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Abstract

Large language models (LLMs) have shown
strong results on a range of applications, in-
cluding regression and scoring tasks. Typi-
cally, one obtains outputs from an LLM via au-
toregressive sampling from the model’s output
distribution. We show that this inference strat-
egy can be sub-optimal for common regression
and scoring evaluation metrics. As a remedy,
we build on prior work on Minimum Bayes
Risk decoding, and propose alternate infer-
ence strategies that estimate the Bayes-optimal
solution for regression and scoring metrics
in closed-form from sampled responses. We
show that our proposal significantly improves
over baselines across datasets and models.

1 Introduction

Large language models (LLMs) are currently the
most capable models across many NLP tasks (Ope-
nAI et al., 2023; Anil et al., 2023; Touvron et al.,
2023; Gemini Team et al., 2024). Owing to their
remarkable few- and zero-shot abilities (Wei et al.,
2022; Kojima et al., 2023), pre-trained LLMs are
often applied without any additional training on
domain-specific datasets: instead, one may query
the LLM with a suitably crafted input prompt.

More recently, LLMs have been successfuly ap-
plied to regression and scoring tasks. For example,
Gruver et al. (2023) explored zero-shot learning
for time series prediction; Vacareanu et al. (2024)
showed how LLMs are remarkably strong at in-
context learning for regression tasks; Liu and Low
(2023); Yang et al. (2023) considered autoregres-
sive fine-tuning over numerical targets applied to
arithmetic tasks; and Qin et al. (2023) applied
LLMs for listwise ranking.

The quality of an LLM is often assessed using an
application-specific evaluation metric. One popu-
lar metric is the exact match (EM), which penalises
any response not exactly equal to the one in the

dataset annotation. This is an analogue of the con-
ventional classification accuracy. While EM is an
intuitive metric, there are many applications where
it is not suitable. This includes tasks such relevance
scoring (Cer et al., 2017) and sentiment analysis
(Fathony et al., 2017), where the outputs are nu-
merical or ordinal categories. In these cases, one
instead prefers metrics such as the squared error,
absolute error or ranking scores that take the out-
puts’ ordinal nature into account.

Despite the wide variety of evaluation metrics,
LLM inference is typically performed in the same
manner for every task: namely, one performs auto-
regressive sampling from the LLM’s underlying
distribution (see §2). While intuitive, such infer-
ence does not explicitly consider the downstream
evaluation metric of interest. This raises a natural
question: is there value in adapting the inference
procedure to the evaluation metric at hand for re-
gression and scoring tasks?

A prominent line of work takes a decision-
theoretic approach to the above problem. Dubbed
as Minimum Bayes Risk (MBR) decoding, this ap-
proach seeks to optimize at inference time the
metric of choice under the model’s distribution
(Bickel and Doksum, 1977; Kumar and Byrne,
2004; Eikema and Aziz, 2020; Bertsch et al., 2023).
Much of the work on MBR is focused on evaluation
metrics for machine translation and text generation
tasks, such as the BLEU score (Papineni et al.,
2002). Of particular interest in this literature are
self-consistency based decoding strategies that take
a (weighted) majority vote of sampled responses
(Wang et al., 2023a), which have shown to provide
quality gains in arithmetic and reasoning problems.

In this paper, we build on the existing literature
on MBR to design metric-aware inference strate-
gies for general regression and scoring tasks. We
first observe that choosing the most likely target
for an input corresponds to inherently optimizing
for the EM metric, and is consequently not opti-
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Figure 1: Illustration of metric-aware LLM inference
for regression and scoring tasks. An input x is passed to
the LLM, and samples are drawn from the distribution
over targets y conditioned on x. These are then used to
find the target optimizing a metric m through a closed-
form decision rule Φ (e.g., mean or median); Table 1
presents specific solutions across metrics.

mal when EM is not the metric of choice. As a
remedy, we propose estimating the Bayes-optimal
output for a metric under the model’s distribution
(see Figure 1 for an illustration of our method);
we show that this admits a closed-form solution
for common regression and ranking metrics, and
only requires estimating a simple statistic from the
sampled responses. In contrast, prior MBR meth-
ods for translation and summarization often require
heuristically solving an intractable maximization
problem (Ehling et al., 2007; Bertsch et al., 2023).
We show across datasets and models how our ap-
proach yields gains over choosing the most likely
target, and over self-consistency based approaches.

2 When (naïve) LLM inference fails on
regression tasks

We begin with the problem setting. For a finite
vocabulary V of tokens (e.g., words in English), let
D denote a distribution over inputs x ∈ X ⊆ V ∗

comprising of strings of tokens, and targets y ∈ Y .
Let p(y |x) denote the conditional distribution over
targets given an input. We consider a special case of
this setting where Y ⊂ R corresponds to numeric
targets. Here, we assume that each y ∈ Y has
a unique string representation str(y) ∈ V ∗; for
example, the integer 1 has the string encoding "1".

A language model (LM) takes a string x as in-

put and predicts an output ŷ ∈ V ∗. Typically,
the LM first produces a distribution p̂(· |x) over
targets. In a slight abuse of notation, we use
p̂(y |x)

·
= p̂(str(y) |x) to denote the conditional

probability of a numerical output y given input x.
Note that even for problems where numerical tar-
gets are expected, an LM may return a non-zero
probability to non-numerical targets.

A prediction from an LM is typically derived
via a suitable inference (or decoding) procedure.
Perhaps the most common inference strategy is to
choose the mode of p̂(· |x):

ŷ(x) := argmax
y∈V ∗

p̂(y |x). (1)

In practice, one may approximate the mode via
greedy decoding or beam search, or sampling mul-
tiple candidates and picking the among them the
one with the highest likelihood score (Naseh et al.,
2023). In principle, the extracted target may not
be numerical. In such cases, a possible strategy
is to resort to predicting a default numerical value
such as 0.0. In practice, we find the targets from
high-quality LLMs tend to be numerical even under
zero-shot settings, and so converting most likely
targets from V ∗ to Y is usually possible.

The quality of an LM’s prediction is measured
by some evaluation metric m(y, ŷ), where we as-
sume that higher values are better. While the ex-
act match (EM), given by m(y, ŷ) = 1(y = ŷ),
is a commonly used evaluation metric, there are
a range of other metrics popularly used to eval-
uate LMs. These include the (negative) squared
error m(y, ŷ) = −(y − ŷ)2 or absolute error
m(y, ŷ) = −|y − ŷ| for regression tasks. A nat-
ural goal is to then choose the inference strategy
ŷ(x) to maximize the metric m of interest, i.e., to
maximize the expected utility:

E(x,y)∼D [m(y, ŷ(x))] . (2)

For many choices of metric m(y, ŷ(x)), picking
the mode of the predicted distribution (1) can be
sub-optimal for (2). As an example, consider pre-
dicting the star rating (on the scale 1–5) associated
with a review text. Suppose m(y, ŷ) is the nega-
tive absolute error between the true and predicted
ratings. Given the review text “This keybord is
suitable for fast typers”, suppose the LM
responses and the associated probabilities are {“1”:
0.3, “2”: 0.0, “3”: 0.3, “4”: 0.0, “5”: 0.4}. The
mode of the predicted probabilities is “5”. In con-
trast, the maximizer of (2) is the median “3”.
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Algorithm 1 RAIL: Regression-aware Inference with LLMs

1: input: Model M , #samples K, sampling temperature T , effective temperature T ′, decision rule Φ
2: for i = 1 to K do
3: ŷi, p̂i = M.generate(T ) . M .generate returns the sampled target and its probability.
4: end for
5: α = T

T ′ − 1 . Compute post-hoc temperature scaling so that the effective temperature used is T ′

6: return Φ(ŷ1, . . . , ŷK , p̂1, . . . , p̂K , α)

(a) It is a nice color of black and my
husband likes how it feels in his hand.

(b) This item is a good idea. How-
ever, Unless the ear canal is reason-
ably deep (...) it’s of no use. The plas-
tic hooks that come with it are hard
and too small (...). Might be good for
children.

(c) One of the sides is made for ap-
ple products, the other is just standard
usb. Both will work with apple prod-
ucts, just one side (the A side) charges
faster. Other than that, it’s fantastic.
:D

Figure 2: Examples from the Amazon dataset and the corresponding: human annotations and samples from the
model. We find that in many cases, taking into account the model distribution (i.e. a mean of the distribution)
allows for a prediction closer to the annotation than simply taking the mode of the distribution.

In Figure 2, we report examples from the Ama-
zon dataset and the corresponding human annota-
tions and samples from the model. Notice how
samples cover significant proportions of the ratings.
We find that the samples end up in the vicinity
of the human annotation, and thus in many cases
taking a mean over samples helps improve the pre-
diction over the mode.

3 Metric-aware LLM inference

3.1 Minimum Bayes risk decoding
We seek to design decoding strategies that maxi-
mize the expected utility in (2). Ideally, if we had
access to the true conditional probabilities p(· |x),
the maximizer of (2) is given by:

ŷ∗(x) ∈ argmax
y′∈Y

Ey∼p(· |x)
[
m(y, y′)

]
. (3)

When m is the EM metric, the optimal inference
strategy is ŷ∗(x) ∈ argmaxy∈Y p(y |x), which is
what common approaches such as greedy decoding
seek to approximate.

In general, however, the optimal decoding strat-
egy can have a very different form, and the mode of
p(·|x) has been shown to be suboptimal on genera-
tion tasks (Eikema and Aziz, 2020). For example,
as shown in Table 1, for evaluation metrics over

numerical targets such as the squared error or the
absolute error, the optimal inference strategy is to
take the mean or median of p(·|x) (Bishop, 2006).

3.2 Closed-form optimal solution
In practice, we mimic the Bayes-optimal solution
in (3) with two approximations. First, we replace
the true conditional distribution p(· |x) with the
LM’s predicted distribution p̂(· |x). This is a rea-
sonable approximation when the LM is pre-trained
with next-token prediction objective based on the
softmax cross-entropy loss; the latter is a strictly
proper loss, whose minimizer under an unrestricted
hypothesis class is the true conditional distribution
p(y |x) (Gneiting and Raftery, 2007). Second, we
estimate the expectation in (3) by sampling K out-
puts from p̂(· |x), and then computing:

ŷ(x) ∈ argmax
y′∈Y

K∑

i=1

m(yi, y
′). (4)

Even with these approximations, maximizing (4)
over all outputs Y is intractable in general. Prior
literature on MBR for metrics like BLEU heuristi-
cally perform maximization over a small set of can-
didates (Ehling et al., 2007; Bertsch et al., 2023).

In this paper, we consider regression and scor-
ing metrics, for which the above maximization
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Problem Label Pred. Metric Optimal rule Φ(ŷ1, . . . , ŷK , p̂1, . . . , p̂K , α)

Classification [K] [K] 1(y = ŷ) ŷ(x) := argmaxy p(y |x) ŷi s.t. i = argmaxj p̂j

Regression R R −(y − ŷ)2 ŷ(x) := Ey∼p(· |x)[y]
∑

i
p̂αi ·ŷi∑
j p̂
α
j ·ŷj

Ordinal regression [K] [K] −|y − ŷ| ŷ(x) := median[p(· |x)] ŷi s.t. i = median(p̂α1 , . . . , p̂
α
K)

Bi-partite ranking ±1 R AUC (cy,y′ = 1) ŷ(x) := p(y = +1|x)
∑

i
p̂αi ·1(ŷi=1)∑
j p̂
α
j ·1(ŷj=1)

Multi-partite ranking [K] R AUC (cy,y′ = |y − y′|) ŷ(x) := Ey∼p(· |x)[y]
∑

i
p̂αi ·ŷi∑
j p̂
α
j ·ŷj

Table 1: Optimal decision rule for varying: label space, model prediction space and evaluation metric. We denote
[K] = {1, . . . ,K}. The final column shows the empirical rule as a function of sampled outputs, corresponding
scores, and a rescaling temperature α (see Section 3.3).

can be computed in closed-form. As shown in
Table 1, these solutions can be estimated by com-
puting simple statistics from the sampled responses,
such as the sample mean ŷ(x) = 1

K

∑K
i=1 yi for

the squared error. We refer to this approach as
Regression-aware Inference with LLMs (RAIL).

3.3 Post-hoc temperature scaling
When sampling from p̂(· |x), it often helps to apply
temperature scaling to the LM logits to control the
sampled outputs’ diversity. This is particularly im-
portant in our procedure, where we wish to approxi-
mate expectations over p̂(·|x) using a few samples.

In practice, one may sample from p̂(· |x) with
temperature T = 1, and apply temperature scaling
in a post-hoc manner by employing a weighted
version of the objective in (4):

ŷ(x) ∈ argmax
y′∈Y

K∑

i=1

(p̂(yi|x))α ·m(yi, y
′), (5)

where α can be seen as the temperature scaling
parameter. The above summation is a (scaled) esti-
mate of Ey∼p̂(· |x) [p̂(y |x)α ·m(y, y′)]. For proba-
bilities p̂(yi |x) ∝ exp(f(x, yi)) defined by log-
its f(x, yi), this is equivalent to computing the
expectation under the temperature-scaled distribu-
tion p̂α(y |x) ∝ exp((1 + α) · f(x, y)), modulo
a normalization factor. We consider an analogous
weighting scheme for the plug-in estimators of the
closed-form solutions in Table 1.

Algorithm 1 outlines the RAIL procedure, with
both a sampling temperature T and an effective
temperature T ′ as inputs. The algorithm first draws
samples from an LLM with the sampling temper-
ature T ; next, to arrive at an effective tempera-
ture T ′, it performs post-hoc scaling by a factor
α = T

T ′ − 1. In principle, temperature scaling may
not be necessary if p̂(y |x) accurately estimated the
true probability p(· |x). However, in practice due

to imperfect approximation and finite sample size
errors, we find it useful to employ. Indeed, temper-
ature scaling has also been found to be beneficial
in prior MBR works (Yan et al., 2022).

3.4 Extension to multi-partite ranking

Our metric-aware decoding proposal also applies
to scoring tasks, where the label space Y is dis-
crete, e.g. {1, . . . ,K}, but we require the LLM
to predict real-valued scores ŷ(x) ∈ R for each
prompt x such that prompts with higher labels re-
ceive a higher score. One typically measures the
performance of ŷ(x) using a pairwise ranking met-
ric such as the multi-partite area under the ROC
curve (AUC-ROC) (Uematsu and Lee, 2015):

AUC-ROC(ŷ) = 1 −
E
[
cy,y′ · 1(ŷ(x) < ŷ(x′))

∣∣∣ y > y′
]
, (6)

which penalizes the scorer ŷ by cy,y′ whenever it
mis-ranks a pair (x, x′) with y > y′. In experi-
ments, we refer to AUC-ROC as AUC for brevity.

Despite AUC-ROC being non-decomposable
(not a summation of per-example results), Uematsu
and Lee (2015)[Corollary 1] show that when the
costs are the difference between the labels, i.e.,
cy,y′ = |y− y′|, the optimal scorer admits a closed-
form solution given by the expected label under
distribution p(·|x): ŷ∗(x) = Ey∼p(·|x) [y]. One
can thus readily apply our RAIL approach to esti-
mate this solution from sampled responses. More-
over, from the Neyman-Pearson lemma, the same
optimal solution applies to the AUC-PR evaluation
metric (Clémençon and Vayatis, 2009).

4 Experiments and Discussion
We experimentally evaluate our proposed approach
on NLP tasks with different evaluation metrics.
Datasets. We use two datasets: (i) Semantic Tex-
tual Similarity Benchmark (STSB) (Cer et al.,
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model
size

greedy
decode

RAIL
argmax mean

STSB
(RMSE↓)

XXS 1.078 1.448 1.028
S 0.685 1.019 0.649
L 0.628 0.989 0.610

argmax mean

STSB
(AUC↑)

XXS 0.797 0.632 0.889
S 0.895 0.820 0.953
L 0.905 0.827 0.961

argmax median

Amazon
reviews
(MAE↓)

XXS 0.495 0.826 0.474
S 0.301 0.444 0.285
L 0.294 0.541 0.291

Table 2: Comparison of inference strategies on PaLM-2
models for different datasets and metrics. We draw 16
samples with an effective temperature of T = 1

4 (via
post-hoc scaling). In Appendix D, we report results for
variants of MALI with no post-hoc scaling (Table 4),
and results of tuning the temperature using a held-out
set, along with confidence intervals (Table 11).

model greedy enumeration sampling

FLAN-T5 S 2.102 1.551 1.508
FLAN-T5 L 0.675 0.640 0.611
FLAN-T5 XL 0.713 0.741 0.676

Table 3: RMSE on STSB with FLAN-T5 across RAIL
variants (enumeration vs sampling). The sampling ap-
proach uses a temperature of 0.5.

2017), which comprises of sentence pairs human-
annotated with a similarity score from 0 to 5; since
this is a regression task, we evaluate with the root
mean squared error. (ii) US Amazon reviews, where
we aim to predict the 5-star rating for a product re-
view (Ni et al., 2019); since the task is in the form
of ordinal regression, we use mean absolute error as
the evaluation metric (Fathony et al., 2017). We list
the prompts used in Table 6 (Appendix). In each
case, we evaluate on samples of 1500 examples.
Models. We consider two instruction-tuned
model families: PaLM-2 (Anil et al., 2023) and
FLAN-T5 (Chung et al., 2022). We report results
across different model sizes and temperatures.
Unless otherwise stated, we fix the number of
samples to K = 16, and the top-k parameter in
decoding to 40 (Fan et al., 2018).

Methods. We evaluate the following methods: (i)
greedy decoding, (ii) a baseline inspired from the
self-consistency decoding of sampling K candi-
dates and picking the one with the maximum likeli-
hood (argmax) (Wang et al., 2023a), (iii) the pro-

posed RAIL approach on the same K samples, and
(iv) RAIL with temperature scaling (§3.3). For (iv),
we choose α yielding effective temperature 1

4 .

Metric-aware inference helps. In Table 2, we re-
port results across datasets and model sizes. We
notice that RAIL consistently improves over base-
lines. To better measure the sensitivity of the results
to the choice of temperature, we report additional
results in Table 11 in Appendix D, where we use a
held-out validation set to tune the temperature, and
find the trends to be consistent.

Sampling versus enumeration. So far, when es-
timating the maximizer to equation (2), we have
used sampling from the LM distribution (see §3.2).
Alternatively, if the targets are from a narrow in-
terval (e.g., on STSB, the values are in the interval
[0, 5]), one can score the model for targets enu-
merated at fixed intervals (e.g. 0, 0.5, 1.0, . . . , 5.0),
and compute estimates for solutions in Table 1.
In Table 3, we report results from FLAN-T5 on
the STSB dataset for RAIL with both sampling
and enumeration based estimates, where the latter
is based on 11 equally spaced targets. Both sam-
pling and enumeration lead to RAIL improving
over choosing the most likely target, with sampling
having an edge. The reason sampling performs bet-
ter than enumeration may be that sampling is able
to better explore the high density regions of the out-
put probability space, as we detail in Appendix E.

Role of model size. We find that the benefit from
our technique reduces as the models increase in
size. This sometimes coincides with a lowering en-
tropy in predictions with increasing model size (see,
e.g., results on Amazon in Table 7 in Appendix).
We note this is consistent with prior works on MBR,
which observed that as the model gets better, the
optimal decision rule for EM (approximated by
greedy decoding) performs comparable to the that
for other metrics (Schluter et al., 2012). We stress
that the gains we get with small and medium-sized
models are still of large practical importance, espe-
cially in applications where deploying very large
models is prohibitively expensive.

5 Conclusions

We have shown how regression and scoring-aware
inference strategies can yield notable benefits for
small and medium-sized LLMs. In the future, we
wish to extend our approach to other less-explored
evaluation metrics in the MBR literature.

13671



6 Limitations

There are multiple limitations of our work. First,
we evaluate our proposed methods on multiple text
datasets with numerical and text targets, however,
many more types of outputs can be considered, in-
cluding the time series targets. Next, it would be
interesting to more systematically analyze how to
efficiently solve the objective from (5) over many
samples for text outputs for metrics like F1 or
BLEU, e.g. by means of dynamic programming.
We also note that the datasets considered in this
work are restricted to English. It would be interest-
ing to expand the explorations to datasets in other
languages.

7 Ethics Statement

All datasets used in this work are publicly available.
No additional user data was collected or released
as part of this work. All models used are publicly
available and already pretrained, and no fine-tuning
was conducted for any experiments. Instead, all ex-
periments relied on running inference experiments
with the models over several thousands of examples.
Thus, the CO-2 footprint of this paper is minimal.
We do not foresee any significant risks associated
with this paper other than improving performance
on tasks which are harmful.
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A Further related work

Minimum Bayes risk decoding. As noted in
the introduction, prior work on MBR has consid-
ered optimizing for common metrics in the machine
translation and text generation literature. The clos-
est to our paper is the work of Wang et al. (2023a),
who considered sampling from the model distri-
bution using chain-of-thought (CoT) prompting,
and showed how majority vote improves over the
baseline on arithmetic and reasoning tasks.

Other works explored different aspects of MBR,
including: the role of the sampling algorithms (Fre-
itag et al., 2023; Cheng and Vlachos, 2023), the
interaction with label smoothing (Yan et al., 2022),
and how it generalizes other techniques (Suzgun
et al., 2022; Bertsch et al., 2023). Finkelstein and
Freitag (2024) recently considered distillation of
MBR solution to a student model, so as to avoid
the overhead induced by MBR at inference time.

A recent work also applied LLMs to time series
forecasting, and constructed the final predictions
by computing quantiles (e.g., median) over the sam-
ples (Gruver et al., 2023). One of the evaluation
metrics for time series forecasting is the mean ab-
solute error, for which the median can be shown to
be a Bayes optimal decision rule (see Table 1).

Fine-tuning for target task alignment. Previ-
ous works have considered approaches for aligning
the models for target datasets. This includes fine-
tuning of soft prompts on target datasets without
losing generalization to other tasks (Wang et al.,
2023b), and general fine-tuning on carefully tai-
lored datasets for improved model robustness (Li
et al., 2023). In our work, we focus on zero-shot
setting where no fine-tuning is conducted.

Fine-tuning for numerical tasks. Autoregres-
sive fine-tuning of LLMs on numerical tasks with
CoT has been found effective (Liu and Low, 2023).
One line of work for modeling predictive tasks with
pre-trained Transformer-based models is to add a
regression head on top of the transformed/pooled
encoded input tokens and fine-tune the resulting
model on numerical targets using a regression loss.
This is an approach which has been employed for
encoder-based models (e.g., BERT), and has also
been applied to encoder-decoder (e.g., T5) mod-
els (Liu et al., 2022), and these approaches could
be extended to decoder models too. In a similar
work, an embedding was extracted from a decoder
model fine-tuned on modified attention mask and
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additional tasks (BehnamGhader et al., 2024). In
this paper, we focus on the zero shot approaches,
and we leave training approaches for future work.

B Additional results on F1 maximization
on Trivia QA

We extend our approach to the F1 score evaluation
metric. Consider a reading comprehension task,
where the F1 score is the evaluation metricm(y, ŷ),
defined by the harmonic mean of recall(y, ŷ) =
|y∩ŷ|
|y| and precision(y, ŷ) = |y∩ŷ|

|ŷ| . To illustrate
the task, suppose for the question “What is the
hottest month in the year”, the responses and
associated probability from an LM are {“July”:
0.25, “July 2023”: 0.23, “Month of July”:
0.24, “May”: 0.28}. The mode of this distribution
is “May”; whereas the maximizer of (2) is “July”.

To optimize the F1 metric, we solve (7) over a
candidate set C, which we choose to contain the K
samples and additional targets derived from them.

ŷ(x) ∈ argmax
y′∈C

K∑

i=1

m(yi, y
′). (7)

While the F1 score does not admit a closed-form
solution, as is the case for the metrics listed in Ta-
ble 1, we make an observation that its formulation
allows for introducing a different form of efficiency.
In particular, we notice that due to the trade-off
between precision and recall in the F1 score for-
mulation, the following candidate set construction
can lead to increasing recall at the expense of pre-
cision, thus providing a way to cheaply enumerate
additional reasonable candidates.
Candidate set construction. One simple choice
for the candidate set C could be take the K sam-
pled outputs, i.e., C = {y1, . . . , yK}. One may
additionally include in this set transformations on
each yi or new candidates formed from combining
two or more of the samples.

For reading comprehension or question-
answering applications, where the output is a
list of keywords that constitute an answer to a
question, one may additionally include samples
formed by concatenating pairs of sampled outputs,
i.e., concat(yi, delim, yj),∀i 6= j. These
concatenated answers have the effect of increasing
recall, at the cost of lower precision. We follow
that procedure for the Trivia-QA experiments.

In Table 4, we provide results on Trivia-QA read-
ing comprehension task (Joshi et al., 2017) with
the proposed F1-aware inference strategy.

To additionally analyze the effectiveness of the
candidate set augmentation, in Table 5 we com-
pare the performance of RAIL (specifically the
temperature scaled variant) with and without the
inclusion of concatenated pairs in the candidate
set. For both the XXS and S models, the inclusion
of concatenated pairs is seen to yield a significant
improvement in F1-score.

C Additional details

In Table 6 we report the prompts we used in our
experiments for zero-shot inference.

For all datasets, we use validation splits, and
where not available, we use the first 1500 examples
from the train split.

The datasets are publicly available, for example
from the tensorflow.org platform:

• https://www.tensorflow.org/datasets/
catalog/glue#gluestsb,

• https://www.tensorflow.org/datasets/
catalog/amazon_us_reviews,

• https://www.tensorflow.org/datasets/
catalog/trivia_qa.

D Additional experiments

In Table 7 we report empirical entropy estimates
as measured based on the 16 samples generated
from the model. We find that entropy decreases
as model size increases. We observe a particularly
sharp decrease in entropy for the Amazon reviews
and Trivia-QA datasets, where for larger model
sizes we don’t find improvements from RAIL ap-
proaches.

In Table 4 we report RMSE on STSB dataset,
MAE on Amazon reviews dataset, and F1 metrics
on Trivia-QA dataset from PaLM-2 models of vary-
ing size across multiple temperature values. We
find improvements over baselines on STSB and
Amazon reviews datasets for most temperatures.
For Trivia-QA, we find improvements for XXS and
S models for some temperatures, and for L, we
don’t find a difference from our methods due to
low entropy in the responses (see Table 7). In Ta-
ble 10 we additionally report Pearson correlation
metrics on STSB, confirming the results of RAIL
improving over autoregressive inference. Lastly, in
Table 9 we report cost weighted multi-class AUC-
ROC with costs corresponding to the difference
between the annotated labels: |y1−y2|. We find on
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model
size

greedy
decode

T=0.25 T=0.5 T=1.0
argmax mean w-mean argmax mean w-mean argmax mean w-mean

STSB
XXS 1.078 1.126 1.043 1.028 1.241 1.021 0.992 1.448 1.007 0.978
S 0.685 0.787 0.643 0.649 0.908 0.636 0.642 1.019 0.641 0.641
L 0.628 0.729 0.592 0.610 0.852 0.582 0.586 0.989 0.580 0.580

T=0.25 T=0.5 T=1.0
argmax median w-median argmax median w-median argmax median w-median

Amazon
reviews

XXS 0.495 0.509 0.484 0.474 0.624 0.485 0.487 0.826 0.493 0.493
S 0.301 0.290 0.297 0.285 0.329 0.300 0.297 0.444 0.299 0.299
L 0.294 0.318 0.293 0.291 0.380 0.294 0.293 0.541 0.298 0.295

T=0.25 T=0.5 T=1.0
argmax F1 w-F1 argmax F1 w-F1 argmax F1 w-F1

Trivia-QA
XXS 0.314 0.300 0.319 0.318 0.255 0.323 0.326 0.178 0.307 0.304
S 0.620 0.656 0.626 0.678 0.658 0.641 0.662 0.636 0.650 0.650
L 0.886 0.888 0.886 0.888 0.888 0.883 0.887 0.887 0.880 0.885

Table 4: Root mean squared error (RMSE) on STSB dataset (the lower the better), Mean absolute error (MAE) on
Amazon reviews dataset (the lower the better), and F1 metrics on Trivia-QA dataset (the higher the better) from
PaLM-2 models of varying size. We report different methods of inference across different temperatures. For the
weighted approaches, we fix the sampling temperature to T = 1 and accordingly vary the α in (5) so as to arrive
at the effective temperature equal to the value reported.

model w/ pairs w/o pairs

PaLM-2 XXS 0.302 0.295

PaLM-2 XS 0.678 0.670

PaLM-2 L 0.886 0.887

Table 5: Performance of RAIL (as evaluated by F1)
on TriviaQA with and without the inclusion of concate-
nated pairs in the candidate set.

both STSB and Amazon reviews datasets that the
optimal decision rule (mean over the distribution)
improves over the baselines.

In Table 8, we report the impact of the number
of samples on the results. We note that there is
an improvement in the results with the increase in
the number of samples, however beyond 8 samples
there is a diminishing improvement in practice. On
STSB with temperature 1

4 , even with as few as two
samples, our method starts to show improvements
over greedy decoding.

In Table 11, we report results for PaLM-2 models
for RMSE on STSB when tuning the temperature
parameter using a held-out set.

E Why does sampling outperform
enumeration?

In this section we explicate why sampling can out-
perform enumeration. For easier reference, we first
summarize what sampling and enumeration specif-
ically mean:

• with the sampling strategy, we evaluate the
average metric in (4) using K samples drawn

from the predictive distribution through tem-
perature sampling.

• with the enumeration strategy, we score K
fixed targets from a uniform grid G, and re-
place the average metric in equation (4) with
the estimate

∑

g∈G
p(g) ·m(y, g)/

∑

g∈G
p(g).

Now, a possible reason sampling performs better
than enumeration can be that sampling is able to
better explore the high density regions of the output
probability space. For example, if the predictive
distribution is concentrated in a tiny region of the
output space, with the sampling strategy, most of
the samples we use to estimate the optimal solution
will be from this region. In contrast, with the enu-
meration strategy, most of the enumerated outputs
will be from outside this region, and may prove not
useful for estimating the optimal solution.

For illustrative purposes, consider an extreme
example for the STSB regression setup (where
the output is a real number in [0, 5]). Suppose
the predictive distribution is a mixed probabil-
ity distribution whose density is concentrated in
a narrow region centered at 0.7, and is near-
uniform on all other targets. Since our enumer-
ation strategy only considers the grid points G =
{0.0, 0.5, 1.0, . . . , 5.0}, due to uniform probabili-
ties over all these values it outputs:

∑

g∈G
p(g) · g/

∑

g∈G
p(g) = 2.5.
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Dataset Prompt

STSB What is the sentence similarity between the following two sentences measured on a scale of 0 to 5:
{Sentence #1}, {Sentence #2}. The similarity measured on a scale of 0 to 5 with 0 being unrelated
and 5 being related is equal to

Amazon reviews What is the rating corresponding to the following review in the scale of 1 to 5, where 1 means
negative, and 5 means positive? Only give a number from 1 to 5 with no text. Review: {Review}
Rating:

Table 6: Prompts used for different datasets. Curly braces denote inputs specific to an input example.

model STSB Amazon Trivia-QA

PaLM-2 XXS 1.141 1.064 1.328

PaLM-2 XS 1.055 0.753 0.475

PaLM-2 L 0.976 0.361 0.186

Table 7: Empirical entropy across model sizes and
datasets.

samples XXS S L

(Greedy Decode) 1.078 0.685 0.628

2 1.044 0.679 0.624
4 1.036 0.669 0.613
6 1.031 0.664 0.607
8 1.028 0.660 0.603

10 1.025 0.657 0.601
12 1.024 0.655 0.600
14 1.022 0.653 0.599
16 1.021 0.652 0.598

Table 8: RMSE as a function of the number of sam-
ples on STSB across PaLM-2 models of varying size.
Results for temperature T = 0.25.

With the sampling approach, all K samples will be
drawn with high probability from the vicinity of
0.7, and so, its output is:

1

K

∑

k

ŷk ≈ 0.7.

We would also like to note that both scoring
and sampling improve over baselines, showing that
both alternatives can make good use of the p̂(.|x).
We also note that p may not be perfectly approxi-
mated by p̂ due to various reasons, including the
optimization, capacity, limited fine-tuning data and
objectives used (e.g. label smoothing used in the
pre-training objective).

F Computational complexity of
sampling-based RAIL

Note that sampling can be done efficiently by
caching the Transformer activations for the input
prefix when generating different targets. In prac-

tice, when the prefix is long compared to the gen-
erated targets, a forward pass for the prefix tends
to take most of the compute time. Note that is the
case for scoring and regression tasks (the focus of
our work), since the target score can be just a few
tokens length, whereas the prefix can be long as it
contains the input text.

Moreover, we generate multiple samples simul-
taneously, and so, we do not incur a higher cost
from generating multiple targets.
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model
size

greedy
decode

T=0.25 T=0.5 T=1.0
argmax mean argmax mean argmax mean

STSB
XXS 0.797 0.755 0.882 0.714 0.890 0.632 0.889

XS 0.895 0.870 0.950 0.843 0.954 0.820 0.953

L 0.905 0.885 0.948 0.859 0.959 0.827 0.961

Amazon
reviews

XXS 0.87 0.894 0.925 0.866 0.94 0.788 0.942

XS 0.9 0.91 0.925 0.914 0.941 0.9 0.958

L 0.925 0.922 0.951 0.906 0.962 0.837 0.964

Table 9: Cost-weighted multi-partite AUC metrics on STSB and Amazon datasets (the higher the better). RAIL
methods improve over the baselines. See §3.4 for the definition of AUC we use. We assume costs to correspond to
the difference between the annotated labels: |y1 − y2|.

model greedy
decode

T=0.25 T=0.5 T=1.0
argmax mean argmax mean argmax mean

PaLM-2 XXS 0.767 0.738 0.790 0.670 0.790 0.544 0.786

PaLM-2 XS 0.898 0.878 0.915 0.852 0.913 0.821 0.910

PaLM-2 L 0.909 0.893 0.920 0.881 0.922 0.860 0.923

Table 10: Pearson correlation metrics on STSB. RAIL methods improve over the baselines.

model
size

greedy
decode

RAIL
argmax mean

XXS 1.047±0.004 1.447±0.007 0.967±0.004
S 0.683±0.002 1.017±0.005 0.639±0.003
L 0.628±0.003 0.988±0.004 0.578±0.002

Table 11: Comparison of inference strategies on PaLM-2 models for RMSE on STSB when tuning the tempera-
ture on a held-out set. We draw 16 samples. We use 1

3 of the evaluation set for selecting the temperature from
{0.25, 0.5, 0.75, 1, 2.5, 5, 7.5}, and use the remaining 2

3 of the evaluation set for evaluation. We draw 10 random
splits to obtain 95% confidence intervals. We confirm that the improvements that RAIL offers over baselines are
indeed significant, and that when tuning the temperatures on the held-out set, the improvements hold.
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