execute_sparql(
"""
SELECT ?person WHERE {

?person wdt:P69 wd:Q219563;
wdt:P1416 wd:Q98035717.

}
LIMIT 10
"""

)
Observation:

| Person |
|--------------|
| Q107692821 |
| Q107705263 |
| Q107706107 |
| Q107707997 |
| Q107708199 |
| Q107708456 |
| Q107720948 |
| Q107773759 |
| Q107782800 |
| Q107789859 |

Thought: Now that I have identified individuals who have been educated at
the University of Washington (Q219563) and are affiliated with the
University of Washington School of Music (Q98035717), I will update my
SPARQL query to find the musical instruments played by these individuals
and count the occurrences of each instrument.

>> execute_sparql(
"""
SELECT ?instrument ?instrumentLabel (COUNT(? student) AS ?count) WHERE {

?student wdt:P1303 ?instrument;
wdt:P1416 wd:Q98035717;
wdt:P69 wd:Q219563.

SERVICE wikibase:label { bd:serviceParam wikibase:language "en". }
}
GROUP BY ?instrument ?instrumentLabel
"""

16000



)
Observation:

| instrument | instrumentLabel | count |
|--------------|-----------------|-------|
| Q5994 | piano | 99 |
| Q1467960 | mbira | 2 |
| Q8350 | trombone | 11 |
| Q8338 | trumpet | 8 |
| Q17172850 | voice | 32 |
| ... | ... | ... |
| Q302497 | mandolin | 1 |
| Q187851 | recorder | 1 |
| Q185041 | cor anglais | 1 |
| Q83509 | piccolo | 1 |

Thought: The query successfully returned the musical instruments played by
individuals who are affiliated with the University of Washington School
of Music and have been educated at the University of Washington , along
with the counts of each instrument. I will mark this query as complete.

>> stop()

Listing 1: Full version of the example in Figure 2
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