
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 15503–15514
November 12-16, 2024 ©2024 Association for Computational Linguistics

Large Language Models Know What To Say But Not When To Speak

Muhammad Umair and Vasanth Sarathy and JP de Ruiter
Department of Computer Science

Tufts University
Medford, Massachusetts, USA

{muhammad.umair, vasanth.sarathy, jp.deruiter}@tufts.edu

Abstract

Turn-taking is a fundamental mechanism in hu-
man communication that ensures smooth and
coherent verbal interactions. Recent advances
in Large Language Models (LLMs) have moti-
vated their use in improving the turn-taking ca-
pabilities of Spoken Dialogue Systems (SDS),
such as their ability to respond at appropriate
times. However, existing models often struggle
to predict opportunities for speaking — called
Transition Relevance Places (TRPs) — in nat-
ural, unscripted conversations, focusing only
on turn-final TRPs and not within-turn TRPs.
To address these limitations, we introduce a
novel dataset of participant-labeled within-turn
TRPs and use it to evaluate the performance of
state-of-the-art LLMs in predicting opportuni-
ties for speaking. Our experiments reveal the
current limitations of LLMs in modeling un-
scripted spoken interactions, highlighting areas
for improvement and paving the way for more
naturalistic dialogue systems.

1 Introduction

When humans interact verbally, they avoid speak-
ing simultaneously and take turns to speak and
listen, a process essential for mutual understanding
and smooth communication (Stivers et al., 2009;
de Ruiter, 2019). Unlike in formal settings with
pre-assigned roles, participants in everyday con-
versations decide when to speak or listen on a per-
turn basis (Sacks et al., 1974). This local manage-
ment system hinges on conversationalists’ ability
to recognize and anticipate so-called Transition
Relevance Places (TRPs), which are points in a
speaker’s utterance that signal appropriate oppor-
tunities for the listener to speak. In other words,
at a TRP, listeners have the opportunity, but are
not obligated, to speak. Importantly, interlocu-
tors anticipate and recognize TRPs using various
lexico-syntactic, contextual, and intonational cues
(de Ruiter et al., 2006; Bögels and Torreira, 2021).

The ability to predict TRPs is therefore crucial
for artificial conversational agents, as it enables
them to take turns and provide verbal feedback
signals with socially appropriate timing. Recent
advances in Large Language Models (LLMs) have
generated interest in improving turn-taking capa-
bilities in Spoken Dialogue Systems (SDS) using
these models (Ni et al., 2021). Specifically, ap-
proaches like TurnGPT and RC-TurnGPT intro-
duce probabilistic models to predict TRPs using
contextual and speaker-identity information (Ekst-
edt and Skantze, 2020; Jiang et al., 2023a). How-
ever, most methods struggle to handle unscripted
spoken interactions, often resulting in long silences
or poorly timed feedback (Skantze, 2021).

There are two critical issues with the current ap-
proaches. First is the optimistic assumption that
LLMs trained predominantly on written-first lan-
guage can learn the complex dynamics of spoken-
first language (Mahowald et al., 2024; Umair et al.,
2024; Liesenfeld and Dingemanse, 2024), which
are distinct in structure and use (e.g. Drieman 1962;
Pilan et al. 2024). A second, more fundamental is-
sue is that, while TRPs at speaker switches can
be identified unambiguously, it is challenging to
clearly identify TRPs within turns. This means that
we have no ‘ground truth’ data about these ‘silent’
TRPs, where a listener could have responded but
chose not to.

In this work, we address these issues by first
developing a novel and unique empirical dataset1

based on human responses that allows us to iden-
tify within-turn TRPs in natural conversation. Sec-
ond, we use this dataset to establish the baseline
performance of state-of-the-art LLMs to predict
within-turn TRPs. This ability is vital for future
dialogue systems to appropriately time their turns,
use strategically timed silences to convey social

1The dataset collected as part of this work is pub-
licly available at: https://osf.io/k5pc9/?view_only=
5124d862448f4435b775d49a7b299d6d
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cues, and maintain conversational flow.

2 Theoretical Background

When humans verbally interact with each other,
they avoid speaking at the same time and instead
take turns speaking and listening (Sacks et al.,
1974). This allows them to respond sequentially
to each other’s utterances and facilitates mutual
comprehensibility (Duncan, 1972; de Ruiter, 2019).
However, the alternation between speaker and lis-
tener roles in natural conversation is not predeter-
mined (e.g., allotted time slots in court proceed-
ings). Rather, it is locally managed by speakers
themselves on a per-turn basis (Stivers et al., 2009;
Bögels and Torreira, 2015). But how can partici-
pants in conversations manage to avoid speaking
at the same time, or having long silences in which
they are waiting for one another?

Conversationalists follow rules imposed by a
universal turn-taking model, proposed by Sacks
et al. (1974) (see also Levinson, 1983; de Ruiter,
2019). This system crucially depends on the notion
of the Transition Relevance Place (TRP), which is
an opportunity in the current speaker’s utterance at
which a listener can, but is not obligated to, take
over the role of speaker. Even short feedback-like
turns, such as ‘hmm’, known as backchannels (Yn-
gve, 1970) or continuers (Schegloff, 1982), are pre-
cisely timed to occur at TRPs. Importantly, TRPs
are not a function of a speaker’s intentions but a
consequence of the turn-taking mechanism itself.
This distinguishes speech at TRPs from interrup-
tions or barge-ins, which can occur at any point in
a speaker’s utterance and are noticeable precisely
because their timing does not meet normative ex-
pectations.

In the turn-taking literature, a crucial distinction
is made between a turn, which is the entire con-
tribution by one speaker, and a Turn Construction
Unit (TCU), which ends at a TRP. Since a listener
is not required to speak at every TRP, a turn can
consist of multiple TCUs, with potentially multiple
TRPs occurring within a turn. This implies that, by
definition, turn-switches can only occur at a TRP.
While it is relatively straightforward to identify
turn-final TRPs – where the listener takes over – it
is challenging to reliably locate turn-medial TRPs
(where the speaker continues) due to the absence of
observable cues suggesting the presence of a TRP.

To function, the turn-taking system requires lis-
teners to not only recognize but also anticipate the

occurrence of a TRP in the current speaker’s con-
tribution (Riest et al., 2015). Listeners process var-
ious turn-taking cues – primarily lexico-syntactic
(de Ruiter et al., 2006), but also contextual and
intonational cues (Bögels and Torreira, 2021) – in-
crementally to predict upcoming TRPs, ensuring
that their responses are normatively timed. This an-
ticipatory ability is essential not only for successful
human interactions but also for designing artificial
conversational agents capable of a) taking over the
floor at the right moment and b) providing verbal
feedback with correct timing.

Beyond the basic mechanisms, cultural varia-
tions also play a role in how turn-taking unfolds.
While the fundamental mechanisms of turn-taking,
such as the cues for taking or passing on turns
(Stivers et al., 2009), are largely universal, cultural
norms can shape the timing and style of these tran-
sitions (Schegloff, 1982). Therefore, understanding
both the culture-invariant and culture-specific com-
ponents of turn-taking is crucial for developing
dialogue systems that are not only responsive but
also adaptable across diverse cultural contexts.

3 Related work

Efforts to improve turn-taking in Spoken Dialogue
Systems (SDS) have increasingly leveraged the lin-
guistic capabilities of LLMs, driven by the need for
these systems to manage natural unscripted interac-
tions, particularly in multi-party settings (Ni et al.,
2021). One notable approach is TurnGPT, which
introduces a probabilistic model to predict Transi-
tion Relevance Places (TRPs) using turn-shift to-
kens based on both contextual and speaker-identity
information (Ekstedt and Skantze, 2020). An ex-
tension of this approach is RC-TurnGPT, which
incorporates the predicted responses of interlocu-
tors, conditioning predictions on upcoming linguis-
tic content (Jiang et al., 2023a). However, these
methods so far do not generalize well to corpora
of unscripted dialogue. As a consequence, current
dialogue systems still tend to produce long silences
and ill-timed feedback (Skantze, 2021).

Ablation studies on these LLMs suggest that pre-
vious linguistic content is generally sufficient for
accurate prediction of turn-ends, and that the rela-
tive gain in accuracy diminishes with larger context
windows—i.e., TRPs can often be predicted effec-
tively using the local linguistic content of a turn.
Additionally, although several approaches attempt
to predict turn-ends using acoustic signals (e.g., Ek-
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stedt and Skantze 2022a,b; Inoue et al. 2024), our
work is grounded in human turn-taking literature,
where linguistic cues are recognized as both neces-
sary and sufficient for anticipating TRPs (de Ruiter
et al., 2006).

4 Our approach

There are two common methods for identifying
TRPs in recorded conversation corpora (e.g, God-
frey and Holliman 1993; Anderson et al. 1991;
Kraaij et al. 2005). The first is to locate speaker
changes, which are directly observable, and infer
that these changes occur only at TRPs. The second
is to have experts in conversation analysis manually
annotate TRPs. While these methods are widely
used, both have limitations. Speaker changes only
account for a subset of all TRPs, as there are oppor-
tunities where a listener could respond but chooses
not to i.e., within-turn TRPs (Threlkeld et al., 2022).
Expert annotations, meanwhile, are subjective and
do not align with the task faced by participants in
real-time dialogue, who must predict TRPs instinc-
tively ‘on-the-fly’. In contrast, annotators analyze
conversations retroactively, without engaging in the
same anticipatory processing as active participants
– leading to low ecological validity (see Albert and
de Ruiter (2018)).

To address these limitations, we designed an
experiment that engaged participants in natural
conversations, asking them to produce auditory
responses at any location they felt it was possi-
ble to respond—not necessarily where they would
have responded in everyday interactions. By hav-
ing multiple participants repeat this task, we gath-
ered a wide range of responses for the same turns.
While individual responses varied, the aggregated
distribution (with a sufficiently large sample size)
provides a reliable indicator of within-turn TRPs,
reflecting how humans identify these opportunities
in real conversations.

4.1 Collection of data on human-detected
TRPs in natural turns

Corpus of natural conversations
To create a reliable dataset of participants’ instinc-
tive responses to TRPs, we first collected a cor-
pus – named the In Conversation Corpus2 (ICC) –
containing high-quality recordings of informal di-
alogues in American English. The ICC consists

2The ICC is not currently publicly available in its entirety
due to restrictions by the Tufts University IRB.

of 93 conversations, each lasting approximately 25
minutes, and each featuring pairs of undergradu-
ate students engaged in unscripted conversations.
Participants sat in sound-proofed rooms separated
by a glass window and communicated using mi-
crophones and headphones, ensuring that we could
record high-quality audio with complete sound iso-
lation per speaker i.e., no cross-talk. The record-
ings were first automatically transcribed using Gail-
Bot (Umair et al., 2022), following Jeffersonian
transcription notation, and subsequently verified by
human annotators.

From the 93 total conversations in the ICC, we
initially selected 17 candidate conversations (ap-
proximately 425 minutes of talk) for further analy-
sis. To focus specifically on participants’ instinc-
tive localization of within-turn TRPs, we further
filtered these conversations to select 55 turns that
we suspected contained at least two TCUs. Ulti-
mately, this resulted in 28.33 minutes of talk being
used in the data collection reported below.

We selected the ICC over publicly available dia-
logue corpora to ensure more natural and diverse
turn-taking behaviors in our dataset. Although
open-source datasets are well-annotated and widely
studied, their data collection methods often limit
the range and authenticity of conversational behav-
iors exhibited (Reece et al., 2023).

Empirical collection of estimated TRP
locations.
To empirically determine the locations of TRPs,
we created two mutually exclusive lists of stimulus
turns from the filtered subset of the ICC (55 turns;
28.33 minutes of talk), ensuring that each turn was
assigned to only one list. To mitigate potential or-
dering effects, we generated two additional lists in
which the stimulus turns (see Figure 1) were pre-
sented in reverse order (i.e., the last turn appeared
first, and so on). In total, we had four stimulus lists,
each approximately 15 minutes long.

We recruited 118 native English speakers as par-
ticipants3, none of whom were experts in the turn-
taking literature. Each participant was randomly
assigned to one of the four stimulus lists and asked
to verbalize brief backchannels (e.g., ‘hmm’, ‘yes’)
whenever they felt it was appropriate. Each partici-
pant’s responses were recorded on individual audio
channels, synchronized with the stimulus audio to

3This study was approved by the Tufts University IRB (ID
= STUDY00003236). Participants were undergraduates and
were compensated as per IRB regulations.
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Figure 1: Participants listened to a stimulus (S) and produced auditory responses (R) to indicate their perception of
TRPs. Each word in the stimulus (w1, t

s
w1

, tew1
) and the response (w̃1, t

s
w̃1

, tew̃1
) has a start and end time. Intervals

are between adjacent words (Ipq).

maintain clarity and separation.
We used the phonetic analysis software Praat

(Boersma and Van Heuven, 2001) and ELAN (Wit-
tenburg et al., 2006) to manually locate the onset
of each backchannel response across all partici-
pants. This allowed us to ensure that we used
precise timing for words and did not accidentally
consider other types of speech (e.g., in-breaths, out-
breaths, laughter etc.) as responses. Since two of
the lists were reversals of the originals, we merged
the participant responses from these reversed lists
with those from the original lists for analysis. On
average, 59 participants responded to each stimu-
lus turn, multiple times if they perceived multiple
TRPs, resulting in an average of 159 responses per
stimulus turn (see Table 1). This allows us to esti-
mate both the likelihood of perceiving a TRP at a
specific location and the distribution of those esti-
mated response locations (see Figure 2). Refer to
Appendix A for further details on the processing of
stimulus lists.

4.2 Within-Turn TRP Prediction Task
Preprocessing Multi-channel Audio Data
Since we are evaluating the ability of LLMs to
recognize TRPs, we require a principled method to
formalize our experimentally collected dataset by
converting the audio data from two synchronized
channels (stimulus and response) into a structured
format suitable for analysis. From the recorded
audio, we extract words along with their precise
timing information, including start and end times.
To ensure high accuracy, these timing details were
manually annotated to the nearest tenth of a second
for both the stimulus and participant responses.

Formally, we define a single stimulus S =
⟨(w1, t

s
w1
, tew1

), . . . , (wN , tswN
, tewN

)⟩ of length N
as a sequence of words wi, where each word be-

Stimulus Lists
Metric List 1 List 2
List duration (s) 846.3 853.5
# of words 2558 2693
# of participants 60 58
# of stimuli 28 27
Avg. stimulus duration (s) 30.5 31.7
# words per stimulus 91.3 99.7
Avg. # of responses per
stimulus

156 162

Table 1: Participants listened to two stimulus lists and
their reversals, each containing multiple turns. They in-
dicated within-turn TRPs using brief auditory backchan-
nels. Responses from the original and reversed lists
were merged for analysis. The table summarizes statis-
tics for each list. Note that # refers to number with the
duration in seconds.

longs to a fixed vocabulary L, such that ∀wi ∈
S,wi ∈ L. The stimulus S also includes
start (tswi

) and end (tewi
) times for each word.

Participant responses are similarly defined as
R = ⟨(w̃1, t

s
w̃1
, tew̃1

), . . . , (w̃M , tsw̃M
, tew̃M

)⟩. Fur-
ther, we calculate the temporal midpoint of each
word as tmwi

= (tswi
+ tewi

)/2, and use these mid-
points to create intervals, Iij , 1 ≤ i, j ≤ N, j =
i+1, between words. Using the temporal midpoint
provides a more reliable estimate for determining
whether a response is most reasonably associated
with the preceding word.

We also define a binary random variable Ti ∈
{0, 1} for each interval Iij indicating the occur-
rence (1) or absence (0) of a TRP after word wi.
The vector TR,S = ⟨T1, . . . , TN ⟩ subsequently acts
as a collection of binary indicators representing
whether a TRP occurred in each interval Iij of a
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stimulus S.
Finally, T Participants

R,S represents a binary indi-
cator of whether participants agreed that a TRP
had occurred in each interval of a stimulus S. We
determine participant agreement by calculating
the proportion of participant responses IProportion

ij ,
based on their start times (tsw̃i

), that fall within
each interval Iij . We consider a TRP to have oc-
curred if the proportion of responses for an inter-
val exceeds a predefined threshold τ ∈ [0, 1], i.e.,
IProportion
ij > τ (we used τ = 0.3). Note that

the choice of τ is crucial, as it directly impacts
T Participants
R,S : a larger τ requires a higher level of

participant agreement for an interval to be marked
as containing a TRP, while a smaller τ allows for a
more relaxed consensus.

Task Definition
Broadly, the inference task can be defined as iden-
tifying between 0 and N TRPs in a stimulus S.
However, it is important to consider that humans
do not process entire turns as complete units; rather,
we incrementally process speech and decide on the
existence of TRPs at each point in time. To repli-
cate this incremental processing in the inference
task, we define a prefix Pi = ⟨w1, . . . , wi ⟩ as a
sequence of words from the first to the ith word,
such that ∀wi ∈ Pi, wi ∈ S. We further define PS

as the set of all prefixes for a stimulus turn S, with
|PS | = N

Definition 4.1 (Within-turn TRP Prediction)
Given a stimulus S, and the set of all prefixes PS ,
determine T Predicted

R,S , where each Ti ∈ T Predicted
R,S

occurs after each of the prefixes Pi ∈ PS .

Definition 4.1 allows us to decompose each stim-
ulus turn S into a set of binary string classifica-
tion tasks. Notably, we assume that the value of
Ti is independent of all prior TRP determinations,
T1, . . . , Ti−1. While TRP determinations depend
on multiple factors, in this paper, we focus solely
on conditioning TRP determinations on the linguis-
tic information provided by preceding words. See
de Ruiter et al. (2006) and Riest et al. (2015) for
experimental evidence that linguistic content is suf-
ficient for TRP prediction.

5 Evaluation Metrics

Classification Metrics
We can evaluate the performance of a model for the
within-turn TRP prediction task (see Definition 4.1)
by comparing its predictions T Predicted

R,S against the

participants’ indications of TRPs T Participants
R,S . It

is important to note the imbalance inherent in the
data i.e., intervals that contain TRPs are much less
frequent those that do not. In this case, we cannot
use accuracy since a model that simply predicts the
majority class for all intervals will have achieve a
high value. Instead, the F1 score i.e., the harmonic
mean of precision and recall, is well suited since it
emphasizes models that perform well in identifying
intervals that contain TRPs (Ti = 1), which are the
vast minority of intervals.

Free-Marginal Multirater Kappa
Multirater Kappa statistics are often used in medi-
cal and behavioral sciences as a measure of agree-
ment over chance between multiple raters (Artstein
and Poesio, 2008). There are a number of benefits
to using Kappa in the context of our work. First,
most LLMs, especially smaller ones, lack consis-
tency over multiple predictions generated with the
same prompt. Additionally, since most state-of-the-
art LLMs do not provide direct access to proba-
bility distributions, the kappa statistic can be used
to directly compare multiple responses from the
same model. In fact, it can also be used to assess
agreement between groups of models (Tang et al.,
2024). Second, kappa is a measure of reliability,
but not validity. It might be the case that groups
of LLMs may agree with each other, but not with
human participants. Therefore, the kappa statistic
offers a way to compare predictions of LLMs to
human evaluators (Wang et al., 2024). This is es-
pecially important when considering TRPs since
the subjectivity of turn-taking decisions may lead
to disagreement between raters (LLMs or humans),
but might not necessarily indicate an incorrect pre-
diction.

Fleiss’ Kappa is typically used when there are
multiple raters assessing a nominal variable (Fleiss,
1971). It assumes that the n raters know a pri-
ori the number of cases N that must be assigned
to each category K. However, this assumption is
not valid in our task, which consists of raters (the
participants and the models) attempting to assign
binary TRP categories across a number of cases
(each interval is a case). Here, the rater does not
know a priori the number of TRPs that occur in a
specific stimulus. When this assumption does not
hold, the value of Fleiss’ kappa can change signif-
icantly based on the distribution of cases in each
category, even when all other variables are held
constant. Randolph (2005) proposed a kappa mea-

15507



Figure 2: Distribution of participant responses, the times at which participants agreed a TRP occurred, and model
predictions of TRPs for a single stimulus S. The dotted lines indicate that each participant-agreed TRP has some
associated variance. The responses are binned between the temporal midpoint of words (see Section 4.2).

sure (see Equation 1) that resolves this issue and
does not make any assumptions about the number
of cases in each category (number of TRPs in our
case).

kfree =
[ 1
Nn(n−1)

∑N
i=1

∑K
j=1 n

2
ij −Nn]− 1

k

1− 1
k

(1)

We calculate two variants of the Kappa statis-
tic. The first, kallfree, computes the kappa statis-
tic across all intervals, as previously described.
However, since our primary focus is on inter-
vals where participants agreed that a TRP oc-
curred—representing only a small portion of the
total intervals—considering all intervals may re-
sult in an inflated kappa value, falsely indicating
a high level of agreement. To address this, we
also calculate ktruefree, which specifically evaluates
the kappa statistic for intervals where a TRP was
present. Moreover, ktruefree accounts for the density
of participant responses by marking a model predic-
tion as "correct" if it falls within a defined window
around an interval where participants agreed there
was a TRP (see Figure 3).

Temporal Distance Metrics

Let dSi,j ∈ 1, . . . , N (see Equation 2) represent
the minimum absolute distance, in terms of the
number of intervals, between an interval where a
response was predicted (TPredicted

i = 1) and the
closest interval in which participants agreed that
a TRP occurred (TParticipants

j = 1). Furthermore,
let DS = ⟨dSi,j , . . . , dSp,q⟩ be a vector of these dis-

Figure 3: Example of participant response proportions
and corresponding model predictions in each interval of
a sample stimulus S. In this example, τ = 0.3, which
means that there is one one interval in which participants
agree that a TRP has occurred. Due to variance in
human indications of TRP locations, we may consider a
correct prediction to have occurred within some window
of the participant-agreed TRP.

tances, with |DS | = K, where K is the total num-
ber of predicted TRPs.

As previously discussed (see Section 4.2),
we consider an interval Iij to contain a TRP
(TParticipants

j = 1) if the proportion of partici-
pants that responded in that interval exceeds a pre-
defined threshold (IProportion

ij > τ ). However, a
model’s prediction may not align perfectly with the
exact interval Iij where participants agreed that a
TRP occurred. Instead, the prediction may fall in a
nearby interval that still lies within an acceptable
range, given the inherent variance in participant
responses regarding the precise location of TRPs
(e.g., Templeton et al. (2022)).

dSi,j = min(|i− j|)∀j ∈ TParticipants
j = 1 (2)
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Therefore, we define two measures of temporal
distance between the predicted TRP and the closest
participant-agreed TRP location: the Normalized
Mean Absolute Error (NMAE) and the Normalized
Mean Square Error (NMSE). The NMAE provides
a linear measure of distance, whereas the NMSE
offers a quadratic measure.

NMAE =

|DS |∑

i=1

dSi,j

NMSE =

|DS |∑

i=1

(dSi,j)
2

However, these simple measures do not account
for the density of responses around an interval
where a TRP occurred. For instance, if the den-
sity of responses near this interval is high, it may
be reasonable to expect that a TRP could also oc-
cur in the neighboring intervals. To incorporate
this, we employ a windowed approach to calculate
response density. For each interval where a partic-
ipants agreed a TRP occurred (IProportion

ij > τ ),
we center a window of size W on that interval. The
density of responses is then defined as the propor-
tion of participant responses within the entire win-
dow, which we use to compute the density-adjusted
measure NMAEDA.

DensityS(Iij ,W ) =

W
2∑

l=−W
2

IProportion
i+lj+l

NMAEDA =

|DS |∑

i=1

dSi,j
DensityS(Iij ,W )

6 Experiments and Results

We employed several state-of-the-art LLMs to per-
form the within-turn TRP prediction task described
in Section 4.2. Our focus was on models pre-
trained on diverse datasets, some of which were
explicitly designed with capabilities for spoken in-
teraction.

To adapt LLMs for downstream tasks, two main
strategies are commonly used: fine-tuning and in-
context learning (ICL). Fine-tuning involves up-
dating the weights of a pre-trained model to spe-
cialize it for a particular task, resulting in a single
model tailored for that task. This approach is ad-
vantageous because it can accommodate training

sets of any size, often leading to significant perfor-
mance improvements. However, most state-of-the-
art LLMs are not available for direct fine-tuning
due to restricted open-source access and instead
are accessible only through public APIs (Liesen-
feld and Dingemanse, 2024).

Given these limitations, we employed in-context
learning (ICL) as our adaptation strategy. Unlike
fine-tuning, ICL does not require modifying model
weights. Instead, it adapts the model to a specific
task by using task demonstrations provided through
prompts. However, it is crucial to note that ICL is
highly sensitive to the formulation of these prompts,
and optimizing prompts requires careful considera-
tion and specific strategies (Chang et al., 2024).

We tested each model under two prompting con-
ditions: expert and participant. In the expert con-
dition, the model was provided with theoretical
background on TRPs, similar to what an expert
annotator might know. In the participant condition,
the model was given a version of the instructions
that the human participants received. These two
prompting conditions explore how the level of pro-
vided information affects the model’s performance
on the TRP prediction task.

Table 2 shows the performance of multiple
language models, including GPT-4 Omni, Phi3,
Gemma2, Llama3.1, and Mistral, on the within-
turn TRP prediction task averaged across all stim-
ulus lists (see Section 4.1). We focus on GPT-4
Omni because it is the best overall performer, set-
ting the benchmark for this challenging task, de-
spite its significant shortcomings. While other mod-
els, like Mistral:7b and Phi3:14b, show strengths in
specific metrics—such as lower NMAE (0.190)
and favorable NMSE (5.091) in expert condi-
tions—these are limited to isolated scenarios, and
overall performance across metrics like precision,
recall, and F1 score remains inferior to GPT-4
Omni.

Overall, the performance of the best perform-
ing model reveals significant shortcomings. First,
the model exhibits low precision (0.137) and recall
(0.169), leading to a low F1 score (0.151), indi-
cating frequent false positives and missed TRPs.
While the kappa statistic across all intervals (kallfree

= 0.876) suggests good general agreement, the
much lower kappa for participant-agreed TRP in-
tervals (ktruefree = 0.263) highlights difficulties in ac-
curately identifying participant-agreed TRPs. The
NMAE (0.263) and NMSE (4.248) metrics further
indicate substantial deviations between intervals
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Model Condition Precision Recall F1 Score kall
free ktrue

free NMAE NMSE NMAEDA

GPT-4 Omni
Participant 0.153 0.153 0.152 0.891 0.325 0.286 3.140 11.280
Expert 0.122 0.185 0.147 0.860 0.201 0.253 5.360 16.560

Phi3:3.8b
Participant 0.034 0.923 0.067 -0.671 -0.417 0.192 5.189 16.430
Expert 0.031 0.083 0.045 0.779 0.001 0.251 8.648 21.640

Phi3:14b
Participant 0.035 0.326 0.063 0.374 -0.157 0.202 6.28 18.060
Expert 0.039 0.057 0.046 0.845 0.137 0.232 5.091 16.920

Gemma2:9b
Participant 0.028 0.285 0.052 0.322 -0.088 0.224 8.059 20.770
Expert 0.022 0.178 0.039 0.441 -0.087 0.239 8.784 22.180

Gemma2:27b
Participant 0.033 0.490 0.063 0.034 -0.387 0.194 5.26 16.650
Expert 0.039 0.307 0.068 0.459 -0.232 0.206 5.79 17.560

Llama3.1:8b
Participant 0.014 0.082 0.025 0.618 -0.106 0.265 9.815 24.320
Expert 0.020 0.077 0.032 0.692 -0.071 0.268 9.947 24.420

Mistral:7b
Participant 0.033 0.804 0.064 -0.517 -0.413 0.194 5.168 16.510
Expert 0.037 0.266 0.065 0.498 -0.222 0.190 5.136 16.110

Table 2: Measures of performance for multiple models on the within-turn TRP prediction task (see Section 4.2) in
both participant and expert contexts. The results indicate that, despite being the strongest performer overall, GPT-4
Omni still performs poorly on the task.

where the model predicted TRPs to the closest
participant-agreed TRP. The high density-adjusted
NMAE (NMAEDA = 13.92) highlights even greater
errors when considering the density of participant
responses near intervals in which TRPs occurred.

There are also differences between the partici-
pant and expert conditions. The expert condition
yielded higher precision (0.147) compared to the
participant condition (0.126), indicating more ac-
curate identification of TRPs. The expert condition
also achieved higher recall (0.185 vs. 0.153), sug-
gesting a better ability to detect intervals in which
TRPs occur. The F1 score, balancing precision and
recall, was slightly higher in the expert condition
(0.164) than in the participant condition (0.138).
Kappa statistics also showed variability: kallfree was
higher for participants (0.891 vs. 0.860), reflecting
stronger overall agreement, while ktruefree was higher
for participants (0.325 vs. 0.201), indicating better
performance in correctly identifying participant-
agreed TRPs. Error metrics further demonstrated
that the expert condition had lower NMAE (0.253
vs. 0.286) but higher NMSE (5.36 vs. 3.135)
and significantly greater density-adjusted NMAE
(NMAEDA = 16.56 vs. 11.28). These results sug-
gest that while the expert prompts provided more
theoretical accuracy, the participant prompts of-
fered more practical relevance and alignment with
true TRPs.

7 Discussion

Half a century of research on turn-taking has
demonstrated that humans rely on various cues to

achieve rapid and seamless turn-transitions in natu-
ral conversation by accurately predicting upcoming
TRPs. This ability is crucial for minimizing re-
sponse delays and avoiding overlapping speech,
both of which are interactionally significant (Sacks
et al., 1974; de Ruiter et al., 2006; Levinson and
Torreira, 2015). Poorly timed turn-taking can neg-
atively affect how utterances are interpreted; for
example, longer response delays often signal re-
luctance or hesitation to deliver a dispreferred re-
sponse (de Ruiter, 2019; Kendrick and Torreira,
2015). Current spoken dialogue systems (SDS),
however, struggle to replicate human-like turn tim-
ing, resulting in reduced user satisfaction and di-
minished communicative effectiveness (Skantze,
2021).

State-of-the-art LLMs, pre-trained on large and
diverse datasets, are well-suited for leveraging lin-
guistic information—which has been shown to be
sufficient for predicting opportunities for speech
in humans—and increasingly, multimodal informa-
tion, to perform a range of spoken language tasks
(Ekstedt and Skantze, 2020; Jiang et al., 2023a,b).
However, contrary to expectations, we find that the
LLMs we tested underperform across multiple mea-
sures on a simple binary prediction task to identify
within-turn TRPs when using In-Context Learning
(ICL) as the adaptation strategy. This holds true
even when providing essential background con-
text through various prompts (expert versus par-
ticipant). These findings point to a major issue:
LLMs are currently unable to effectively utilize
their extensive linguistic knowledge for unscripted
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turn-taking in spoken interaction. This limits their
application in dialogue systems by preventing these
systems from accurately anticipating opportunities
for speaker transitions.

Our work attempts to advance the performance
of LLMs for turn-taking in spoken interaction.
First, by empirically demonstrating that current
LLMs struggle with TRP prediction despite their
extensive pre-training, we expose a critical bot-
tleneck that needs to be addressed. Second, we
provide evidence that high performance on written-
language benchmarks does not necessarily trans-
late to high performance on spoken language tasks,
emphasizing the need for specialized evaluation
in conversational settings. Third, we contribute a
specialized dataset containing empirical, on-the-fly
human judgments on where TRPs occur in natural
conversation. This dataset is a valuable resource
for the NLP research community, offering oppor-
tunities for targeted fine-tuning and evaluation of
LLMs, and enabling the development of models
that more closely replicate human conversational
behavior.

8 Conclusion

Even though Large Language Models show im-
pressive performance on a range of challenging
language-related tasks, it is as yet unclear whether
they can be employed for determining when they
can start producing their turn in spoken dialogue
at a socially appropriate time. This would require
them to have human-level ability to predict Transi-
tion Relevance Places, locations in speaker’s con-
tribution where they may take over the turn and
start speaking. To test this ability in state-of-the-art
LLMs, we collected data from humans that per-
form this task on-the-fly, and compared the perfor-
mance of the LLMs with that of the human partici-
pants. It turned out that the performance of selected
LLMs on this task was far below the level of that
of the human participants. Apparently, the pre-
training of LLMs on vast amounts of written data
was not sufficient to generalize to this particular
task. Possible causes for the disappointing perfor-
mance could be that we haven’t found the optimal
prompts, and/or that the models would either need
more spoken dialogue input during pre-training, or
explicit fine-tuning on spoken dialogue data. Ei-
ther way, the dataset that we have developed will
allow researchers in the area of human-machine
turn-taking to explore ways to improve the models’

performance on this crucial task.

9 Limitations

We acknowledge several limitations in our work.
First, the models we used had access only to lin-
guistic information, i.e., the words of a stimulus,
whereas human participants had access to both
prosodic and linguistic cues. Although humans
can predict TRPs using only lexico-syntactic infor-
mation (de Ruiter et al., 2006), computational mod-
els often perform better with multi-modal inputs
(Roddy, 2021; Kurata et al., 2023). Despite this,
our focus on text-only models is grounded in turn-
taking literature, which establishes linguistic cues
as necessary and sufficient for humans to anticipate
TRPs (de Ruiter et al., 2006). Evaluating LLMs
with only linguistic input was an essential step to
determine whether they could replicate this human
ability, particularly in spoken language contexts.
Existing text-based models, such as TurnGPT and
RC-TurnGPT, have struggled to generalize across
diverse conversations, further emphasizing the need
to isolate linguistic factors in our study. Future
work should explore whether adding acoustic infor-
mation can improve LLM performance on the TRP
prediction task.

Second, we evaluated LLM predictions solely
against participant responses from the ICC, a
dataset specifically designed to capture naturalis-
tic conversational behaviors. While we chose the
ICC to avoid the limitations inherent in other cor-
pora, it is essential to replicate our findings with
commonly used dialogue datasets (e.g., Switch-
board, ICSI, AMI, and SpokenWoz) to verify the
broader applicability of our approach. This repli-
cation, however, is resource-intensive, as most of
these corpora predominantly contain annotations
for between-turn TRPs and lack detailed within-
turn TRP annotations.

Third, we used In-Context Learning (ICL) as
a task adaptation strategy for TRP prediction be-
cause fine-tuning was not feasible, given the restric-
tions on modifying the LLMs used in this work
(Liesenfeld and Dingemanse, 2024). Although ICL
has shown promise on certain tasks (Chang et al.,
2024), its performance is highly sensitive to prompt
design (Wei et al., 2023). It is possible that we may
not have fully optimized our prompts, and it re-
mains unclear how best to engineer prompts for the
within-turn TRP prediction task. Future research
should explore not only the potential benefits of
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fine-tuning but also improved prompt engineering
strategies to enhance model performance.

Finally, although LLMs can match human per-
formance in qualitative coding tasks and provide
justifications for their decisions (Dunivin, 2024),
their reasoning often diverges from human reason-
ing (Bao et al., 2024). While our incremental bi-
nary labeling task allows us to track the LLMs’
reasoning for TRP occurrences, we did not ana-
lyze the reported reasoning in this study. Future
research should focus on analyzing these reasoning
patterns, as they could offer valuable insights for
designing more effective prompts to improve LLM
performance.

10 Ethical Impact Statement

Value alignment is a key concern shared by re-
searchers and end-users of large language models.
Being able to understand and model the values and
normative expectations of not only the contents of
speech, but the underlying communicative process
itself is important to reduce the risk of misunder-
standings, false attributions, and unmet normative
expectations. Our work attempts to mitigate these
shortcomings and provide the basis for understand-
ing these normative nuances in communicative be-
havior. Our goal in releasing our corpus and these
findings is to facilitate and further research in this
domain. We hope to continue exploring the chal-
lenges in modeling turn-taking and evaluating the
performance of large language models so as to high-
light the strengths and weaknesses of using LLMs
for spoken dialogue systems to researchers and
practitioners.
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A Stimulus Preparation Procedure

To prepare the stimulus lists used in this study,
we first randomly sampled approximately 60% of
the conversations from the ICC, which comprises
93 conversations in total. We selected 17 conversa-
tions ( 425 minutes of talk) that met specific criteria
for eliciting participant responses. These criteria
included minimal background noise, no recording

artifacts, and no cross-talk, ensuring that these fac-
tors would not influence participant responses.

From each selected conversation, we isolated a
single audio channel representing the speech of one
speaker and used ELAN to manually mark the start
and end of selected turns. Turns were chosen if
they were judged, by an expert annotator, to con-
tain at least two TCUs, thus ensuring the presence
of at least one within-turn TRP. The segmentation
process involved two stages: an initial pass to mark
provisional turn boundaries, followed by a second
pass to verify and refine these boundaries. Ambigu-
ous segments, such as those with extended pauses
or unclear speaker intent, were excluded to ensure
the quality of the stimuli. Ultimately, we selected
55 turns, totaling 28.33 minutes of speech.

Finally, the segmented turns were organized into
stimulus lists, with each turn separated by an audi-
ble beep to indicate the start of a new turn. To min-
imize potential ordering effects, the turns within
each list were arranged in random order. In total,
four stimulus lists were generated: two with the
original turn sequences and two with the sequences
in reverse order. Each of the four lists was approxi-
mately 15 minutes long.
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