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Abstract

We address the challenge of building task-
agnostic classifiers using only text descriptions,
demonstrating a unified approach to image clas-
sification, 3D point cloud classification, and
action recognition from scenes. Unlike ap-
proaches that learn a fixed representation of the
output classes, we generate at inference time
a model tailored to a query classification task.
To generate task-based zero-shot classifiers, we
train a hypernetwork that receives class descrip-
tions and outputs a multi-class model. The hy-
pernetwork is designed to be equivariant with
respect to the set of descriptions and the clas-
sification layer, thus obeying the symmetries
of the problem and improving generalization.
Our approach generates non-linear classifiers,
handles rich textual descriptions, and may be
adapted to produce lightweight models efficient
enough for on-device applications. We evaluate
this approach in a series of zero-shot classifica-
tion tasks, for image, point-cloud, and action
recognition, using a range of text descriptions:
From single words to rich descriptions. Our
results demonstrate strong improvements over
previous approaches, showing that zero-shot
learning can be applied with little training data.
Furthermore, we conduct an analysis with foun-
dational vision and language models, demon-
strating that they struggle to generalize when
describing what attributes the class lacks.

1 Introduction

We explore the challenge of zero-shot image clas-
sification by leveraging text descriptions. This ap-
proach pushes the boundaries of conventional clas-
sification methods by demanding that models cate-
gorize images into specific classes based solely on
written descriptions, without having previously en-
countered these classes during training.1 In various
domains, numerous attempts have been made to

1We note that our definitions of “zero shot” or “zero shot
learning” are slightly different than the ones used in the context
of text-only language models.

Figure 1: The text-to-model (T2M) setup. (a) Classifi-
cation tasks are described in rich language. (b) Tradi-
tional zero-shot methods produce static representations,
shared for all tasks. (c) T2M generates task-specific rep-
resentations and classifiers. This allows T2M to extract
task-specific discriminative features.

achieve zero-shot classification capacity (§2). Un-
fortunately, as we now explain, existing studies are
limited in two major ways: (1) Query-dependence;
and (2) Richness of Language description.

First, Query-dependence. To illustrate the is-
sue, consider a popular family of zero-shot learn-
ing (ZSL) approaches, which maps text (like class
labels) and images to a shared space (Globerson
et al., 2004; Zhang and Saligrama, 2015; Zhang
et al., 2017a; Sung et al., 2018; Pahde et al., 2021).
To classify a new image from an unseen class, one
finds the closest class label in the shared space.
The problem with this family of shared-space ap-
proaches is that the learned representation (and the
kNN classifier that it induces) remains "frozen" af-
ter training, and is not tuned to the classification
task given at inference time. For instance, furry
toys would be mapped to the same shared represen-
tation regardless of whether they are to be distin-
guished from other toys, or from other furry things
(see Figure 1). The same limitation also hinders
another family of ZSL approaches, which synthe-
size samples from unseen classes at inference time
using conditional generative models, and use these
samples with kNN classification (Elhoseiny and
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Elfeki, 2019; Jha et al., 2021). Some approaches
address the query-dependence limitation by assum-
ing that test descriptions are known during training
(Han et al., 2021; Schonfeld et al., 2019), or by
(costly) training a classifier or generator at infer-
ence time (Xian et al., 2018; Schonfeld et al., 2019).
Instead, here we learn a model that produces task-
dependent classifiers and representations without
test-time training.

The second limitation is language richness. Nat-
ural language can be used to describe classes in
complex ways. Most notably, people use nega-
tive terms, like "dogs without fur", to distinguish
class members from other items. Previous work
could only handle limited richness of language de-
scriptions. For instance, it cannot represent ade-
quately textual descriptions with negative terms
(Akata et al., 2015; Xie et al., 2021b,a; Elhoseiny
and Elfeki, 2019; Jha et al., 2021). In this paper,
we wish to handle the inherent linguistic richness
of natural language.

An alternative approach to address zero shot
image recognition tasks involves leveraging large
generative vision and language models (e.g.,
GPT4Vision). These foundational models, trained
on extensive datasets, exhibit high performance in
zero and few-shot scenarios. However, these mod-
els are associated with certain limitations: (1) They
entail significant computational expenses in both
training and inference. (2) Their training is specific
to particular domains (e.g., vision and language)
and may not extend seamlessly to other modal-
ities (e.g., 3D data and language). (3) Remark-
ably, even state-of-the-art foundational models en-
counter challenges when confronted with tasks in-
volving uncommon descriptions, as demonstrated
in §5.3.

In addition to the limitations posed by large
generative models, there is a growing demand for
smaller, more efficient models that can run on edge
devices with limited computational power, such
as mobile phones, embedded systems, or drones.
Giant models that require cloud-based infrastruc-
tures are often computationally expensive and not
suitable for real-time, on-device applications. Fur-
thermore, some companies are unable to rely on
cloud computing due to privacy concerns or le-
gal regulations that mandate keeping sensitive user
data within their local networks (on-premises). Our
approach addresses these needs by enabling the au-
tomatic generation of task-specific models that are
lightweight and capable of running on weaker de-

vices without requiring cloud resources.
Here, we describe a novel deep network architec-

ture and a learning workflow that addresses these
two aspects: (1) generating a discriminative model
tuned to requested classes at query time and (2)
supporting rich language and negative terms.

To achieve these properties, we propose an ap-
proach based on hypernetworks (HNs) (Ha et al.,
2016). An HN is a deep network that emits the
weights of another deep network (see Figure 2 for
an illustration). Here, the HN receives a set of class
descriptions and emits a multi-class model that can
classify images according to these classes. Interest-
ingly, this text-image ZSL setup has an important
symmetric structure. In essence, if the order of in-
put descriptions is permuted, one would expect the
same classifiers to be produced, reflecting the same
permutation applied to the outputs. This property
is called equivariance, and it can be leveraged to
design better architectures (Finzi et al., 2020; Co-
hen et al., 2019; Kondor and Trivedi, 2018; Finzi
et al., 2021). Taking invariance and equivariance
into account has been shown to provide significant
benefits for learning in spaces with symmetries
like sets (Zaheer et al., 2017; Maron et al., 2020;
Amosy et al., 2024) graphs (Herzig et al., 2018; Wu
et al., 2020) and deep weight spaces (Navon et al.,
2023). In general, however, HNs are not always
permutation equivariant. We design invariant and
equivariant layers and describe an HN architecture
that respects the symmetries of the problem, and
term it T2M-HN: a text-to-model hypernetwork.

We put the versatility of T2M-HN to the test
across an array of zero-shot classification tasks,
spanning diverse data types including images, 3D
point clouds, and 3D skeletal data for action recog-
nition. Our framework exhibits a remarkable ability
to incorporate various forms of class descriptions
including long and short texts, as well as class
names. Notably, T2M-HN surpasses the perfor-
mance of previous state-of-the-art methods in all
of these setups.

Our paper offers four key contributions: (1) It
identifies limitations of existing ZSL methods that
rely on fixed representations and distance-based
classifiers for text and image data. It proposes task-
dependent representations as an alternative; (2) It
introduces the Text-to-Model (T2M) approach for
generating deep classification models from textual
descriptions; (3) It investigates equivariance and
invariance properties of T2M models and designs
T2M-HN, an architecture based on HNs that ad-
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Dataset Sample Description Example
name and type data type description

AwA (Lampert et al., 2009)
Animal
images

Class name (1) Moose
(2) Elephant

Long

(1) “An animal of the deer family with humped
shoulders, long legs, and a large head with antlers.”,
(2) “A plant-eating mammal with a long trunk,
large ears, and thick, grey skin.”

Negative (1) “An animal without stripes and not gray”,
(2) “An animal without fur and without horns”

Attribute (1) “Animals with fur”
(2) “Animals with long trunk”

Table 1: An illustration depicting the diverse tasks within the AwA dataset is provided. Appendix A contains
illustrations for the remaining datasets.

Figure 2: The text-to-model learning problem and our architecture. Our model (yellow box) receives a set of class
descriptions as input and outputs weights w for a downstream on-demand model (orange). The model has two main
blocks: A pretrained text encoder and a hypernetwork that obeys certain invariance and equivariance symmetries.
The hypernetwork receives a set of dense descriptors to produce weights for the on-demand model.

heres to the symmetries of the learning problem;
and (4) It shows T2M-HN’s success in a range of
zero-shot tasks, including image and point-cloud
classification and action recognition, using diverse
text descriptions, surpassing current leading meth-
ods in all tasks.

2 Related work

In this section we cover previous approaches to
leverage textual description to classify images of
unseen classes.

Zero-shot learning (ZSL). The core challenge
in ZSL lies in recognizing images of unseen classes
based on their semantic associations with seen
classes. This association is sometimes learned us-
ing human-annotated attributes (Li et al., 2019;
Song et al., 2018; Morgado and Vasconcelos, 2017;
Annadani and Biswas, 2018). Another source of
information for learning semantic associations is
to use textual descriptions. Three main sources
were used in the literature to obtain text descrip-
tions of classes: (1) Using class names as descrip-
tions (Zhang et al., 2017a; Frome et al., 2013;
Changpinyo et al., 2017; Cheraghian et al., 2022);
(2) using encyclopedia articles that describe the
class (Lei Ba et al., 2015; Elhoseiny et al., 2017;
Qin et al., 2020; Bujwid and Sullivan, 2021; Paz-

Argaman et al., 2020; Zhu et al., 2018); and (3) pro-
viding per-image descriptions manually annotated
by domain experts (Reed et al., 2016; Patterson and
Hays, 2012; Wah et al., 2011). These can then be
aggregated into class-level descriptions.

Shared space ZSL. One popular approach to
ZSL is to learn a joint visual-semantic represen-
tation, using either attributes or natural text de-
scriptions. Some studies project visual features
onto the textual space (Frome et al., 2013; Lampert
et al., 2013; Xie et al., 2021b), others learn a map-
ping from a textual to a visual space (Zhang et al.,
2017a; Pahde et al., 2021), and some project both
images and texts into a new shared space (Akata
et al., 2015; Atzmon and Chechik, 2018; Sung et al.,
2018; Zhang and Saligrama, 2015; Atzmon and
Chechik, 2019; Atzmon et al., 2020; Samuel et al.,
2021; Xie et al., 2021a; Radford et al., 2021). Once
both image and text can be encoded in the same
space, classifying an image from a new class can
be achieved without further training by first en-
coding the image and then selecting the nearest
class in the shared space. In comparison, instead
of nearest-neighbour based classification, our ap-
proach is learned in a discriminative way.

Generation-based ZSL. Another line of ZSL
studies uses generative models like GANs to gener-
ate representations of samples from unseen classes
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(Elhoseiny and Elfeki, 2019; Jha et al., 2021). Such
generative approaches have been applied in two
settings. Some studies assume they have access
to test-class descriptions (attributes or text) during
model training. Hence, they can train a classifier
over test-class images, generated by leveraging the
test-class descriptions (Liu et al., 2018; Schonfeld
et al., 2019; Han et al., 2021). Other studies assume
access to test-class descriptions only at test time.
Hence, they map the test-class descriptions to the
shared space of training classes and apply a nearest-
neighbor inference mechanism. In this work, we as-
sume that any information about test classes is only
available at test time. As a result, ZSL methods
assuming train-time access to information about
the test classes are beyond our scope.2 Yet, works
assuming only test-time access to test-class infor-
mation form some of our baselines (Elhoseiny and
Elfeki, 2019; Jha et al., 2021).

Hypernetworks (HNs, Ha et al. (2016)) were
applied to many computer vision and NLP prob-
lems, including ZSL (Yin et al., 2022), federated
learning (Amosy et al., 2024), domain adaptation
(Volk et al., 2022), language modeling (Suarez,
2017), machine translation (Platanios et al., 2018)
and many more. Here we use HNs for text-based
ZSL. The work by Lei Ba et al. (2015) also pre-
dicts model weights from textual descriptions, but
differs in two key ways. (1) They learn a constant
representation of each class; our method uses the
context of all the classes in a task to predict data
representation. (2) They predict weights of a linear
architecture; our T2M-HN applies to deeper ones.

Large vision-language models (LVLM) CLIP
(Radford et al., 2021), BLIP2 (Li et al., 2023) and
GPT4Vision show remarkable zero-shot capabil-
ities for vision-and-language tasks. A key differ-
ence between those approaches and this paper is
that CLIP and BLIP2 (the training approach of
GPT4Vision remains undisclosed) were trained on
massive multimodal data. In contrast, our approach
leverages the semantic compositionality of lan-
guage models, without requiring paired image-text
data. Furthermore, such large models are costly in
both training and inference. They demand substan-
tial resources, time and specialized knowledge that
is not accessible to most of the research community.

2While these algorithms could in principle be re-trained
when new classes are presented at test-time (e.g. in a continual
learning (Ring, 1995) setup), this would result in costly and
inefficient inference mechanism, and possibly also in catas-
trophic forgetting (McCloskey and Cohen, 1989). We hence
do not include them in our experiments.

We successfully applied T2M-HN in domains lack-
ing large multimodal data, such as 3D point cloud
object recognition and skeleton sequence action
recognition. The drawback is that the T2M-HN
representation might react to language differences
that don’t matter for visual tasks.

3 Problem formulation

Our objective is to learn a mapping τ from a set of
k natural language descriptions into the space of a
k-class image classifier. Here, we address the case
where the architecture of the downstream classifier
is fixed and given in advance, but this assumption
can be relaxed as in Litany et al. (2022).

Formally, let Sk = {s1, . . . , sk} be a set of k
class descriptions drawn from a distribution Pk,
where sj is a text description of the jth class.

Let τ be a model parameterized by a set of
parameters ϕ. It takes the descriptors and pro-
duces a set of parameters W of a k-class clas-
sification model f(·;W ). Therefore, we have
τϕ : {s1, . . . sk} → Rd, where d is the dimension
of W , that is, the number of parameters of f(·;W ),
and we denote W = τϕ(S

k).
Let l : Y × Y → R+ be a loss function, and

let {xi, yi}ni=1 be a labeled dataset from a distri-
bution P over X × Y . For k-class classification,
Y = {1, . . . , k}. We can explicitly write the loss
in terms of ϕ as follows.

l (yi, ŷi) = l (yi, f(xi;W ))

= l
(
yi, f(xi; τϕ(S

k))
)
.

(1)

See also Figure 2 and note that τ = h ◦ g. The goal
of T2M is to minimize

ϕ∗ =

argmin
ϕ

ESk∼PkE(x,y)∼P
[
l
(
y, f(x; τϕ(S

k))
)]

.

(2)

The training objective becomes

ϕ∗=argmin
ϕ

∑

j

∑

i

l
(
yi, f(xi; τϕ(S

kj ))
)
,

(3)
where the sum over j means summing over all
descriptions from all sets in the training set.

4 Our approach

We first describe our approach, based on HNs. We
then discuss the symmetries of the problem, and an
architecture that can leverage these symmetries.
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We propose to address the T2M problem, using
an HNs. An HN is a model that outputs the weights
of another model (Ha et al., 2016). In our case, it
receives a set of textual descriptions of classes to be
recognized, and outputs the weights of a classifier
that can discriminate them. Figure 2 illustrates our
architecture. It has two components. First, a text
encoder g takes natural language descriptions and
transforms them into dense descriptors; and second,
an HN h takes these dense descriptors and emits
weights for a downstream classifier. In this paper,
we do not impose any special properties on the
text encoder g. It can be any model trained using
language data (no need for multi-modal data).

4.1 Symmetries of the T2M problem
Interestingly, the T2M setup imposes certain invari-
ance and equivariance properties. Design an archi-
tecture that takes them into account can improve
generalization. We now discuss these properties
and then derive an architecture that captures them.

Equivariance properties of the classifier layer.
As an illustrative example, consider a downstream
multi-class classifier f1, that is designed to dis-
tinguish cats from dogs, and another classifier f2,
designed to distinguish dogs from cats. Intuitively,
at the optimum, the two classifiers should be iden-
tical except for a switch of two weight vectors at
the last layer (w1 in f1 equal to w2 in f2). This
has an important implication for the hypernetwork.
Any permutation applied to its input class descrip-
tions should be reflected in a parallel ordering of
the weight vectors that it produces.

Consider a downstream multiclass deep classifier
whose last (classification) layer has a weight vector
wi ∈ Rm for the output class i. The weight matrix
of the last layer is Wlast = {w1, . . . , wk} (See
Figure 3a).

The HN receives k class descriptors and outputs
their corresponding weights

Wlast = {w1, . . . , wk}
= Rlast(τθ ({s1, . . . , sk})),

(4)

where Rlast is a function that takes the output of
τ and resizes the last k ∗m elements to the matrix
Wlast. If the input descriptions are permuted by a
permutation P the columns of the last layer weight
should be permuted accordingly:

P(f(x; τϕ(S
k)) = f(x; τϕ(P(Sk)). (5)

This is the equivariant property, and the HN should
obey it.

Invariance properties of intermediate layers.
Considering now the layer of the downstream clas-
sifier before the last layer (wd in Figure 3a). We
now show that using an equivariant transformation
for the last layer and an invariant transformation for
the penultimate layer is sufficient to ensure that the
downstream classifier is equivariant to permutation
over the descriptions. A similar argument holds for
earlier (lower) intermediate layers.

Theorem 4.1. Let f be a two-layer neural net-
work f(x) = W lastσ(W penx), whose weights are
predicted by τ [W last,W pen] = τ(Sk). If τ(Sk)
is equivariant to a permutation P with respect to
W last, and invariant to P with respect to W pen,
then f(x) is equivariant to P with respect to the
input of τ(Sk). See a formal proof in the Supple-
mental Section D.

4.2 Invariant and equivariant Architectures.

Given the equivariance property discussed above,
we wish to design a deep architecture that adheres
to those symmetries. To ensure that certain ele-
ments remain invariant permutation, they should be
processed with a shared set of parameters (Wood
and Shawe-Taylor, 1996; Ravanbakhsh et al., 2017;
Maron et al., 2020). In our case, we need to share
the parameters that process input descriptions, so
the model is equivariant to permutations of those
inputs.

Figure 3(a) gives the high-level structure of the
equivariant architecture of T2M-HN. Figure 3(b)
shows the architecture of our equivariant layers.
All inputs are fed into the same fully connected
layer (vertical stripes). To take into account the
context of each input, we sum all the inputs to ob-
tain a context vector. We fed the context vector to
a different fully connected layer (diagonal stripes)
and add it to each one of the processed inputs. The
invariant layer has a similar architecture (Figure
3(c)), but with additional summation over all equiv-
ariant outputs and another different fully connected
layer (horizontal stripes).

Our HN uses several equivariant layers to pro-
cess the input descriptions. We then use one pre-
diction head for each layer of the output model.
The last layer should be equivariant, so we use an
equivariant prediction head. For the hidden layers,
we use invariant layers (See Figure 3(a)).
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(a) (b) (c)

Figure 3: (a) The T2M-HN architecture for equivariant-invariant hypernetwork. The input is processed by equivariant
layers, followed by a prediction head for each layer of the target on-demand classifier f . The prediction head for
Wlast is equivariant. Heads for earlier layers of f , w1, ...wk are invariant. (b) An architecture for the equivariant
layer. Every input is processed by a fully connected (FC) layer in a Siamese manner (shared weights). Inputs are
also summed and processed by a second FC layer, whose output is added back to each output. (c) An architecture
for an invariant layer, following a similar structure to b.

5 Experiments

The T2M setup is about producing a model that
can be applied to data from new classes. Accord-
ingly, the model trains on data from a set of training
classes, alongside their text descriptions. Then, it
is tested on data from new classes, given the text
descriptions of these classes.

We evaluate T2M-HN in zero-shot classification,
using three image datasets, one 3D point cloud
dataset, and one action recognition dataset. We
consider various forms of text description, includ-
ing single-word class labels, few-word class names,
and longer descriptions that could also include neg-
ative properties (i.e. properties that the images in
the class do not have). Finally, we study one-class
classification based on text attributes. Due to space
constraints, we provide a concise description of our
experimental settings here. Further details can be
found in Appendix B.

Baselines: We compare our T2M-HN with five
text-based zero-shot approaches for image recog-
nition: (1) DEVISE (Frome et al., 2013) projects
images to a pre-trained language model space by
adding a projection head to a pre-trained visual
classification model; (2) Deep Embedding Model
(DEM) (Zhang et al., 2017b) uses the visual space
as the shared embedding space; (3) CIZSL (Elho-
seiny and Elfeki, 2019) trains conditional GANs
with a loss designed to generate samples from un-
seen classes without synthesizing unrealistic im-
ages. At inference time, the GAN is conditioned
on test descriptions, generates synthetic image rep-
resentations, and test images are classified using

kNN w.r.t. to the synthetic images; (4) GRaWD
(Jha et al., 2021) trains a conditional GAN with a
loss that helps to reach regions in space that are
hard to classify as seen classes; and (5) ZSML
(Verma et al., 2020) combines meta-learning with a
WGAN, to generate samples from unseen classes,
and use them to train a classifier at test time. When
relevant, we also computed the performance ob-
tained when using CLIP, BLIP2, and GPT4Vision.
Note that those models were trained using mas-
sively large datasets, so it is reasonable to assume
they have seen all classes studied here. This is
hence not zero-shot classification, and the results
can be viewed as a “skyline" value that zero-shot
approaches should aim at.

Datasets: We experiment with three image
datasets: (1) Animals with attributes (AWA)
(Lampert et al., 2009); (2) SUN (Patterson and
Hays, 2012); and (3) CUB (Wah et al., 2011); a 3D
point-clouds dataset: (4) ModelNet40 (Wu et al.,
2015); and an action recognition dataset: (5) BA-
BEL 120(Punnakkal et al., 2021), containing se-
quences of body skeletons.

Experimental protocol: We split the data in
two dimensions: Classes and samples. For stan-
dardized comparisons the splitting classes into seen
classes used for training and unseen classes used
in evaluation. For each seen class we split out a set
of evaluation images that are not presented during
training, and used to evaluate the model on the seen
classes. We stress that "Seen" in our tables means
novel images from seen classes.

Workflow: When training the whole architec-
ture, we split the train seen classes. 80% of the
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AWA by class name ModelNet40 by class name
Seen Unseen Harmonic Seen Unseen Harmonic

CLIP 98.9± 0.2 NA NA NA NA NA
BLIP2 99.6± 0.1 NA NA NA NA NA
GPT4Vision 100± 0.0 NA NA NA NA NA

DeViSE 78.1± 1.0 58.9± 1.4 67.2± 1.9 83.6± 2.7 58.6± 3.4 68.9± 3
DEM 83.1± 1.6 75.1± 1.2 78.9± 2.0 86.7± 2.4 57.3± 3.3 69.0± 2.8
CIZSL 97.0± 0.1 74.7± 3.2 84.20± 2.0 97.6± 0.6 50.1± 3.6 66.3± 3.3
GRaWD 96.9± 0.1 81.6± 1.9 88.6± 1.1 97.8± 0.5 52.8± 3.3 68.3± 2.8
ZSML 96.1± 1.0 80.4± 2.4 87.5± 1.5 90.2± 1.5 68.6± 4.5 77.8± 3.0
T2M-HN (ours) 98.9± 0.1 87.3± 0.2 92.7± 0.1 97.9± 0.1 75.1± 0.9 85.0± 0.4

Table 2: Classification by
single-word class names.
Accuracy on seen and un-
seen classes for AWA and
ModelNet-40. Values are av-
erages and SEM across all
class pairs. LVLM have en-
countered all unseen classes,
and cannot be applied to
point clouds, hence marked
as NA.

classes were used for training the backbone. Then,
we froze the weights of the backbone and use the
remaining 20% to train the HN. This way, the HN
learns to generalize to new classes. Finally, we
evaluate the entire architecture on the evaluation
split of the seen classes, and on the unseen classes.
At test time, the model receives k class descriptions
and predicts a model to classify images drawn from
the corresponding k classes. Unless otherwise spec-
ified, we experiment with the value of k = 2.

5.1 ZSL using class names: Images and 3D
point clouds

In the following experiment, we evaluate T2M-HN
under two tasks: Zero-shot image classification
and zero-shot 3D point clouds classification. We
use single-word class names for both tasks as the
textual class descriptions.

Results: Table 2 shows our model reaches the
highest accuracy in both experimental setups and
datasets.

5.2 ZSL using text descriptions: Images and
sequences of 3D skeletons

Next, we evaluate T2M-HN when using richer text
descriptions: (1) For SUN, we use short class de-
scriptions provided by the original dataset. Specifi-
cally, SUN includes many multi-word class names
like “parking garage indoor” or “control tower out-
door”. (2) For BABEL 120 we use the action
names provided by the original dataset. Many
of the actions have multi-word, descriptive names
such as “take of bag”. (3) For AwA, we use syn-
thetic class descriptions generated by a GPT model.
See detailed examples in the Appendix G. We will
publish the full set of descriptions for reproducibil-
ity. (4) For CUB, we use the descriptions of each
image in a given class as a possible description of
the class.

In the CUB dataset, bird species from the same

taxonomic family are harder to distinguish from
each other than random pairs of species (Vedantam
et al., 2017). We used the Datazone dataset of
bird species (BirdLife, 2022) and annotated each
species with its corresponding taxonomic family.
Based on this information, we defined pairs of bird
species from two different families as easy and
pairs from the same family as hard.

vsvs

American 
Crow

Fish 
Crow

Purple 
Finch

Olive Sided 
Flycatcher

Hard TasksEasy Tasks

Figure 4: Classifying easy and hard pairs of bird
species from the CUB dataset. Easy tasks involve bi-
nary classification of bird pairs from different taxonomy
families. Hard tasks classify bird pairs within the same
taxonomy family. Mean accuracy is shown for images
from both seen (x-axis) and unseen (y-axis) classes, av-
eraged across all pairs.

Results: Table 3 presents the classification accu-
racy obtained using class descriptions, for the AWA,
SUN, and BABLE datasets. T2M-HN outperforms
all baselines. Figure 4 shows the results for the
CUB dataset with easy and hard tasks. To better
understand the results, consider an important dis-
tinction between our approach and previous shared-
representation approaches. These approaches aim
to learn class representations that would generalize
to new classification tasks. In contrast, our ap-
proach aims to build task-specific representations
and classifiers. For easy tasks, task-dependent rep-
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SUN by short description BABEL by short descriptions AWA by GPT descriptions
Seen Unseen Harmonic Seen Unseen Harmonic Seen Unseen Harmonic

CLIP 99.1± 0.4 NA NA NA NA NA 93.7± 0.2 NA NA
BLIP2 98.9± 0.1 NA NA NA NA NA 92.1± 0.4 NA NA
GPT4Vision 99.8± 0.2 NA NA NA NA NA 97.5± 0.5 NA NA

DeViSE 52.0± 1.4 58.9± 1.1 55.2± 0.9 65.9± 4.4 51.1± 2.0 57.6± 2.8 91.8± 1.6 70.0± 3.7 79.4± 2.2
DEM 83.2± 1.1 83.2± 1.4 83.2± 0.9 56.6± 2.4 50.2± 1.1 53.2± 1.5 93.9± 1.2 73.0± 3.3 82.1± 1.8
CIZSL 94.0± 0.1 80.3± 0.6 86.6± 0.3 82.7± 2.1 62.5± 1.3 71.2± 1.2 96.6± 0.1 80.7± 2.2 87.9± 1.3
GRaWD 95.5± 0.1 84.7± 0.5 89.8± 0.3 83.7± 1.8 62.2± 1.1 71.3± 1.0 96.8± 0.1 81.1± 0.2 88.3± 1.2
ZSML 96.9± 0.1 85.5± 0.4 90.8± 0.2 52.6± 1.3 51.2± 0.9 51.9± 1.1 97.4± 0.5 72.3± 2.7 82.9± 1.8
T2M-HN (ours) 95.8± 0.1 88.4± 0.1 92.0± 0.1 95.3± 0.1 77.6± 0.1 85.5± 0.1 98.7± 0.1 83.3± 0.1 90.3± 0.1

Table 3: Classification using short and rich class descriptions. Values are the mean (± s.e.m) accuracy averaged
over 100 random class pairs (for SUN and BABEL 120) and all class pairs (for AwA). LVLM have encountered all
unseen classes, and cannot be applied to 3D skeletons, hence marked as NA.

Figure 5: AUC of seen and unseen classes, in a one class
task that crosses species boundaries: "Animals that have
horns". Shown are averages over 53 attributes.

resentation may not be important because the input
contains a sufficient signal for accurate classifi-
cation. In contrast, in hard tasks, a model would
benefit from task-dependent representation to focus
on the few existing discriminative features of the
input examples. Indeed, as demonstrated in Figure
4, in the easy tasks, although our model is superior
on the seen classes, it is outperformed by the GAN-
based baselines on unseen classes. In contrast, for
the hard tasks, where task-specific class represen-
tation is more valuable, our model is superior on
both seen and unseen classes.

5.3 Descriptions with negative terms

To this point, we have assumed that the descriptions
correspond to properties of the class. However,
descriptions could also state which properties the
class does not have. For example, one may want to
classify animals that “do not live in the water", or
animals that “do not fly". To create such negative
descriptions for the AwA data, we used the list of

attributes provided for each class in AwA. For each
class, we randomly sampled 4 attributes that do not
apply to that class.

Results: Table 4 shows our findings for two
scenarios: purely negative descriptions (left side)
and balanced positive and negative descriptions
(right side), maintaining equal training and testing
ratios for both scenarios.

T2M-HN outperforms all baselines by signifi-
cant gaps. Presumably, the best baseline, GRaWD,
which generates image features from the textual
descriptions, fails to generate proper images given
negative attributes. Interestingly, LVLM perfor-
mance significantly drops in these scenarios, likely
because these models were trained on image cap-
tions that seldom include negative descriptions.

5.4 Identifying complex classes membership

Typically, zero-shot classification involves distin-
guishing “natural categories" (Rosch, 1973) like

“cats" and “dogs". However, We may want to
generate classifiers that follow more complex
class boundaries, aggregating over multiple nat-
ural classes. For instance, “animals with horns"
combine several classes from a rhino to a deer.

To test T2M-HN in this scenario, we created a
set of one-class classification tasks designed to rec-
ognize images based on properties that cut through
class boundaries. To make the evaluation system-
atic, we used attributes from AwA, and eliminate
non-visual attributes. Details of the protocol are
given in Appendix I. We report the average Area
Under the Recall-Precision Curve over seen classes
and unseen classes.

Results: Figure 5 shows that T2M-HN captures
the complex semantic distinctions of our task better
than baselines. We attribute this to its ability to
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Negative descriptions Negative & positive descriptions
AWA data Seen Unseen Harmonic Seen Unseen Harmonic

CLIP 19.9±2.2 NA NA 56.8±2.9 NA NA
BLIP2 73.9±0.6 NA NA 50.1±0.7 NA NA
GPT4Vision 27.6±0.9 NA NA 54.1±0.9 NA NA

DeViSE 57.3±4.9 54.5±5.2 55.9±5.0 79.5±3.6 61.5±4.5 69.4±4.0
DEM 81.7±1.2 73.7±1.6 77.5±1.0 78.2±1.7 69.1±1.6 73.4±1.2
CIZSL 58.3±0.8 56.6±3.4 57.5±1.8 93.9±0.2 71.6±2.3 81.2±1.5
GRaWD 54.9±0.8 56.0±3.2 55.3±1.6 95.0±0.2 73.9±2.0 83.2±1.5
T2M-HN(ours) 90.0±0.2 77.1±0.3 83.0±0.2 96.6±0.2 82.9±0.2 89.2±0.1

Table 4: Classification
using negative descriptions.
Mean accuracy for images
from seen and unseen AwA
classes, averaged over all
class pairs. LVLMs, trained
on extensive datasets, likely
encountered all unseen
classes, hence marked as
NA.

draw new classifiers for each new description.

5.5 T2M-HN classifiers are task-specific
Leading text-based ZSL methods map class de-
scriptions or images to a shared representation, but
that mapping is constant for all classification tasks.
Our T2M-HN is designed to use information about
the classes of each specific classification task.

We use GradCam (Selvaraju et al., 2017) and
examine what image areas are used in different
classification tasks. Figure 6 explores two such
examples. The upper three panels show the image
regions that are used for classifying the image as
a Dolphin. When classifying dolphin vs. deer, the
model gives most of its weight to the background
(ocean water and waves), which is reasonable since
an image of a deer probably will not contain those
elements in the background. However, when clas-
sifying dolphin vs. killer whale, the model gives
most of its weight to the dolphin itself, since the
background of a dolphin image may be similar to
the background of a whale image.

6 Conclusion

We introduced the T2M learning algorithm, a
novel approach that generates an image recognition
classifier “on demand” using only class descrip-
tions provided at test time. T2M allows for task-
dependent class representations rather than fixed
ones. We analyzed the group symmetries a T2M
model must adhere to and introduced T2M-HN, a
model based on HNs that obeys these symmetries.
Through extensive experiments across various clas-
sification scenarios—including images, 3D point
clouds, and action recognition—we explored the
adaptability of the model to descriptions of differ-
ing complexities, from single and few-word class
names, through long text descriptions, all the way
to “negative" and attribute descriptions. Our re-
sults clearly demonstrate the potential of the T2M
modeling approach.

Figure 6: Class context affects the predicted classifier.
Top left: An image of a dolphin. Top middle: grad-
cam heat map when classifying the dolphin image us-
ing a model trained for dolphin vs deer: The model is
strongly affected by the background ocean water, pre-
sumably because the negative class lives on land. Top
right: Recognition using a model for dolphin vs. killer
whale: the model attends to the dolphin, since back-
ground would be similar for both classes. Bottom: A
similar effect for a chimpanzee.

7 Limitations

Non-Visual descriptions Our objective is to clas-
sify images belonging to previously unseen classes
by leveraging textual descriptions. Nevertheless,
it is noteworthy that textual descriptions may oc-
casionally encompass non-visual attributes, that
may mislead the model to look for irrelevant fea-
tures. Due to this potential challenge, we tested
our approach in similar challenges like negative de-
scriptions (§5.3) and complex classes membership
(§5.4).

Hypernetwork Training Insights The proposed
architecture is based on hypernetworks, which are
generally considered more challenging to train ef-
ficiently than standard neural networks. For in-
stance, training a hypernetwork is probably less
stable compared to training classical convolutional
neural networks. However, our inner optimization
search reveals that numerous parameter combina-
tions yield satisfactory outcomes. This success is
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likely attributable to the entire system utilizing a
uniform supervision signal through a single cross-
entropy objective.
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A Overview of evaluation datasets and
tasks.

We evaluate the versatility of T2M-HN across a
spectrum of zero-shot classification tasks, encom-
passing different data types such as images, 3D
point clouds, and 3D skeletal data for action recog-
nition (see Table 5). Our framework demonstrates
a remarkable capability to assimilate diverse forms
of class descriptions, including both long and short
texts, as well as class names. Importantly, T2M-
HN outperforms previous state-of-the-art methods
in all of these experimental setups.

B Implementation and architecture

Implementation and architecture: We encode
single-word class names from the AwA dataset us-
ing Glove (Pennington et al., 2014) and longer de-
scriptions, as well as class names, from ModelNet-
40 using SBERT (Reimers and Gurevych, 2019).
For images, the visual target model had a back-
bone based on a frozen ResNet-18 (He et al., 2016),
pretrained on ImageNet with one or two fully
connected layers, predicted by the HN. For 3D
point-cloud data, the backbone was PointNet (Qi
et al., 2017), again with one or two predicted fully-
connected layers. For action recognition data, we
follow (Punnakkal et al., 2021) and use 2 stream-
AGCN (Shi et al., 2019), with one or two predicted
fully-connected layers as well.

For CLIP, we use the CLIP encoder followed by
k-NN classifier in the CLIP space (Radford et al.,
2021). For BLIP we use LoRA to tune the model
to the classification task using the train split. For
GPT4Vision we use the prompt to demonstrate
the task, followed by the classification task from
the test split. Since we have a limited number
of calls to those models we sampled classes and
descriptions from the test split. We increased the
sample size until the SEM was small enough to
claim statistical significance.

Experimental protocol: We split the data in two
dimensions: Classes and samples. For standardized
comparisons the splitting classes into seen classes
used for training and unseen classes used in evalu-
ation, follows the split used by (Xian et al., 2018)
for AWA, the split of (Cheraghian et al., 2022) for
Modelnet40 and the standard split of (Wah et al.,
2011) for CUB. Since there is no official split for
SUN and BABEL, we share our random split in
Section H. As in other ZSL protocols, for each seen
class we split out a set of evaluation images that are

not presented during training, and used to evaluate
the model on the seen classes. For AwA, CUB,
SUN and BABEL 120 we randomly selected 10%
of images for “seen" evaluation. For ModelNet40
we use the test split in (Wu et al., 2015). We stress
that "Seen" in our tables means novel images from
seen classes.

Our approach follows standard benchmark prac-
tices widely accepted in the field, including the use
of benchmarks that may have some class overlap
with ImageNet, as in many recent studies. We as-
sess the impact of these overlaps on novelty. For
ModelNet40 (point clouds) and BABEL (3D skele-
tal data), no pretrained ResNet is used. In the CUB
dataset, only one class (Indigo Bunting) overlaps
with ImageNet out of 51 unseen classes, making
the effect negligible. In the SUN dataset, three
classes (volcano, boathouse, palace) overlap with
ImageNet out of 47 unseen classes, which we also
consider negligible. However, in the AwA dataset
there is significant overlap, with 5 out of 10 classes
present in both ImageNet and the AwA unseen
classes. To better understand the influence on AWA
results, we measure the accuracy when classifying
two classes that are part of Imagenet classes, and
2 classes that are not. The results are 81.4± 0.01
and 82.2± 0.09 respectively.

Training cost: Our training was completed in ∼
30 minutes on a single 2080Ti GPU. This is faster
than baselines: DEM and DEVISE require twice
as long for training (1 hr), while ZSML, GRAWD
and CIZSL took x4 the time (2 hrs). This result
agrees with previous literature on HNs, e.g. (Brock
et al., 2018; Galanti and Wolf, 2020).

C Hyperparameter optimization

We tune hyperparameters using a held-out set de-
scribed below.

For the HN optimizer, we tuned the learn-
ing rate ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, mo-
mentum ∈ {0.1, 0.3, 0.9}, weight decay ∈
{0.00001, 0.0001, 0.001, 0.1}, and number of HN
training epochs ∈ {50, 70, 100}.

For the on-demand target model, we fixed the
optimizer to have a learning rate of 0.01, momen-
tum of 0.9 and weight decay of 0.01. We tuned the
batch size ∈ {16, 32, 64, 128} and the number of
training epochs {1, 2, 3, 5, 10}.

We tried several sizes for the HN architecture
with one hidden layer, {30, 50, 120, 300}. We also
describe results with two layers in the ablation sec-
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Dataset Sample Description Example
name and type data type description

ModelNet-40 (Wu et al., 2015)
3D Point Clouds

CAD models

Class
name

(1) Airplane
(2) Chair

AwA (Lampert et al., 2009)
Animal
images

Class name (1) Moose
(2) Elephant

Long

(1) “An animal of the deer family with humped
shoulders, long legs, and a large head with antlers.”,

(2) “A plant-eating mammal with a long trunk,
large ears, and thick, grey skin.”

Negative (1) “An animal without stripes and not gray”,
(2) “An animal without fur and without horns”

Attribute (1) “Animals with fur”
(2) “Animals with long trunk”

SUN (Patterson and Hays, 2012)
Images of scenes

and places
Short (1) “Desert vegetation”,

(2) “Lecture room”

CUB (Wah et al., 2011)
Images of

bird species
Long

(1) “This bird is red with an orange beak and black
eyes and eyebrow.”,

(2) “a small yellow bird with a black
chest and tail.”

BABEL 120 (Punnakkal et al., 2021)
Sequences of

3D skeletal data
Short (1) “Take off bag”,

(2) “Type on a keyboard”

Table 5: Overview of evaluation datasets and tasks.

tion at the supplemental Sec. F.1.
Recall that we split the data across two dimen-

sions: classes and samples. When training the back-
bone model, we held out 20% of training (seen)
classes for training the HN on classes the backbone
does not see. From those classes, we held out im-
ages to serve as a validation set. We used those
images of seen classes to evaluate the architecture
performance and chose the hyperparameters based
on that estimation.

D Equivariant and invariant layers

Theorem D.1. Let f be a two-layer neural network
f(x) = W lastσ(W penx), whose weights are pre-
dicted from descriptors Sk = {s1, . . . , sk} such
that [W last,W pen] = τ(Sk). If τ(Sk) is equivari-
ant to a permutation P with respect to W last, and
invariant to P with respect to W pen, then f(x) is
equivariant to P with respect to the input of τ(Sk).

Proof. From the equivariance of f(x) to a
permutation P over the input Sk, we have
P(f(xi; τϕ(S

k)) = f(xi; τϕ(P(Sk)). Denote by
m the number of rows of W last and zpen =

σ(W penx). We have

P(f(x; τϕ(S
k)) = P(W lastσ(W penx))

= P(W lastzpen))

= P(




W last
1 zpen

.

.
W last

m zpen


)

=




W last
P(1)z

pen

.

.
W last

P(m)z
pen




= P(W last)zpen.

(6)

If τ(Sk) is equivariant to P with respect to W last,
and invariant to P with respect to Wpen, then
τ(P(Sk)) = [P(W last),W pen], so

P(f(x; τϕ(S
k)) = P(W last)zpen

= f(x; τϕ(P(Sk)).
(7)

E Multi-class classification

To demonstrate the flexibility of our approach to
deal with multiple classes, we evaluated T2M-HN
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in 3-way classification tasks. In each task, the on-
demand model classifies the image into one out of
three classes. For example, such a task could be
to classify whether an image is a dog, a cat, or an
elephant. We use the same workflow as described
in Section 5, with k = 3. Results are in Table
6. T2M-HN outperforms all baselines by a large
margin.

AwA triplets by class name
Seen Unseen Harmonic

DeViSE 95.1± 0.7 55.6± 3.6 70.2± 1.2
DEM 94.6± 0.7 64.3± 3.0 76.6± 1.1
CIZSL 97.0± 0.4 62.0± 2.9 75.6± 2.1
GRaWD 96.4± 0.5 68.5± 3.0 80.0± 2.0
T2M-HN (ours) 98.1± 0.1 75.3± 0.1 85.2± 0.1

Table 6: Classification by class descriptions. Mean
classification accuracy and SEM on images from seen
and unseen classes. Averages are over 100 random class
triplets

F 3D point cloud multiclass classification

While T2M-HN is designed to excel in binary clas-
sification, it can be easily applied to multiclass
problems. For comparison with previous models
we evaluate its performance in multi-class settings,
where T2M-HN predicts a model that classifies all
seen and unseen classes, instead of two specific
classes. Table 7 shows the results of this experi-
ment. We report the result when classifying new
samples from the seen classes (30-classes classi-
fication) and from the unseen classes (10-classes
classification). T2M-HN achieves SOTA results
in this setup as well. It leverages the text gener-
alization of the HN model to distinguish between
unseen classes.

We further computed the top-k accuracy
achieved by running T2M-HN for the unseen
classes. Figure 7 plots the accuracy as a function
of k. T2M-HN provides superior accuracy for all
tested values of k. To calculate the top-k perfor-
mance of the GAN-based models, after generating
the images, we checked if any of K closest neigh-
bors of an image is of the correct class.

F.1 The Impact of Equivariance Design on
HNs

To evaluate the effect of the equivariance property
on our HN-based model performance, we com-
pared variants with and without the equivariance
design. We repeat the experiment for an on-demand

ModelNet40 by class name
Seen Unseen Harmonic

DeViSE 47.2 14.5 22.2
DEM 46.8 7.0 12.3
CIZSL 75.6 6.0 11.0
GRaWD 75.2 10.9 19.0
T2M-HN (ours) 76.3 18.9 30.3

Table 7: 3D point-cloud object recognition using
single-word class names. Multiclass accuracy on seen
and unseen classes for ModelNet-40. The seen accuracy
is between 30 classes, and the unseen accuracy is be-
tween 10 classes.
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Figure 7: Accuracy at k for experiments with 3D point
cloud from ModelNet-40. The solid line is our T2M
model, dashed lines are for the baseline models.

AwA Super Sets
Seen Unseen Harmonic

DeViSE 53.0± 1.9 50± 0.6 51.5± 0.9
DEM 50.1± 1.4 48.3± 1.8 49.2± 1.6
CIZSL 57.3± 5.6 50.2± 5.8 55.0± 4.0
GRaWD 59.8± 3.5 51.6± 4.8 55.3± 3.1
T2M-HN (ours) 67.2± 5.2 57.3± 5.7 61.9± 5.4

Table 8: Classification using attributes. Values denote
the Area under the Recall-Precision curve averaged over
the 13 test attributes ± s.e.m. over these attributes. The
seen results are new images from the seen classes, while
the unseen results are images from unseen classes. Both
are evaluated when classifying only the test attributes.
The full protocol is in I.

model with one or two fully connected layers. Fig-
ure 8 shows the mean accuracy of the following
variants: (1) T2M-HN 1-layer An equivariant HN
that predicts one equivariant FC layer; (2) 1-layer
w.o. EV A FC HN that predicts one fully con-
nected layer; (3) T2M-HN 2-layers An equiv-
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ariant HN that predicts two FC layers for the on-
demand model: The first is invariant and the second
is equivariant; and (4) 2-layer w.o. EV A FC HN
that predicts two FC layers. There is no big differ-
ence in the number of parameters between EV and
non-EV architectures: (1) T2M-HN 1-layer - 244K
parameters, (2) 1-layer w.o. EV - 183K parame-
ters, (3) T2M-HN 2-layers - 7.6M parameters, (4)
2-layer w.o. EV - 7.5 M parameters.

In all cases, the equivariant HN performs better
than the simple fully connected. For AwA, T2M-
HN 1-layer performs better than T2M-HN 2-layers.
We believe this is because ResNet backbone sepa-
rates the images to be linearly separable. For BA-
BEL, we used 2s-AGCN as a features extractor and
in that case, T2M-HN 2-layer generalizes better to
unseen classes.

Figure 8: Ablation study. Mean classification accuracy
(averaged across class pairs) on seen and unseen classes
and their harmonic mean for the AWA and BABEL
datasets.

G AwA GPT-3 descriptions

We use GPT3 (Brown et al., 2020) to generate 5
synthetic descriptions for each class of AwA. Dur-
ing training and evaluation, we randomly choose
one description for each class in the batch, from
its corresponding 5 class descriptions. We use the
API provided by OpenAI to ask "text-davinci-002"
engine with a temperature of 0, max tokens of 512,
and the prompt: "Suggest 5 definitions for an ani-
mal. Animal: {animal_name}. Definitions:"
Animal: moose
Definitions:

1. A large, dark-colored deer with enormous
antlers, native to North America and Europe.

2. An animal of the deer family with humped
shoulders, long legs, and a large head with
antlers.

3. A large, awkward-looking mammal with a
long face and humped shoulders.

4. A very large deer with antlers that can spread
six feet or more from tip to tip.

5. The largest member of the deer family, with
males weighing up to 1,800 pounds and hav-
ing antlers that can spread up to six feet from
tip to tip.

Animal: spider monkey
Definitions:

1. A type of monkey that has long legs and arms
and a long tail.

2. A monkey that is found in the rainforests of
Central and South America.

3. A monkey that is known for its acrobatic abil-
ities.

4. A monkey that is considered to be one of the
most intelligent primates.

5. A monkey that is endangered in many parts of
its range.

Animal: rhinoceros
Definitions:

1. A large, thick-skinned mammal with one or
two horns on its snout, native to Africa and
southern Asia.

2. An animal that is hunted for its horn, which is
used in traditional Chinese medicine.

3. A large, herbivorous mammal with a single
horn on its nose, found in Africa and southern
Asia.

4. A mammal of the family Rhinocerotidae, hav-
ing thick, grey or brown skin and one or two
horns on the snout.

5. A very large, plant-eating mammal with one
or two horns on its nose, found in Africa and
southern Asia.

Elephant:

1. The largest land animal in the world, with
males weighing up to six tons.

2. A plant-eating mammal with a long trunk,
large ears, and thick, grey skin.

3. A mammal of the family Elephantidae, having
a long trunk, large ears, and thick, grey skin.

4. An intelligent animal that is known for its
memory and its ability to use its trunk for a
variety of tasks.

5. An endangered species that is hunted for its
ivory tusks.

171



H Data splits

SUN unseen classes: ’volcano’, ’poolroom estab-
lishment’, ’veterinarians office’, ’reception’, ’field
wild’, ’diner indoor’, ’garbage dump’, ’server
room’, ’vineyard’, ’jewelry shop’, ’drugstore’,
’herb garden’, ’lock chamber’, ’temple east asia’,
’marsh’, ’cottage garden’, ’cathedral outdoor’, ’den-
tists office’, ’pharmacy’, ’hangar indoor’, ’vol-
leyball court indoor’, ’lift bridge’, ’synagogue
outdoor’, ’boathouse’, ’ice shelf’, ’boxing ring’,
’rope bridge’, ’electrical substation’, ’auditorium’,
’chalet’, ’booth indoor’, ’wine cellar barrel storage’,
’greenhouse outdoor’, ’badminton court indoor’,
’thriftshop’, ’cemetery’, ’rainforest’, ’courtyard’,
’underwater coral reef’, ’formal garden’, ’ice skat-
ing rink outdoor’, ’palace’, ’movie theater indoor’,
’dinette home’, ’sandbar’, ’ball pit’, ’amphitheater’

SUN seen classes: All remaining classes.
ModelNet40: We follow (Cheraghian et al.,

2022, 2019; Michele et al., 2021) and use the 10
classes included in ModelNet-10 as unseen classes,
and the other 30 as seen.

BABEL unseen classes: ’a pose’, ’action with
ball’, ’adjust’, ’catch’, ’clean something’, ’com-
municate (vocalise)’, ’crawl’, ’get injured’, ’hand
movements’, ’hop’, ’limp’, ’mix’, ’play sport’,
’press something’, ’rolling movement’, ’shuffle’,
’side to side movement’, ’sneak’, ’spread’, ’sup-
port’, ’swing body part’, ’trip’, ’upper body move-
ments’, ’wait’

BABEL seen classes: All remaining classes.
CUB unseen classes: ’Acadian Flycatcher’,

’American Crow’, ’American Three Toed Wood-
pecker’, ’Baltimore Oriole’, ’Bank Swallow’,
’Belted Kingfisher’, ’Black Billed Cuckoo’, ’Black
Footed Albatross’, ’Black Throated Sparrow’,
’Boat Tailed Grackle’, ’Bohemian Waxwing’,
’Brandt Cormorant’, ’Brewer Blackbird’, ’Cape
May Warbler’, ’Cedar Waxwing’, ’Chestnut Sided
Warbler’, ’Field Sparrow’, ’Golden Winged War-
bler’, ’Grasshopper Sparrow’, ’Gray Crowned
Rosy Finch’, ’Great Crested Flycatcher’, ’Great
Grey Shrike’, ’Groove Billed Ani’, ’Hooded Ori-
ole’, ’Horned Grebe’, ’Indigo Bunting’, ’Least
Auklet’, ’Least Tern’, ’Marsh Wren’, ’Mocking-
bird’, ’Northern Flicker’, ’Northern Waterthrush’,
’Pacific Loon’, ’Pied Billed Grebe’, ’Pomarine
Jaeger’, ’Purple Finch’, ’Red Legged Kittiwake’,
’Rhinoceros Auklet’, ’Sayornis’, ’Scott Oriole’,
’Tree Sparrow’, ’Tree Swallow’, ’Western Grebe’,
’Western Gull’, ’Western Wood Pewee’, ’White

Breasted Kingfisher’, ’White Eyed Vireo’, ’White
Pelican’, ’Wilson Warbler’, ’Yellow Bellied Fly-
catcher’, ’Yellow Billed Cuckoo’

CUB seen classes: All remaining classes.

I Attributes used for one-class
classification

As mentioned in section 5.4, we use some of the
attributes from the AwA dataset to define one-class
classification tasks. First, we removed non-visual
attributes. Then, we randomly split the remain-
ing 53 attributes into 30 train, 10 validation, and
13 test attributes. We split both the images and
the attributes, constructing 4 groups of images and
attributes: (1) Training images from training at-
tributes and training classes, used to train the hy-
pernetwork; (2) Validation images from the training
classes, with the validation attributes used to tune
hyperparameters; (3) Test images from seen classes,
new images of test attributes, whose class was seen
during training (but not the specific images); and
(4) Test images from unseen classes, new images
of test attributes, whose class was not seen during
training. We report the average Area under the
Recall-Precision curve over seen (group (3)) and
unseen classes (group (4)). The results are shown
in Figure 5 and in Table 8. The attributes split is as
follows:

AwA train attributes: ’orange’, ’red’, ’long-
neck’, ’horns’, ’tusks’, ’flys’, ’desert’, ’cave’,
’jungle’, ’water’, ’bush’, ’lean’, ’forest’, ’gray’,
’strainteeth’, ’stripes’, ’mountains’, ’arctic’, ’paws’,
’hooves’, ’pads’, ’small’, ’furry’, ’ground’,
’patches’, ’white’, ’fields’, ’bipedal’, ’toughskin’,
’plains’.

AwA validation attributes: ’buckteeth’, ’chew-
teeth’, ’yellow’, ’hairless’, ’bulbous’, ’big’, ’flip-
pers’, ’tree’, ’walks’, ’coastal’.

AwA test attributes: ’quadrapedal’, ’black’,
’blue’, ’ocean’, ’longleg’, ’spots’, ’hands’, ’claws’,
’muscle’, ’meatteeth’, ’tail’, ’brown’, ’swims’.
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