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Abstract

The increasing scale of Transformer models has
led to an increase in their pre-training compu-
tational requirements. While quantization has
proven to be effective after pre-training and
during fine-tuning, applying quantization in
Transformers during pre-training has remained
largely unexplored at scale for language model-
ing. This study aims to explore the impact of
quantization for efficient pre-training of Trans-
formers, with a focus on linear layer compo-
nents. By systematically applying straightfor-
ward linear quantization to weights, activations,
gradients, and optimizer states, we assess its
effects on model efficiency, stability, and perfor-
mance during training. By offering a compre-
hensive recipe of effective quantization strate-
gies to be applied during the pre-training of
Transformers, we promote high training effi-
ciency from scratch while retaining language
modeling ability. Code is available at https://
github.com/chandar-lab/EfficientLLMs.

1 Introduction

Transformers (Vaswani et al., 2017) have become
the dominant model for natural language process-
ing, with the GPT family of models (Radford et al.,
2019) showcasing their effectiveness across vari-
ous tasks, from language understanding to code
generation. As the performance of Transformers
scales nicely with the number of parameters and
the data size, the current state-of-the-art models
have reached unprecedented computational require-
ments both during training and inference (Tay et al.,
2020). For instance, pre-training a 175B param-
eter GPT-3 model requires a staggering number
of 10,000 V100 GPUs for 14.8 days (Patterson
et al., 2021). As a result, pre-training has become
extremely expensive, beyond the reach of most
research groups, and has raised concerns over sus-
tainability due to CO2 emissions from extensive
GPU usage (Luccioni et al., 2023).

To improve the efficiency of Transformers, quan-
tization has gained significant traction due to its
recent successes in both post-training (Ashkboos
et al., 2024; Dettmers et al., 2022; Frantar et al.,
2022) and during fine-tuning (Li et al., 2023).
Quantized pre-training, where certain parts of the
computational graph and model parameters are
quantized from the beginning of training, remains
a challenging problem. In such scenarios, the train-
ing instabilities caused by substantial changes in
model parameters and emerging model behaviors
do not pair well with the added noise introduced
by quantization (Nagel et al., 2022). Additionally,
quantizing model components without compromis-
ing performance becomes increasingly difficult at
larger scales (Dettmers and Zettlemoyer, 2023).
Despite its importance, quantized pre-training of
Transformer language models remains largely un-
explored at scale.

In this paper, we present the first in-depth study
on the effects of quantizing Transformer language
models during pre-training and at scale. Our pri-
mary aim is to provide a recipe for quantized pre-
training by conducting a controlled study that inves-
tigates the impact of quantization on weights, acti-
vations, gradients, and optimizer states on model ef-
ficiency, stability, and performance, using a simple
linear quantization with 4 and 8 bits. Our findings
demonstrate that 8-bit quantization for weights and
activations can be effectively combined to provide
significant memory savings and potential speedup,
achieving performance comparable to the baseline
model. However, extending quantization to gradi-
ents to utilize computational speedup in backward
matrix multiplications or reducing precision to 4
bits results in notable training instability.

Specifically, 4-bit quantization introduces a
sharper loss landscape for weights (§4.1) and per-
sistent outliers in the channel dimension of activa-
tions (§4.2), significantly degrading performance
despite attempts to manage them through per-
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channel quantization. Additionally, gradient quan-
tization is particularly problematic due to spikes in
gradient norms during early training phases and the
unstructured and sparse nature of gradients through-
out training (§4.3). While 8-bit gradient quantiza-
tion does not hurt model convergence, transitioning
to 4 bits results in non-convergence. Additionally,
quantizing the first-order moments of Adam to even
4 bits is feasible without significant performance
loss, but the second-order moments require a more
complex quantization scheme to avoid instabilities
in the Adam update, even when using 8-bits quanti-
zation (§4.4). Lastly, we present our recommended
pre-training quantization recipe for the different
model components (§4.5).

2 Related Work

In recent years, numerous methods have been stud-
ied to improve the efficiency of neural networks.
Among these, Quantization-aware training (QAT)
emerges as an acceleration technique for inference,
as parameters are stored and operations are con-
ducted with higher precision during training. The
induced quantization error during training serves
as a regularizer, as demonstrated in Gholami et al.
(2022), ultimately facilitating the development of a
more quantization-friendly model.

In contrast, Fully Quantized Training (FQT) har-
nesses the accelerated gains derived from higher
throughput in INT8 or INT4 operations supported
by modern GPUs during training. Additionally,
FQT capitalizes on memory savings by storing pa-
rameters in lower precisions. As exemplified by
Li et al. (2024) and Dettmers et al. (2021), states
of the Adam optimizer are stored in 4 and 8 bits,
respectively, to minimize memory footprint. An-
other strategy introduced by Markov et al. (2023)
involves quantizing both weights and gradients to
reduce bandwidth usage in distributed training. Fur-
thermore, Wortsman et al. (2024) and Kim et al.
(2021) advocate the replacement of linear opera-
tions with INT8 matrix multiplications to achieve
substantial speedups. Our work extends quanti-
zation to multiple components, providing a more
comprehensive exploration of the challenges and
benefits of quantization during pre-training.

Despite the considerable advantages in acceler-
ating the training process, FQT poses challenges
attributable to numerical stability and optimiza-
tion issues inherent in training quantized networks.
Many existing methods predominantly focus on

fine-tuning Large Language Models (LLMs) using
FQT, leveraging the inherent stability of pre-trained
models in each gradient update. The evolution
from 16-bit to FP8 data formats, as evidenced by
remarkable results in mixed precision training on
LLMs (Peng et al., 2023), showcases the potential
of FQT. However, the scarcity and difficulty in ob-
taining hardware that supports FP8 formats pose
significant challenges to its widespread adoption.

Wortsman et al. (2024) employ 8-bit quantiza-
tion for linear operations in both forward and back-
ward passes, achieving remarkable results in pre-
training large-scale vision language models. Their
approach incorporates row-wise quantization for
activations and gradients, mitigating the impact of
quantization errors on other parameters. However,
vision language models significantly differ from
large textual language models. Xi et al. (2024b) ex-
plored 4-bit quantization in Fully Quantized Train-
ing (FQT) using Hadamard transformations to han-
dle activation outliers and proposed bit splitting
to quantize gradients in 4-bit precision. However,
their work primarily focuses on fine-tuning, and
only relatively small models (60M parameters) are
pre-trained on a small dataset (WMT 14 En-De),
which hinders the generalizability of their findings
to larger language models. Our study explores pre-
training at a larger scale, utilizing a bigger model
and dataset to thoroughly examine the effects of
quantization on various model components.

The generalization of these findings to large-
scale language models (LLMs) remains a challenge,
especially considering that training such models
involves unique complexities. Additionally, their
reliance on Hadamard transformations imposes re-
strictions on activation dimensions, limiting appli-
cability to power-of-two dimensions, a constraint
not easily met by recent LLM architectures such as
Llama.

In contrast to the aforementioned complex quan-
tization methods, such as quantile quantization and
learnable quantization parameters, this study fo-
cuses on a more straightforward implementation.
The objective is to investigate the effects of quanti-
zation and explore the feasibility of training LLMs
with full integer operations. The primary goal is
to offer detailed insights into quantizing different
components of the model. While more sophisti-
cated quantization methods may enhance perfor-
mance, our work serves as a foundational investi-
gation, providing insights and paving the way for
further exploration in quantization for LLMs.
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3 Quantization Methodology

In this work, we explore various quantization
schemes (§3.1) and granularities (§3.2) on model
components. This controlled approach during pre-
training allows us to examine the impacts on lan-
guage modeling and downstream task performance.

3.1 Quantization Scheme
We start by introducing the quantization procedure
used in our study, which is applied to all linear
layers of Transformers. We perform fake quantiza-
tion, where all values and computations are stored
with higher precision, and every quantization oper-
ation is followed by de-quantization to introduce
quantization error. Simulating low-precision pre-
training fits the purpose of this study since we aim
to analyze the effects of quantizing different model
components without focusing on actual training
speedups that can be obtained by implementing
custom GPU kernels.
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Figure 1: Overview of the quantization process in for-
ward and backward passes.

Figure 1 illustrates how quantization error is in-
troduced during both the forward and backward
passes. Specifically, the quantization error is in-
jected into either the weights or input activations
during the forward pass. Since we only store the
gradients related to the weights in memory, the
quantization in the backward pass is only applied
to the output gradients (“grad out” in Figure 1) for
weight updates. Nonetheless, the real-valued out-
put gradient is used to compute the quantized input
gradient since we observed an increase in training
instability when propagating the quantization error
through the entire backward path. Additional de-
tails about gradient quantization are presented in
Section 4.3.

We employ linear quantization for our experi-
ments since this is a popular approach compatible
with existing hardware, and using more complex
methods could potentially hinder the practical rel-
evance of our study. Specifically, we map real-
valued vectors X to a discrete grid of integers as
follows:

Xint = clip

(⌊
X

s

⌉
− z;N,P

)
,

X̂ = s(Xint + z),

(1)

where ⌊·⌉ is the round-to-nearest integer operator,
N and P represent the quantization range, with
N = −2b−1, P = 2b−1 − 1, and b is the bit width,
since we deal with signed data in our experiments.
The scaling factor s is set to the maximum abso-
lute value of X/P . Unless specified, we perform
symmetric quantization by setting the offset z to 0,
which has less overhead than asymmetric quanti-
zation where z is set to ⌊min(X)/s⌉ (Nagel et al.,
2021). During backpropagation, we employ the
well-known straight-through estimator (STE) (Ben-
gio et al., 2013) mechanism to update the weights.

3.2 Quantization Granularity

We can choose scaling factors with different granu-
larity: per-tensor, per-channel, and per-token quan-
tization, where each quantization granularity leads
to a specific trade-off between efficiency and perfor-
mance. Specifically, per-tensor quantization offers
the highest efficiency since it performs a single
element-wise floating-point multiplication for the
de-quantization step. However, since only a single
value is used to rescale the entire tensor, perfor-
mance degradation is likely to occur due to such
uniform scaling across the tensor elements.

On the other hand, per-channel and per-token
quantization offer a finer-grained scaling, where
different scaling factors are tailored to specific ten-
sor element groups (i.e. channels and tokens, re-
spectively). Even though such approaches help
in terms of performance, they introduce an over-
head during the de-quantization step. It is worth
noting that, in certain instances, these quantiza-
tion granularities cannot be efficiently implemented
by hardware-accelerated GEMM kernels. For ex-
ample, using per-channel quantization for both
weights and activations can not be efficiently im-
plemented.
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Figure 2: Distribution of peak memory usage across dif-
ferent model sizes (GPT-2 Small, Medium, and Large)
for a constant context length of 1024, with varying batch
sizes.

3.3 Quantization Efficiency

To show the potential memory saving in quantized
pre-training, we explore the memory consumption
of various components within GPT-2 models dur-
ing training using the PyTorch Memory Profiler.
We analyze peak memory usage, as shown in Fig-
ure 2, which illustrates memory usage for different
batch sizes with a fixed context length of 1024
across various model sizes. We observe that when
a model can fit within the GPU memory, the ma-
jority of the memory at peak times is consumed by
activations, particularly with large batch sizes and
sequence lengths. Under these conditions, gradi-
ents do not contribute to peak memory usage. More
details are in Appendix B.
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Figure 3: Proportion of total execution time consumed
by linear layers in the attention block of GPT-2 models
(Small, Medium, Large, and X-Large) across different
sequence lengths.

We also profile the execution time of kernels
using the Nvidia Nsight Profiler to assess the poten-
tial speedup from quantizing linear layers. Figure

3 shows the proportion of total execution time con-
sumed by linear layers in the attention block of
GPT-2 models of varying sizes across different se-
quence lengths. This profiling includes both the
forward and backward passes. We observe that
for small sequence lengths, linear layers consume
a significant portion (more than 80%) of the ex-
ecution time. As the model size increases, this
proportion typically rises, but as sequence lengths
increase, the proportion of time spent in linear lay-
ers decreases, suggesting that self-attention, due to
its quadratic computational complexity, becomes
the dominant factor in execution time. This indi-
cates that while quantizing linear layers can offer
substantial speedup, the potential gains are more
pronounced with smaller sequence lengths.

4 Experimental Results

We used GPT-2 small (124M) (Radford et al., 2019)
with FlashAttention-2 (Dao et al., 2022) for our ex-
periments due to its popularity as a baseline archi-
tecture for contemporary studies of LLMs. While
larger models are often used, GPT-2 small provides
a manageable framework for in-depth experimenta-
tion without requiring the immense computational
resources of larger models. For our experiments,
we pre-trained 30 models from scratch on Open-
WebText (Gokaslan and Cohen, 2019) for 300k gra-
dient steps with a global batch size of 512 samples
and a context length of 1024 tokens, processing
approximately 157 billion tokens, which is con-
sistent with similar works (Liu et al., 2023; Dao
et al., 2022). For our evaluation setup, we evalu-
ate the performance of the models on a range of
language tasks, including ARC-Easy (Yadav et al.,
2019), ARC-Challenge (Yadav et al., 2019), Hel-
laswag (Zellers et al., 2019), LAMBADA (Paperno
et al., 2016), and GLUE (Wang et al., 2018). Ad-
ditional details about our training and evaluation
setups are provided in Appendix A.

4.1 Weight Quantization

The validation loss curves of applying per-tensor
and per-channel quantization to weights with 4 and
8 bits are presented in Figure 4 (down). We observe
that per-channel weight quantization with 8 bits
outperforms the floating-point baseline since the
beginning of training in terms of validation loss,
while per-tensor weight quantization with 8 bits
shows competitive performance. When quantizing
to 4 bits, there is a substantial difference between
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Figure 4: Comparison of different Weight Quantiza-
tion schemes. (Down) Validation loss across training it-
erations for 4-bit and 8-bit quantization, both per-tensor
and per-channel, alongside the baseline. (Top) PFew-
shot accuracy on downstream tasks for the correspond-
ing quantization approaches, demonstrating the efficacy
of 8-bit per-channel weight quantization.

the different granularities, with per-channel weight
quantization significantly outperforming per-tensor
quantization, as previously discussed in § 3.2.

We also evaluate the downstream task perfor-
mance of the quantized pre-trained models in Fig-
ure 4 (top). We observe that 8-bit weight quanti-
zation outperforms 4-bit and achieves competitive
performance compared to the floating point base-
line, independently of the granularity used. Once
again, per-channel weight quantization with 8 bits
achieves the best performance among the tested
quantization schemes. Overall, we observe similar
findings when comparing the performance of the
different methods during the pre-training and down-
stream phases. Despite the success in quantizing
weights to 8 bits from scratch, we note that only per-
forming 8-bit quantization post-training also works
well, as shown in Appendix C (Table 10). However,
when it comes to 4-bit quantization, applying quan-
tization from scratch leads to significantly better
performance.

We note a pronounced drop in validation loss
at the end of training with the 4-bit weight quan-
tization schemes, as seen in the final training it-
erations in Figure 4 (down). We hypothesize that
this is related to reducing the learning rate below
1e − 6 in the final steps of training in our setup.
However, this is not observed in all the schemes.
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Figure 5: Sharpness comparison between baseline
model and 4-bit weight quantization. (Top) m-
sharpness. (Down) Loss surfaces.

Nagel et al. (2022) suggested that the oscillations
in weights originated from performing quantiza-
tion with STE during training may result in weight
movements around decision thresholds. Hence, in
our use case, we hypothesize that the drop in valida-
tion loss stems from the presence of sharp minima
when quantizing weights to lower bit-widths and
that the lower learning rate regime at the end of
training helps convergence to minima with lower
loss.

To further investigate this, we compare the sharp-
ness of the different models at the end of pre-
training using m-sharpness (Foret et al., 2021) with
varying radii in Figure 5 (down). We observe that
all quantized models converge to sharper minima
compared to the floating-point, unquantized base-
line. Moreover, there is a direct relation between
the sharpness of each quantized model and the rel-
ative drop in validation loss observed in Figure 4
(down). Specifically, per-tensor weight quantiza-
tion with 4 bits shows the highest sharpness and
also the highest drop in validation loss. This cor-
relation is also observed on a smaller scale for the
per-tensor weight quantization model to 4 bits and
the per-tensor weight quantization model to 8 bits.
To visualize the loss surfaces, we employ the vi-
sualization method introduced by Li et al. (2018).
The loss surfaces of the baseline and the per-tensor
weight quantization model to 4-bits are shown in
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Figure 5 (right), further illustrating the impact that
quantization during pre-training has on the sharp-
ness of the final pre-trained model.

4.2 Activation Quantization
We present the validation loss when quantizing acti-
vations during pre-training in Figure 7 (down). We
note that quantizing activations to 4 bits is more
challenging than training with 4-bit weights, as no-
ticed by previous work (Xiao et al., 2023) and as
seen by the divergence behavior of per-token and
per-tensor activation quantization. On the other
hand, quantizing activations to 8 bits works well,
especially if performed per-token, which achieves
lower validation loss than the floating-point base-
line. The performance of downstream tasks of the
baseline and quantized models is presented in Fig-
ure 7 (top). We notice a similar performance trend
across the models, with 8-bit per-token activation
reaching competitive performance with the base-
line model.

To investigate 4-bit activation quantization fur-
ther, we also tried applying an asymmetric scheme.
The intuition is that, while most activations exhibit
symmetry around zero, this is not the case for acti-
vation after GELU activation functions (Hendrycks
and Gimpel, 2016). Hence, having an asymmet-
ric scheme can lead to a better utilization of the
available bits for representation. However, we ob-
serve that while the asymmetric scheme provides
an improvement over 4-bit per-token symmetric
quantization, the model still diverges. We analyze
the activation distributions of the output projection
layer within the attention block of layer 7 in Fig-
ure 6. We see that outliers predominantly reside
within specific channels and persistently affect the
same channels throughout training. Given our use
of per-tensor and per-token quantization for activa-
tions, it is evident that such outliers can influence
all tokens, given their consistent pattern across the
channel dimension.

Since activation outliers are mostly predominant
in particular channels during training, we explore
the efficacy of per-channel 4-bit activation quantiza-
tion in Figure 8 (left). We observe that this variant
does converge, even though it fails to be competi-
tive with the floating-point baseline. Such degra-
dation in validation loss can be attributed to the
presence of massive outlier activations in specific
layers. Despite being important for the model’s per-
formance (Sun et al., 2024), these big activations
pose a challenge for both per-token and per-channel

quantization. An example of these is presented in
Figure 8 (right), showing the presence of large acti-
vations in the FC2 layer in the final attention block.

4.3 Gradient Quantization

We perform gradient quantization and present the
validation losses obtained during pre-training in
Figure 9 (down). We observe that, with 4-bit gra-
dient quantization, training becomes highly un-
stable or completely fails to converge. With 8
bits, only per-token quantization converges despite
showing worse performance compared to our base-
line model. The observations are similar when
measuring the performance of the different models
on downstream tasks, as shown in Figure 9 (top).

As previously discussed in §3.1, we quantize the
output gradients only for the weight updates, avoid-
ing the instability in training that can result from
propagating quantization errors when quantizing
activation gradients. This is illustrated in Figure 10
(top), where quantizing activation gradients in the
initial training stages leads to an explosion in the
validation loss, followed by divergence. Moreover,
we observe an increase in the L2 norm between
the floating-point gradients and the quantized coun-
terparts when quantizing activation gradients com-
pared to weight gradients.

To further analyze the subpar performance of
8-bit per-token gradient quantization, even when
only applied to weight gradients, we analyze the
gradients for the QKV projection at the first layer of
the model early on in training in Figure 10 (down).
We observe that gradients are mostly sparse during
training and are prone to induce high quantization
errors, rendering instabilities.

4.4 Optimizer States Quantization

We quantize optimizer states, particularly the
first and second moments in the Adam optimizer.
Specifically, the quantized values of each state are
stored until the next training iteration, which are
then dequantized and used for Adam’s update. To
better assess the effect of quantizing each state, we
quantize them separately and individually. The val-
idation losses when quantizing Adam’s first state
are presented in Figure 11 (down). We observe
that per-channel quantization to 8 bits works well,
achieving performance similar to that of the base-
line model. Notably, only per-tensor quantization
to 4 bits failed to converge out of all tested configu-
rations. Similar findings are found when evaluating
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Figure 6: Training progression of activation distributions across selected iterations, showing persistent channel-
specific outliers
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Figure 7: Pre-training Activation Quantization effects:
(Down) Validation loss curves for various quantization
schemes; (Top) Few-shot accuracy on downstream tasks,
showing 8-bit quantization closely aligns with baseline
performance.
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the downstream performance of the different quan-
tization schemes in Figure 11 (right).

The results of quantizing Adam’s second state
are presented in Figure 12 (left). We observe that
the quantized model failed to converge smoothly
throughout training, even when applying per-
channel quantization with 8 bits. This can be ex-

plained by the usage of a linear symmetric quan-
tization function around zero in our scheme. This
causes all small values to be set to zero after quan-
tization, hurting performance, as presented in Fig-
ure 12 (right). Given that the second state plays a
pivotal role in the denominator of Adam’s update,
such clustering to zero leads to excessively large
weight updates, causing training to diverge from
the onset, as observed in Figure 12 (left).

4.5 Multiple Components Quantization

As our last studied components, we trained models
using 8-bit quantization for weights, activations,
and gradients, as well as isolating quantization
to only weights and activations with per-channel
granularity for weights and per-token granularity
for activations and gradients. Our findings, as de-
picted in Figure 13, demonstrate that quantizing
both weights and activations to 8-bit allows per-
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Figure 9: Gradient Quantization. (Down) Validation
loss showing non-convergence for 4-bit and 8-bit per-
tensor quantization. (Top) Few-shot accuracy on down-
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baseline performance.
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formance to closely align with the baseline model.
However, extending quantization to include gradi-
ents results in a notable decrease in performance.
This observation is consistent with earlier results
from our independent quantization of gradients,
highlighting the significant challenges this intro-
duces.
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Histogram showing the concentration of quantized val-
ues in the zero bin, which contributes to instability in
weight updates.
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Figure 13: (Down) Validation loss across training itera-
tions for weight, activation, and gradient quantization
together; (Top) Few-shot accuracy on downstream tasks.

5 Conclusion

This study presents an extensive analysis of the
impact of quantizing specific Transformer compo-
nents in 4 and 8 bits during pre-training, in con-
trast to concurrent work that focuses on individual
methods without comprehensive ablations (Xi et al.,
2024a). Our study reveals that quantizing weights
to 8 bits from the beginning of pre-training is gen-
erally successful. However, 4-bit weight quanti-
zation can significantly affect model convergence
due to a sharper loss landscape. We also found that
carefully managing activation outliers is crucial
to avoid performance drops with lower-precision
quantization. Additionally, we explain the sensitive
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nature of gradient quantization and its potential to
fail at lower bit-widths. We observed that while the
first-order moments of the Adam optimizer can be
effectively quantized to 4 bits, the second-order mo-
ments pose a greater challenge even for 8-bit quan-
tization. Overall, our work establishes an important
foundation for future developments in quantization
approaches tailored to Transformers, opening the
door to efficiently train large-scale models from
scratch for improved accessibility.

Limitation

We acknowledge the limitations of our work:

• We employed linear quantization for our ex-
periments. While this approach is widely used
and allows for a controlled study, it may not
capture the full potential of more sophisticated
quantization methods.

• Due to the cost of pre-training and the number
of experiments, we limited our study to GPT-2
small, and our findings may not generalize to
larger models.

• The efficiency gains discussed are estimated
using profiling data, and implementing these
improvements in practice is challenging due
to the complexity of kernel optimizations.
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A Experimental Setup

A.1 Model and Training Configuration
Our experiments leverage the computational en-
hancements of the FlashAttention library (Dao
et al., 2022), utilizing its GPT-2 implementation
within the HuggingFace Trainer framework 1 for
our training processes.

Training was conducted on the OpenWebText
corpus (Gokaslan and Cohen, 2019), adopting a set
of training configurations similar to (Dao et al.,

1https://huggingface.co/docs/transformers/en/
main_classes/trainer
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2022) and nanoGPT 2, without hyperparameter
tuning due to computational constraints. We use
AdamW optimizer with a learning rate of 6e− 4,
combined with a cosine learning rate scheduler set
to a half cycle. We adopt mixed precision training
in bfloat16. The experiments are conducted with
a fixed batch size of 512, employing gradient ac-
cumulation as necessary to accommodate the com-
putational constraints of our setup across 4xA100
80G GPUs. This training configuration remains
consistent across all experiments, culminating in a
training duration averaging 4.3 days for completion
of 300k steps.

A.2 Data and Evaluation Metrics

The OpenWebText corpus was randomly split into
training and validation sets, with 0.5% of the data
reserved for validation. Following the methodology
of Radford et al. (2019), the performance of our pre-
trained models was evaluated on several benchmark
datasets. These evaluations focused on perplexity
measurements on well-known datasets including
WikiText (Merity et al., 2016), PTB (Marcus et al.,
1993), and 1BW (Chelba et al., 2014). Our models
were further evaluated using a range of downstream
tasks:

• GLUE (Wang et al., 2018): A collection of
natural language understanding tasks includ-
ing question answering, sentiment analysis,
and textual entailment, designed to bench-
mark the generalization capabilities of models
across a diverse range of linguistic challenges.

• ARC (Yadav et al., 2019): Comprising
the ARC-Easy and ARC-Challenge, these
datasets test the model’s reasoning abil-
ity through science-based question answer-
ing. ARC-Easy contains simpler questions,
while ARC-Challenge includes more complex
queries demanding deeper reasoning.

• Hellaswag (Zellers et al., 2019): This dataset
challenges models to predict the most plau-
sible continuation of a narrative from a large
corpus of everyday contexts and movie scripts,
testing the commonsense reasoning ability of
the models.

• LAMBADA (Gokaslan and Cohen, 2019):
Evaluates the model’s capability to predict the

2https://github.com/karpathy/nanoGPT

final word of a textual passage, focusing on
the contextual understanding of the language.

For evaluation on downstream tasks, we adopted
a few-shot approach, utilizing a 5-shot prompting
method with greedy decoding and we report the
average and variance of accuracy over 5 different
seeds. Each prompt was structured with a task
instruction followed by the five examples of train-
ing data and we computed accuracy on the valida-
tion set. We implemented our few-shot evaluation
protocol following the guidelines provided by the
lm_evaluation_harness library 3. For each config-
uration reported in the tables, the average GLUE
score is computed first by taking the mean across
all GLUE tasks. Subsequently, an overall average
is calculated by averaging this GLUE score with
the scores from ARC Easy, ARC Challenge, Hel-
laswag, and LAMBADA tasks.

A.3 Comparison of Baseline and Pre-trained
Model

Table 1: Comparison of baseline and pre-trained models:
the latter trained for at least twice the duration.

WikiText103 WikiText2 PTB 1BW

Baseline 39.94 34.32 35.13 44.03
Pre-trained 29.17 24.67 35.86 45.87

To establish a solid baseline for our experiments,
we benchmark our trained model against the pre-
trained GPT-2 weights provided by OpenAI across
several downstream tasks. The comparison, de-
tailed in Table 1, reveals that our model achieves
results closely aligned with the original, validating
the efficacy of our training approach. In the fol-
lowing sections, we will delve into the individual
components of the model, discussing the impact
and outcomes of our quantization experiments on
each.

B Memory Analysis

In this section, we explore the memory consump-
tion patterns of various components within GPT-2
models during training using the PyTorch Mem-
ory Profiler. This profiling tool allows for precise
monitoring of memory usage throughout the life-
cycle of a model’s operation, particularly during
the forward and backward passes and during op-
timization steps. "Peak memory" in this context

3https://github.com/zphang/lm_evaluation_
harness
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Figure 14: Distribution of peak memory usage across different model sizes (GPT-2 Small, Medium, and Large) for
a constant context length of 1024, with varying batch sizes. This figure demonstrates how memory dedicated to
activations increases as batch size increases, highlighting the impact of batch size on memory allocation dynamics
in large-scale models.
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Figure 15: Peak memory usage profile for different sequence lengths while maintaining a constant batch size of 4,
across different model sizes (GPT-2 Small, Medium, and Large). This figure illustrates the shift in peak memory
usage from gradients to activations as sequence length increases and the significant impact of sequence length on
memory dynamics during training.

refers to the maximum memory usage observed at
any point in these stages, providing insights into
how different model configurations impact overall
memory requirements. We profiled all attention
blocks as well as the LM head of the Transformer
model.

Figure 14 shows how memory usage changes
with different batch sizes for a fixed context length
of 1024 across various model sizes. Notably, as
the batch size increases, the memory allocated for
activations becomes more dominant, especially in
larger models. This trend is primarily due to the
need to store activations for the computation of gra-
dients during the backward pass, which increases
with larger batch sizes.

Figure 15 examines the memory usage across
various sequence lengths while keeping the batch
size constant at 4. When both batch size and se-
quence length are small, peak memory typically oc-
curs towards the end of the backward propagation
phase. At this stage, memory includes the parame-

ters, optimizer states, gradients from all layers, and
activations from the initial layers. However, as the
sequence length and batch size increase, peak mem-
ory usage shifts to the beginning of the backward
propagation. At this point, the memory comprises
parameters, optimizer states, all activations, and no-
tably the output gradient of the final layers, which
matches the size of the logits (proportional to batch
size * sequence length * vocabulary size).

In conclusion, the analysis reveals that when a
model can fit within the GPU memory, the ma-
jority of the memory at peak times is consumed
by activations, especially when working with suf-
ficiently large batch sizes and sequence lengths.
Under these conditions, gradients do not contribute
to peak memory usage. Consequently, quantizing
gradients will not lead to significant memory sav-
ings.
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Table 2: Weight Quantization: Evaluation of perplexity across multiple datasets.

#bit granularity WikiText103 WikiText2 PTB 1BW

baseline 39.94 34.32 35.13 44.03

4 bit
per-tensor 55.50 46.70 52.38 59.14

per-channel 56.43 47.32 38.18 46.30

8 bit
per-tensor 48.52 40.01 37.02 45.04

per-channel 42.43 35.94 34.81 43.47

Table 3: Activation Quantization: Evaluation of perplexity across multiple datasets.

#bit granularity WikiText103 WikiText2 PTB 1BW

baseline 39.94 34.32 35.13 44.03

4 bit
per-tensor 418.63 264.07 261.64 310.43
per-token 69.82 54.53 56.58 72.06

8 bit
per-tensor 64.77 51.06 37.96 45.26
per-token 42.86 37.17 35.43 43.38

Table 4: Gradient Quantization: Evaluation of perplexity across multiple datasets.

#bit granularity WikiText103 WikiText2 PTB 1BW

baseline 39.94 34.32 35.13 44.03

4 bit
per-tensor 17990.70 15560.03 6632.20 6393.07
per-token 128.71 92.74 106.73 110.14

8 bit
per-tensor 123.08 87.81 104.90 111.51
per-token 59.24 47.50 42.28 51.89

Table 5: Adam Optimizer’s First Moments: Evaluation of perplexity across multiple datasets.

#bit granularity WikiText103 WikiText2 PTB 1BW

baseline 39.94 34.32 35.13 44.03

4 bit
per-tensor 78.78 62.08 66.50 85.60

per-channel 43.02 36.70 38.57 47.90

8 bit
per-tensor 42.93 36.91 39.72 46.63

per-channel 39.84 33.78 35.67 44.29

Table 6: Weight Quantization: Few-shot accuracy on downstream tasks.

GLUE Score ARC

# of bit granularity MNLI MRPC RTE QNLI SST WNLI Easy Challenge Hellaswag LAMBADA Average

baseline 33.3±0.4 61.7±1.3 49.7±2.6 49.2±0.3 53.8±1.9 46.8±3.9 45.7±0.3 22.5±1.1 28.9±0.1 36.17 36.46

4 bit
per-tensor 32.1±0.2 46.1±1.2 49.0±3.1 49.1±0.2 54.1±1.6 35.5±4.2 39.9±0.7 19.3±0.5 27.2±0.1 27.03 31.54

per-channel 33.3±0.1 53.1±2.2 49.7±2.8 49.9±0.5 54.6±0.8 45.9±4.6 44.6±0.9 22.5±0.7 28.7±0.1 34.21 35.55

8 bit
per-tensor 33.2±0.3 59.1±1.3 49.7±2.6 49.1±0.1 56.9±2.6 41.1±3.5 45.5±0.8 20.4±1.4 28.7±0.2 34.81 35.53

per-channel 34.9±0.3 62.7±1.5 53.2±1.3 49.5±0.1 56.9±1.1 53.5±3.6 44.6±0.5 21.1±0.9 29.1±0.2 36.43 36.59

Table 7: Activation Quantization: Few-shot accuracy on downstream tasks.

GLUE Score ARC

# of bit granularity MNLI MRPC RTE QNLI SST WNLI Easy Challenge Hellaswag LAMBADA Average

baseline 33.3±0.4 61.7±1.3 49.7±2.6 49.2±0.3 53.8±1.9 46.8±3.9 45.7±0.3 22.5±1.1 28.9±0.1 36.17 36.46

4 bit
per-tensor 34.6±0.2 31.8±0.2 50.5±2.0 49.5±0.0 50.2±1.0 52.1±2.7 30.4±1.3 20.6±2.6 26.1±0.1 1.53 24.67
per-token 34.2±0.4 58.3±1.4 51.2±2.3 49.3±0.4 50.8±0.3 52.4±3.1 37.1±1.6 21.0±1.8 26.7±0.1 18.88 30.62

per-token asymmetric 34.3±0.2 54.1±2.0 50.7±2.9 49.1±0.5 53.0±1.4 55.2±4.6 38.6±0.9 18.9±0.3 26.9±0.2 22.30 31.22

8 bit
per-tensor 32.7±0.2 48.3±1.4 47.1±2.1 49.4±0.3 54.6±1.4 39.7±3.0 44.1±0.8 22.3±1.5 28.8±0.1 34.33 34.97
per-token 33.8±0.4 56.2±0.7 50.5±3.4 49.8±0.3 56.4±1.5 54.1±3.0 44.5±0.6 20.0±1.7 29.3±0.1 36.46 36.08
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Table 8: Gradient Quantization: Few-shot accuracy on downstream tasks.

GLUE Score ARC

# of bit granularity MNLI MRPC RTE QNLI SST WNLI Easy Challenge Hellaswag LAMBADA Average

baseline 33.3±0.4 61.7±1.3 49.7±2.6 49.2±0.3 53.8±1.9 46.8±3.9 45.7±0.3 22.5±1.1 28.9±0.1 36.17 36.46

4 bit per-token 33.4±0.4 36.6±0.6 47.4±2.6 49.5±0.0 50.5±0.8 58.3±2.6 33.9±1.0 20.2±1.0 26.1±0.1 19.06 29.04

8 bit
per-tensor 34.2±0.6 32.7±0.6 50.3±1.2 49.4±0.0 50.5±0.7 56.3±2.0 32.1±0.7 21.9±1.0 26.3±0.1 18.22 28.81
per-token 33.2±0.1 42.6±2.4 51.6±1.8 49.5±0.5 53.0±2.0 22.3±3.1 45.0±1.0 19.5±1.3 28.5±0.1 33.81 33.77

Table 9: Adam Optimizer’s First-Order Moments Quantization: Few-shot accuracy on downstream tasks.

GLUE Score ARC

# of bit granularity MNLI MRPC RTE QNLI SST WNLI Easy Challenge Hellaswag LAMBADA Average

baseline 33.3±0.4 61.7±1.3 49.7±2.6 49.2±0.3 53.8±1.9 46.8±3.9 45.7±0.3 22.5±1.1 28.9±0.1 36.17 36.46

4 bit
per-tensor 32.2±0.3 64.9±1.6 47.7±0.6 50.2±0.5 51.6±1.7 38.9±1.7 35.1±1.6 20.1±0.8 26.5±0.2 20.12 29.87

per-column 33.8±0.1 66.6±1.2 50.0±3.0 49.5±0.0 53.5±0.9 50.4±2.7 44.6±1.6 20.6±0.9 28.3±0.1 33.15 35.44

8 bit
per-tensor 33.7±0.4 59.2±2.5 51.4±2.7 50.1±0.6 56.1±1.4 51.8±3.3 44.4±0.7 18.5±0.6 28.7±0.1 32.91 34.97

per-column 33.3±0.2 67.1±1.0 50.8±1.5 49.5±0.0 55.3±1.1 48.2±2.1 43.8±1.7 21.7±1.3 28.9±0.1 36.52 36.34

C Quantization Results

This appendix presents the granular results from
our experiments on weight, activation, gradient,
and optimizer states quantization. The tables detail
the performance metrics, like perplexity and accu-
racy, under various quantization settings. Finally,
we present post-training quantization results of our
baseline model in Tables 10 and 11.
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Table 10: Post-training weight quantization results.

#bit granularity
WikiText103 WikiText2 PTB 1BW

(ppl) (ppl) (ppl) (ppl)

baseline 39.94 34.32 35.13 44.03

4 bit
per-tensor 16196.10 17256.89 17471.35 13761.79
per-column 98.39 75.56 81.28 94.40

8 bit
per-tensor 46.45 39.23 41.18 52.15
per-column 40.15 34.45 35.23 44.11

Table 11: Post-training activation quantization results.

#bit granularity
WikiText103 WikiText2 PTB 1BW

(ppl) (ppl) (ppl) (ppl)

baseline 39.94 34.32 35.13 44.03

4 bit
per-tensor - - - -
per-token 14022.78 17933.29 13392.28 8763.06

8 bit
per-tensor 70.07 58.45 64.99 149.35
per-token 40.09 34.44 35.43 44.37
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