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Abstract

Synthetic data has been proposed as a solu-
tion to address the issue of high-quality data
scarcity in the training of large language mod-
els (LLMs). Studies have shown that synthetic
data can effectively improve the performance
of LLMs on downstream benchmarks. How-
ever, despite its potential benefits, our analy-
sis suggests that there may be inherent flaws
in synthetic data. The uniform format of syn-
thetic data can lead to pattern overfitting and
cause significant shifts in the output distribu-
tion, thereby reducing the model’s instruction-
following capabilities. Our work delves into
these specific flaws associated with question-
answer (Q-A) pairs, a prevalent type of syn-
thetic data, and presents a method based on
unlearning techniques to mitigate these flaws.
The empirical results demonstrate the effective-
ness of our approach, which can reverse the
instruction-following issues caused by pattern
overfitting without compromising performance
on benchmarks at relatively low cost. Our work
has yielded key insights into the effective use of
synthetic data, aiming to promote more robust
and efficient LLM training.

1 Introduction

The remarkable success of large language models
(LLMs) (Zhao et al., 2023; Brown et al., 2020;
Yang et al., 2023) largely depends on the quality
and diversity of the datasets used for training. How-
ever, acquiring large amounts of high-quality data
can be challenging due to data scarcity, privacy
concerns, and high costs (Liu et al., 2024a). Syn-
thetic data has emerged as a promising solution to
address these challenges (Nikolenko, 2019).

Synthetic data, generated through algorithms or
generative models rather than collected from real-
world events, can be produced at scale and sup-
plement areas where real-world data is scarce or
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Figure 1: The overall pipeline of our study.

difficult to obtain, such as in mathematical or rea-
soning tasks. Numerous studies have demonstrated
the efficacy of synthetic data in improving model
performance (Microsoft, 2024; Mukherjee et al.,
2023). Among the various methods of generating
synthetic data, a common approach is the creation
of synthetic question-answer (Q-A) pairs (NVIDIA,
2024; Maini et al., 2024b; Wei et al., 2023), as Q-A
pairs exhibit diversity and richness, encompass-
ing a range of question types from simple factual
queries to complex reasoning problems. Another
prevalent method is to generate data closely mim-
icking downstream tasks (Luo et al., 2023; Yu et al.,
2023a). These methods have achieved excellent
performance on both general-purpose and special-
ized benchmarks for LLMs.
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Despite numerous experiments demonstrating
that synthetic data significantly enhances the capa-
bilities of pre-trained models on downstream bench-
marks, in this work, we observe a notable decline
in the instruction-following capabilities of models
after being pre-trained on synthetic data, specifi-
cally on synthetic Q-A pairs generated by GPT-4,
and subsequent supervised fine-tuning (SFT). This
observation prompts a deeper investigation into the
underlying causes. While existing studies have
extensively covered the applications of synthetic
data, there is a notable lack of studies examining
its impact on the instruction-following capabili-
ties of LLMs. Furthermore, studies addressing the
flaws in synthetic data have primarily focused on
historical models or those with capabilities simi-
lar to currently trained models (Shumailov et al.,
2024; Seddik et al., 2024; Alemohammad et al.,
2023), leaving a gap in exploring the deficiencies
of synthetic data generated by advanced models
like GPT-4.

Our work focuses on exploring the inherent flaws
of synthetic data and its impact on LLMs. We find
that the token distribution of synthetic data signif-
icantly differs from that of the real pre-training
data, with synthetic data patterns being relatively
uniform. Consequently, models trained on such
synthetic data are likely to experience pattern over-
fitting, leading to substantial shifts in their output
distributions and resulting in inferior performance.

Based on these observations, we propose a novel
strategy that leverages unlearning techniques to
reduce the impact of misleading synthetic data pat-
terns while preserving the LLM’s foundational abil-
ities on benchmarks and restoring its instruction-
following capabilities. This strategy employs a
lower-bounded forgetting loss, which is control-
lable and superior to traditional unlearning ap-
proaches. Our experimental results demonstrate
that this strategy effectively mitigates the adverse
impacts of synthetic data, balancing the LLM’s per-
formance on benchmarks with its ability to follow
instructions at significantly low training costs. Our
contributions are summarized as follows:
• Identification of Synthetic Data Limitations:

We provide a comprehensive analysis of the inher-
ent limitations in synthetic data, specifically syn-
thetic Q-A pairs, focusing on data distribution dif-
ferences and pattern overfitting observed in models.
• Unlearn Method to Address Synthetic Data

Issues: We propose a novel unlearning strategy
that effectively mitigates the adverse effects of syn-

thetic data, thereby preserving the LLM’s founda-
tional abilities on benchmarks while reversing its
instruction-following capabilities at significantly
low training costs.

2 Related Work

Applications and Limitations of Synthetic Data.
Studies have shown that synthetic data has
achieved remarkable results on downstream bench-
marks (Luo et al., 2023; Microsoft, 2024; Mukher-
jee et al., 2023; Wei et al., 2023), addressing issues
such as data scarcity and privacy (Liu et al., 2024a;
Villalobos et al., 2022; Maini et al., 2024b). For in-
stance, Microsoft’s Phi-3 (Microsoft, 2024) model,
trained on heavily filtered publicly available web
data and synthetic data, has outperformed much
larger models on both academic benchmarks and
internal testing. MagicoderS-CL-7B (Wei et al.,
2023), a 7B parameter code model trained on syn-
thetic code problems and answers generated by
LLMs, even surpasses the prominent ChatGPT on
many coding benchmarks. However, synthetic data
is not without flaws. Several critical issues have
been identified, particularly concerning model per-
formance and data distribution integrity. One sig-
nificant concern is the phenomenon of model col-
lapse (Shumailov et al., 2024; Seddik et al., 2024),
where training on model-generated data leads to
the disappearance of the tails of the original con-
tent distribution. Furthermore, the recursive use
of synthetic data in training generative models can
amplify artifacts and biases, ultimately degrading
model performance, as demonstrated by the con-
cept of Model Autophagy Disorder (MAD) (Ale-
mohammad et al., 2023). Task-specific synthetic
data often lacks diversity and exhibits regional bi-
ases (Yu et al., 2023b), with effectiveness varying
by task nature (Li et al., 2023).

LLM Unlearning. Unlearning in LLMs involves
the elimination of specific undesired targets while
preserving overall performance (Liu et al., 2024b).
Strategies vary from specific data points to higher-
level concepts such as harmful language or spe-
cific knowledge domains (Jang et al., 2022; Lu
et al., 2022; Eldan and Russinovich, 2023). Effec-
tive unlearning requires robustness and generaliza-
tion (Patil et al., 2024; Maini et al., 2024a; Shi et al.,
2023) with efficient handling of computational
costs (Pawelczyk et al., 2023). Existing unlearning
methods leverage various fine-tuning techniques,
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Component Details

Position Embedding RoPE (Su et al., 2023)
Hidden Size 2, 048
FFN Size 5, 504
Heads 32
Layers 32
Context Length 4, 096

Table 1: The architecture details of BaseLM.

including gradient ascent, parameter-efficient fine-
tuning, and KL-divergence-based methods, each
with unique strengths and limitations regarding run-
time and memory costs (Yao et al., 2024; Jang
et al., 2022; Eldan and Russinovich, 2023). While
unlearning methods have been utilized to manage
harmful data and reduce hallucinations in models,
their application to synthetic data remains under-
explored. Our research aims to fill this gap by ap-
plying unlearning strategies to mitigate the adverse
effects of synthetic data on LLMs.

3 Experimental Setup

In this section, we outline the experimental design,
including dataset selection, model configurations,
and evaluation benchmarks.

Datasets. We utilize five distinct datasets:
• NonSynth data: A comprehensive non-

synthetic dataset collected from diverse
sources (Soldaini et al., 2024; Penedo et al.,
2023; Soboleva et al., 2023), including webpages,
books, research papers, and codebases.
• SynthQA data: Synthetic Q-A pairs generated

by GPT-4, based on a variety of sources includ-
ing webpages, books, and other textual materials,
covering topics such as mathematics, coding, and
general knowledge.
• MixedIns data: Instructions consisting of gen-

eral knowledge, mathematics, and coding, primar-
ily generated by GPT-4 and human contributors.
• U33B data (Yuan et al., 2023): Aggregated

synthetic dataset of diverse reasoning paths gener-
ated from GSM8K dataset by multiple LLMs to
enhance mathematical reasoning capabilities.
• OpenHermes-2.5 data (Teknium, 2023): An

extension of the OpenHermes-1 dataset, primarily
consisting of synthetically generated instruction
and chat samples.

Models. We use the following models in our exper-
iments:
• BaseLM: A Llama-like (Touvron et al., 2023)

2B model trained from scratch. We set the learning

rate to 1.0× 10−4 and adopt a cosine learning rate
schedule, training on a total of 1 trillion tokens. The
details of hyperparameters are listed in Table 1.
• BaseLM-Chat (MixedIns/OpenHermes-2.5):

Chat models obtained by performing SFT on
BaseLM using MixedIns or OpenHermes-2.5 data.
We set the learning rate to 2.0× 10−5, the number
of epochs to 2, the context length to 4, 096, and the
batch size to 64.

Benchmarks. We evaluate the capabilities of mod-
els using the following benchmarks:
• Bilingual Capabilities: Evaluated using the

MMLU (Hendrycks et al., 2021), CMMLU (Li
et al., 2024) and C-Eval (Huang et al., 2023) bench-
marks to assess the models’ proficiency in handling
both English and Chinese tasks.
• Coding Proficiency: Assessed with the Hu-

manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) benchmarks, which measure the mod-
els’ ability to generate correct and efficient code
snippets based on given problems.
• Mathematical Reasoning: Measured using the

GSM8K (Cobbe et al., 2021) benchmark, which
tests the models’ ability to solve complex mathe-
matical problems.
• Instruction-Following Capability: Analyzed

through FollowBench (Jiang et al., 2024) and MT-
bench (Zheng et al., 2023), evaluating the models’
ability to understand and follow complex instruc-
tions.

4 Defect Analysis of Synthetic Data

In this section, we systematically analyze the flaws
of synthetic data, specifically synthetic Q-A pairs,
by examining their data distribution differences and
pattern overfitting observed in LLMs. This analysis
is crucial to understand how synthetic data impacts
the LLMs’ foundational abilities on benchmarks
and instruction-following capabilities.

4.1 Data Distribution Differences

One of the primary concerns with synthetic data
is the potential mismatch between its distribution
and that of real-world data. This discrepancy can
result in models that perform well on synthetic
data but fail to generalize effectively to real-world
scenarios.

Data Characteristic Differences. Synthetic data
generated by LLMs often exhibits distinct distri-
butional characteristics compared to non-synthetic
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Figure 2: t-SNE visualization of data distributions. The
clusters of NonSynth and SynthQA data show consider-
able non-overlap.
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Figure 3: Kernel density estimation of token IDs for
NonSynth and SynthQA data. The token frequency dis-
tribution for SynthQA data shows several small peaks,
indicating high structural consistency for specific tokens
compared to NonSynth data.

data. To illustrate these differences, we sample
2, 000 entries from both NonSynth and SynthQA
data. Using the embeddings from the last hidden
state of BaseLM, we apply t-SNE (Van der Maaten
and Hinton, 2008) for dimensionality reduction and
visualize the data distributions in Figure 2. The t-
SNE visualization reveals that the clusters of Non-
Synth and SynthQA data have considerable areas
of non-overlapping, which indicates that SynthQA
data does not perfectly replicate the characteristics
of NonSynth data. Such differences may lead to
misinterpretations of real-world scenarios by LLMs
trained on synthetic data.

Simplified Data Patterns. Synthetic data often
contains repetitive and structurally predictable el-
ements, which simplify the complexity of real-

world interactions and patterns. This simplifica-
tion can result in data that fails to capture the in-
tricacies of human language and interaction. To
explore this, we again sample 2, 000 entries from
both NonSynth and SynthQA data and calculate
the token frequencies based on the tokenizer of
BaseLM. Figure 3 presents the kernel density esti-
mation (KDE) (Parzen, 1962) plot of token IDs. We
observe that the distribution of token frequencies
for SynthQA data exhibits several noticeable small
peaks compared to NonSynth data. We find that
these peaks correspond to tokens with a high de-
gree of structural consistency within SynthQA data.
Specifically, tokens like "question" (ID: 44246),
"answer" (ID: 63264), and "summary" (ID: 16752)
contribute to these observable peaks. The pres-
ence of these structural tokens indicates a repetitive
pattern in SynthQA data, reflecting its inherent
simplicity and lack of variability compared to Non-
Synth data. By over-representing certain tokens,
synthetic datasets risk failing to encapsulate the
full spectrum of linguistic diversity found in non-
synthetic data, which may lead to models trained
on such data being less robust and adaptable.

4.2 Pattern Overfitting

In this part, we investigate the detrimental effects of
synthetic data on instruction-following capabilities
and output distributions of LLMs. Our analysis
highlights how synthetic data, specifically synthetic
Q-A pairs, can cause overfitting to specific patterns
observed in Section 4.1, potentially affecting the
performance of chat models.

Instruction-Following Capability Decline. While
synthetic data has shown considerable potential
in enhancing the foundational abilities on bench-
marks for LLMs in the pre-training stage, our work
identifies significant challenges when these models
undergo SFT. Specifically, we observe a notable
decline in the instruction-following capabilities of
chat models, underscoring critical limitations asso-
ciated with the use of synthetic Q-A pairs. To inves-
tigate this issue, we design a series of experiments.
We mix 2% SynthQA data with NonSynth data to
create a dataset containing 300 billion tokens and
perform continued pre-training on BaseLM with
a fixed learning rate of 5.0 × 10−5. The evalua-
tion results, presented in Table 2 ( SynthLM v.s.

BaseLM ), show that the foundational abilities of
BaseLM has significantly improved after training
with synthetic Q-A pairs. We validate the role
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Models C-Eval CMMLU MMLU HumanEval MBPP GSM8K Avg.

BaseLM 39.05 38.83 38.08 9.76 12.00 15.09 25.47
SynthLM 47.71 47.56 47.27 18.90 18.40 16.60 32.74

RefineLM 46.79 47.15 45.82 17.07 18.30 13.42 31.42
UnlearnLM 48.09 47.29 47.53 20.73 18.60 11.45 32.28

Table 2: Evaluation results of base models with continued pre-training and unlearning. SynthLM is obtained

by training BaseLM with a dataset containing 300 billion tokens, of which 2% are from the SynthQA data.
RefineLM is derived from SynthLM by further training with an additional 300 billion tokens of NonSynth data.

UnlearnLM is obtained by performing our unlearning strategy on SynthLM using 1 billion tokens from the
SynthQA data.

FollowBench
Models SSR HSR MT-Bench C-Eval CMMLU MMLU HumanEval MBPP GSM8K

BaseLM-Chat 39.95 27.58 5.45 39.92 40.16 41.55 18.29 17.80 14.33
SynthLM-Chat 38.29 24.00 5.39 49.50 48.37 49.06 21.95 22.60 22.21

RefineLM-Chat 39.60 25.22 5.43 47.71 47.40 47.08 17.68 23.60 22.37
UnlearnLM-Chat 42.00 27.87 5.85 49.12 48.83 48.82 20.12 21.80 21.99

Table 3: Evaluation results of chat models with continued pre-training and unlearning. Models with the suffix
"-Chat" represent chat models derived from their corresponding base models in Table 2 through SFT on the MixedIns
data.

of synthetic data through ablation experiments in
Section 6. However, following SFT, we notice a
severe decline in instruction-following capabilities
in the resulting chat model, as shown in Table 3
( SynthModel-Chat v.s. BaseLM-Chat ).

Output Distribution Changes. Due to simplified
data patterns in synthetic data, a critical concern
is its propensity to cause overfitting. To inves-
tigate this effect, we sample 2, 000 entries each
from OpenHermes-2.5 and MixedIns data. We
then calculate their perplexity using BaseLM and
SynthLM. Figure 4 shows the KDE plot of per-
plexity values for these two types of data. We
can clearly observe that the perplexity distribution
for SynthLM exhibits a noticeable shift and re-
duced variance compared to BaseLM, which is
similar to the phenomenon of model collapse (Shu-
mailov et al., 2024). This suggests a tendency for
the model to overfit to the patterns present in the
synthetic data, reducing its ability to deal with real-
world variability.

5 Unlearning-Based Mitigation Strategy

In this section, we introduce our unlearning strategy
and describe the experiments conducted to imple-
ment this approach.

5.1 Unlearning Strategy
To address the identified flaws in synthetic data,
we propose a mitigation strategy based on unlearn-
ing techniques. Typically, unlearning is applied to
remove harmful data or reduce model hallucina-
tions. In this context, we leverage unlearning to
recalibrate the LLM’s understanding, mitigating
the adverse effects of synthetic data while preserv-
ing its beneficial attributes.

Task Description. In the task where the LLM pre-
dicts the next token yi based on an existing token
sequence y<i = [y1, y2, . . . , yi−1], let p(y<i; θ) de-
note the predicted probability of yi. Formally, this
can be expressed as:

p(y<i; θ) = P (yi | y<i; θ),

where θ represents the parameters of the LLM. The
prediction accuracy is evaluated using the cross-
entropy loss function. Specifically, the loss for
predicting yi is given by l(p(y<i; θ), yi), where
l(input, target) denotes the cross-entropy loss be-
tween the predicted probability distribution and the
actual target token.

Unlearning Loss. Following previous work (Yao
et al., 2024), the unlearning loss function we de-
signed consists of three parts:
• Lower-Bounded Forgetting Loss: This compo-

nent focuses on forgetting the biased distribution
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Figure 4: Kernel density estimation of perplexity values for OpenHermes-2.5 and MixedIns data using BaseLM,
SynthLM and UnlearnLM. SynthLM shows a noticeable shift and reduced variance, while UnlearnLM corrects the
distribution shift.

of specific synthetic data. Unlike previous methods
that apply gradient ascent (Thudi et al., 2022) (i.e.,
adding a negative sign to the cross-entropy loss to
introduce irrelevant elements into the predictions),
we have observed that this method has uncontrolled
loss due to the logarithm approaching zero without
a lower bound. Therefore, we designed a simple
yet effective lower-bounded forgetting loss by in-
verting the model prediction probabilities in the
cross-entropy loss. This retains the original forget-
ting loss function’s features while adding a lower
bound (i.e., 0). We validate the effectiveness of our
forgetting loss approach through ablation experi-
ments in Section 6. The designed lower-bounded
forgetting loss Lfgt can be defined as:

Lfgt =

|ysyn|∑

i=1

l(1− p(y
syn
<i ; θ), y

syn
i ).

• Replay Loss: We sample a portion of the data
from the trained non-specific synthetic data for
replay, using the cross-entropy loss to allow the
model to retain memory of historical knowledge.
The replay loss Lrpy can be defined as:

Lrpy =

|ynon-syn|∑

i=1

l(p(y
non-syn
<i ; θ), y

non-syn
i ).

• Bias Mitigation Loss: After unlearning, we
aim to ensure that the LLM’s output distribution
on the trained non-specific synthetic data does not
change excessively. Therefore, we calculate the
KL divergence between the current model and the

original model on the data used for replay, as the
bias mitigation loss Lmtn to preserve the original
performance:

Lmtn =

|ynon-syn|∑

i=1

KL(p(ynon-syn
<i ; θori)

∥ p(y
non-syn
<i ; θi)),

where θori represents the parameters of the original
model.
Finally, we obtain the total unlearning loss function
as follows:

Lunlearn = wfgt · Lfgt + wrpy · Lrpy + wmtn · Lmtn,

where w∗ denotes the weights corresponding to
each part of the loss L∗.

FollowBench
Models SSR HSR MT-Bench GSM8K

BaseLM-Chat* 40.25 27.27 5.76 34.27
SynthLM*-Chat* 39.95 25.13 5.61 43.06
UnlearnLM*-Chat* 40.21 27.26 5.87 42.00

Table 4: Evaluation results of chat models with con-
tinued pre-training on U33B data and subsequent un-
learning. SynthLM* is the base model trained with 40
billion tokens including 2% U33B data. UnlearnLM*
is derived from SynthLM* by applying our unlearning
strategy. Models with the suffix "-Chat*" represent chat
models derived from their corresponding base model
through SFT on the OpenHermes-2.5 data.
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5.2 Unlearning Experiments

In this part, we detail the experimental process of
applying unlearning techniques. Our objective is
mitigate the adverse effects on models trained with
synthetic data. Specifically, we aim to enhance the
instruction-following capabilities of models while
preserving their foundational abilities.

Basic Implementation. We utilize NonSynth data
containing 300 billion tokens to perform contin-
ued pre-training on SynthLM in Table 2, with the
aim of recovering the model’s instruction-following
capabilities. We utilize a fixed learning rate of
5.0 × 10−5 during the training process. From
the results in Table 2 and 3, we can clearly ob-
serve that extensive training with non-synthetic
data leads to enhanced instruction-following ca-
pabilities ( RefineLM-Chat v.s. SynthLM-Chat )
at the cost of a decline in overall base model per-
formance ( RefineLM v.s. SynthLM ). However,
this approach does not completely eliminate the
negative impact of the synthetic data on the model.

Unlearning Strategy Implementation. We
propose employing the unlearning strategy on
SynthLM. We apply lower-bounded forgetting loss
on texts from the SynthQA data with 1 billion to-
kens. Concurrently, we perform replay loss and
bias mitigation loss on the trained NonSynth data
alongside the unlearning process. We use a fixed
learning rate of 5.0 × 10−5 and set the weights
wfgt = 0.01, wrpy = wmtn = 1. As can be
seen from Table 2 and 3, although unlearning
leads to a slight decrease in foundational abilities
of base ( UnlearnLM v.s. SynthLM ) and chat

( UnlearnLM-Chat v.s. SynthLM-Chat ) models,
especially math abilities, there is a considerable
improvement in instruction-following capabilities
( UnlearnLM-Chat v.s. BaseLM-Chat ).

Distribution Shift Correction. The unlearning
process partially corrects the output distribution
shift of the LLM. Following the experiments in
Section 4.2, we include the perplexity distribution
of UnlearnLM on OpenHermes-2.5 and MixedIns
data in Figure 4. It can be observed that the dis-
tribution shift has been effectively corrected after
unlearning, indicating a significant reduction in
pattern overfitting.
It’s worth noting that the instruction-following ca-
pabilities of UnlearnLM-Chat after unlearning with
just 1 billion tokens surpass the performance of

both RefineLM-Chat trained on 300 billion tokens
and BaseLM-Chat. Additionally, the foundational
abilities of UnlearnLM are comparable to those of
RefineLM, suggesting that the beneficial effects of
synthetic data on model performance have been
preserved. This underscores the efficacy of our
method in achieving more robust and efficient
LLM training at significantly lower training
costs.

6 Ablation Study

6.1 Effectiveness of Unlearning Strategy

To explore the effectiveness of our unlearning strat-
egy across different types of synthetic data, we con-
duct experiments using the U33B data. We first per-
form continued pre-training on the BaseLM with
40 billion tokens of data, including 2% U33B data,
resulting in SynthLM*. We utilize a fixed learn-
ing rate of 5.0× 10−5 during the training process.
Following this, we apply our unlearning strategy
to mitigate the adverse effects of U33B data on
instruction-following capabilities while preserving
its positive impact on foundational abilities, partic-
ularly in mathematics. Specifically, we employ the
same unlearning parameters as described in Sec-
tion 5.2, resulting in UnlearnLM*. We conduct
SFT on the resulting models using OpenHermes-
2.5 data. The evaluation results are presented in
Table 4. The results indicate that while the model
trained with U33B data improves its mathemat-
ical abilities, it exhibits a decline in instruction-
following capabilities. However, after applying
our unlearning strategy, the instruction-following
capabilities are restored, while retaining the en-
hancements in mathematical abilities provided by
the U33B data. These findings suggest that our un-
learning strategy could be extended to other types
of open-source synthetic data.

6.2 Impact of Synthetic Data on Model
Performance

To verify that SynthQA data, rather than NonSynth
data, contributes to the significant performance im-
provements in BaseLM, we conduct a controlled ab-
lation experiment. We evaluate two models: Non-
SynthLM, which is the BaseLM trained with 40
billion tokens of NonSynth data, and MixSynthLM,
which is the BaseLM trained with 40 billion tokens
of data including 2% SynthQA data. To ensure a
fair comparison and better verify the impact of syn-
thetic data, the NonSynth data used to train both
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Models C-Eval CMMLU MMLU HumanEval MBPP GSM8K Avg.

BaseLM 39.05 38.83 38.08 9.76 12.00 15.09 25.47
MixSynthLM 44.63 44.12 45.00 18.29 19.40 14.95 31.07
NonSynthLM 42.33 40.46 40.88 18.29 17.80 12.21 28.66

Table 5: Evaluation results of BaseLM with continued pre-training on synthetic and non-synthetic data. MixSynthLM
is BaseLM trained with 40 billion tokens including 2% SynthQA data. NonSynthLM is BaseLM trained with 40
billion tokens of NonSynth data.

Models C-Eval CMMLU MMLU HumanEval MBPP GSM8K Avg.

SynthLM 47.71 47.56 47.27 18.90 18.40 16.60 32.74
UnlearnLM (GA) 26.58 25.08 39.28 11.59 9.60 6.82 19.82
UnlearnLM (Ours) 48.09 47.29 47.53 20.73 18.60 11.45 32.28

Table 6: Evaluation results of SynthLM with different unlearning strategies applied. UnlearnLM (GA) is derived
from SynthLM by applying traditional gradient ascent loss. UnlearnLM (Ours) is derived by applying our lower-
bounded forgetting loss.

NonSynthLM and MixSynthLM is the same high-
quality data corpus used to generate the SynthQA
data. The evaluation result is shown in Table 5. We
can see that MixSynthLM exhibits markedly supe-
rior performance enhancements. This confirms that
synthetic data plays a critical role in boosting base
model performance.

6.3 Efficacy of Bounded Forgetting Loss

When introducing our unlearning strategy in Sec-
tion 5.1, we use the lower-bounded forgetting loss
to forget the biased distribution of specific syn-
thetic data. To evaluate the effectiveness of this
approach compared to the traditional gradient as-
cent loss, we conduct a comparative experiment
where the SynthLM in Table 2 undergo unlearning
using both the lower-bounded forgetting loss and
the traditional gradient ascent loss. As shown in
Table 6, we can clearly observe that the model sub-
jected to traditional gradient ascent loss exhibits se-
vere performance degradation. This may be due to
the uncontrolled magnitude of negative loss during
training. Conversely, the lower-bounded forgetting
loss results only in a partial decline in mathematical
abilities.

7 Conclusion

In this work, we have systematically explored the
potential issues associated with synthetic data, par-
ticularly focusing on synthetic Q-A pairs, and their
impact on the performance of LLMs. Our analysis
has identified inherent flaws in synthetic data, such
as pattern overfitting and significant shifts in out-
put distribution, which can degrade the instruction-
following capabilities of LLMs. To mitigate these

adverse effects, we have proposed an innovative
unlearning-based strategy. This strategy employs a
lower-bounded forgetting loss, which is control-
lable and superior to traditional unlearning ap-
proaches at significantly lower training costs. The
empirical results demonstrate that our strategy ef-
fectively addresses the limitations of synthetic data
and corrects the output distribution shift, thereby
enhancing the instruction-following capabilities
while preserving foundational capabilities of LLMs
on benchmarks. Our work has demonstrated a vi-
able path to leverage the advantages of synthetic
data without being adversely affected by its limi-
tations, enhancing the robustness and efficiency of
LLM training.
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Limitations

Despite our substantial efforts, several limitations
warrant further consideration. Firstly, while our
unlearning-based strategy has shown promise in
mitigating the negative effects of synthetic data, it
may still cause degradation in specific model ca-
pabilities, such as mathematical reasoning. More-
over, its scalability to much larger models remains
untested. As LLMs continue to grow in size and
complexity, the computational efficiency and practi-
cal applicability of this strategy require further val-
idation. Additionally, this study primarily focuses
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on the flaws and mitigation strategies related to
Q-A pair synthetic data. Although we have demon-
strated the effectiveness of our unlearning strategy
on the open-source synthetic dataset U33B, many
other forms of synthetic data remain unexplored.
Furthermore, the quality of synthetic data gener-
ated by GPT-4 used in this study may not fully
represent the entire spectrum of synthetic data qual-
ity. Different synthetic data generation techniques
and tools can produce data with varying degrees
of imperfections, potentially impacting the effec-
tiveness of our mitigation strategy. Further investi-
gation into more advanced unlearning techniques
is necessary to minimize these side effects. We
will continue to refine and enhance our method in
future work.
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