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Abstract

Math word problems are critical K-8 educa-
tional tools, but writing them is time consuming
and requires extensive expertise. To be educa-
tional, problems must be solvable, have accu-
rate answers, and, most importantly, be educa-
tionally appropriate. We propose that language
models have potential to support K-8 math edu-
cation by automatically generating word prob-
lems. However, evaluating educational appro-
priateness is hard to quantify. We fill this gap
by having teachers evaluate problems gener-
ated by LLMs, who find existing models and
data often fail to be educationally appropriate.
We then explore automatically generating edu-
cational word problems, ultimately using our
expert annotations to finetune a 70B language
model. Our model, MATHWELL, is the first
K-8 word problem generator targeted at educa-
tional appropriateness. Further expert studies
find MATHWELL generates problems far more
solvable, accurate, and appropriate than public
models. MATHWELL also matches GPT-4’s
problem quality while attaining more appropri-
ate reading levels for K-8 students and avoiding
generating harmful questions.1

1 Introduction

Math word problems (MWP) are natural language
math questions paired with numerical answers and
are critical tools for K-12 math education (Daroczy
et al., 2015; Pearce et al., 2013; Schwartz, 2023;
Verschaffel et al., 2020). Traditionally, teachers
hand write MWPs customized to their students’ in-
terests, which has been shown to improve students’
learning, test performance, and general interest in
math (Bernacki and Walkington, 2018; Walkington,
2013; Walkington and Bernacki, 2019). However,
teachers’ time pressure is often so severe that they
must use boilerplate question sets. We propose that
large language models (LLMs) are poised to en-
hance math education by generating customized,

1https://github.com/bryanchrist/MATHWELL

Figure 1: Generating educational math word problems
with language models. To be educational, problems
must simultaneously be solvable, accurate, and educa-
tionally appropriate.

diverse MWPs for students. Further, recent ad-
vances in math reasoning capabilities in LLMs
may imply an approach towards educational im-
pacts. However, it remains unknown whether math
reasoning capabilities (Wei et al., 2023) translate
to generating educational MWPs.

We aim to explore and enhance LLMs’ capacity
to generate educational MWPs. There have been
many works using traditional NLP methods to gen-
erate MWPs (Jiao et al., 2023; Koncel-Kedziorski
et al., 2016; Niyarepola et al., 2022; Qin et al.,
2023, 2024; Wang et al., 2021; Wu et al., 2022;
Zhou and Huang, 2019; Zhou et al., 2023; Zong
and Krishnamachari, 2023). However, they all rely
on input reference MWPs or equations, ultimately
largely rephrasing training data. To use them, teach-
ers would need to manually curate problem sets,
which is time consuming. And being traditional
approaches, these methods are also not prompt-
able, limiting personalization and MWP diversity.
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Dataset Example Educational Appropriateness

GSM8K Henry took 9 pills a day for 14 days. Of these 9 pills, 4 pills
cost $1.50 each, and the other pills each cost $5.50 more. How
much did he spend in total on the pills?

✗ This question mentions tak-
ing pills, which is not appropri-
ate for young learners.

EGSM
(Ours)

Barbie has 100 pink outfits. She has 20 more blue outfits than
pink outfits. She has 50% more green outfits than blue outfits.
How many outfits does Barbie have in total?

✓

Table 1: Example from both GSM8K and EGSM (ours). EGSM is the only teacher validated grade school math
dataset, while existing datasets contain problems inappropriate for young learners.

Meanwhile, math reasoning in LLMs has been de-
veloping rapidly (Wei et al., 2023; Yao et al., 2023).
However, to be useful in education demands strict,
domain-specific criteria. Two recent works explore
generating MWPs with LLMs (Niyarepola et al.,
2022; Zong and Krishnamachari, 2023); however,
they generate problems without answers.

To evaluate the educational quality of LLMs
for math, we recruit real math teachers to assess
MWPs generated by SOTA LLMs. As part of a
large human evaluation study, these domain experts
spend almost 100 hours evaluating three criteria
that make MWPs educational: Solvability, Accu-
racy, and, most importantly, Educational Appropri-
ateness. The nuance of appropriateness motivates
the need for human evaluations, as it takes years
of experience for teachers to develop this sense.
Through experiments evaluating existing math rea-
soning datasets and MWPs generated from five
existing LLMs, both public and private models, the
teachers identify clear failings in educational ap-
propriateness, especially from open models.This is
somewhat unsurprising, as common math reason-
ing datasets, like GSM8K (Cobbe et al., 2021), are
crowd-sourced and not intentionally educational.
However, this may imply we should temper our
expectations for direct use of LLMs for elementary
math education.

Given a lack of appropriateness in existing
datasets’ MWPs, we generate the first teacher anno-
tated, educationally appropriate MWP dataset and
use it to finetune a new 70B LLM specifically for
educational MWP generation. Experts find that our
open model, MATHWELL, matches GPT-4 in ed-
ucational MWP generation and is 40% better than
the next best open model, generating MWPs that
are simultaneously solvable, accurate, and appro-
priate 74% of the time. This performance demon-
strates the value of domain expert involvement in

developing LLMs for education. We also find that
MATHWELL can be prompted to discuss topics
customized to student interests (e.g., Superman)
and incorporate specific math operations, outputs
MWPs with more appropriate reading levels, and
produces fewer harmful errors than other models.
We release our entire human evaluation, including
over 5,000 MWPs with gold labels for key educa-
tional criteria, along with MATHWELL’s training
code and weights.

Our key contributions are as follows:

• We find existing math datasets are not suffi-
cient to enhance the educational quality of
LLM-generated MWPs.

• We collect over 5,000 annotations from real
teachers, which we filter to create a new,
large synthetic training dataset for educational
MWP generation, Educational Grade School
Math (EGSM).

• We use EGSM to finetune a performant LLM
for educational MWP generation, which we
release alongside our entire human study.

2 Related Work

Math QA Datasets There are many datasets for
training and evaluating LLMs on grade school
math reasoning. Several popular datasets include
GSM8K (Cobbe et al., 2021), NumGLUE (Mishra
et al., 2022), GSM-Hard (Gao et al., 2023), AS-
DIV (Miao et al., 2020) and SVAMP (Patel et al.,
2021). Recent work has also developed new grade
school math evaluation datasets or large training
datasets with different solution rationales for exist-
ing datasets, particularly GSM8K, including both
human written (Kim et al., 2023; Mishra et al.,
2023) and synthetic (Mitra et al., 2024; Shi et al.,
2023; Toshniwal et al., 2024; Yu et al., 2023; Yuan
et al., 2023; Yue et al., 2023) data.
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However, because existing datasets are designed
primarily for training and evaluating grade school
math reasoning, they are not aligned with training
educational grade school MWP generators. Grade
school MWP training data for educationally appro-
priate generators must contain high-quality gram-
mar, be written at an appropriate mathematical dif-
ficulty and reading level for K-8 students, include
questions similar to those students would encounter
in the classroom, and be comprised of questions
that are appropriate for an education setting. Fur-
ther, to encourage effective solution generation, we
use Program of Thought (PoT) solutions written as
Python functions (see Appendix C.7 for details), as
PoT outperforms Chain of Thought (CoT; Wei et al.
2023) for open-ended questions, which are the type
of problems we seek to generate (Azerbayev et al.,
2023; Gao et al., 2023; Yue et al., 2023).

We consider high-quality grammar and similar-
ity to word problems students encounter in the
classroom baseline criteria any potentially rele-
vant training data must possess. Existing datasets
that contain these baseline characteristics and are
aligned with one or more of the other four criteria
are GSM-Hard (Gao et al., 2023), GSM8K (Cobbe
et al., 2021), MathInstruct GSM8K (Yue et al.,
2023), ASDIV (Miao et al., 2020), and SVAMP
(Patel et al., 2021), although none of these datasets
contain all four criteria.

MWP Generation Other work explores auto-
matically generating MWPs but requires reference
problems or equations as model input and, there-
fore, constrains the diversity and range of possible
outputs and largely rephrases training data. Closest
to our work is Zong and Krishnamachari (2023),
who assess GPT-3’s ability to generate MWPs.
Their method is reference-dependent, however, as
they use a reference problem to guide generation.
Further, they only generate MWPs, not solutions.

Most other works use LLMs or deep neural net-
works to generate MWPs based on pre-specified
equations, provide additional MWPs based on ref-
erence problems, or re-write existing MWPS (Jiao
et al., 2023; Koncel-Kedziorski et al., 2016; Nor-
berg et al., 2023; Niyarepola et al., 2022; Qin et al.,
2023, 2024; Wang et al., 2021; Wu et al., 2022;
Zhou and Huang, 2019; Zhou et al., 2023), each
of which restricts the range of possible outputs.
These approaches require additional input from
users, which is infeasible for teachers or students
who wish to create customized MWPs, making

them incomparable to our work. To address this
issue, we generate MWP question/answer pairs si-
multaneously without a reference problem or equa-
tion, which we call reference-free generation. To
the best of our knowledge, our study is the most
comprehensive in exploring the educational appro-
priateness of generated MWPs alongside teachers.

3 Methods

Math word problems (MWPs) are natural language
questions paired with numerical answers. We study
generating these pairs with LLMs, prompting them
to write new problems without augmenting hand-
picked equations or reference problems. We eval-
uate these problems based on both the human and
automatic evaluation criteria defined below.

Human Evaluation Criteria For model-
generated MWPs to be educational, they must
meet three criteria: 1) Solvability, where questions
are possible to solve and have one correct answer.
2) Accuracy, where generated answers must be
correct. 3) Appropriateness, where MWPs should
be questions teachers would feel comfortable
giving to K-8 students. Generally, appropriate
MWPs should make sense, avoid grammatical
errors or conflicting information, and be about
topics and include mathematical operations
appropriate for K-8 students in a school setting.
Because this is hard to define, we emphasize real
teacher evaluations of generated MWPs. Ideal
MWPs are accurate, solvable, and appropriate,
thereby meeting all criteria. We refer to such
problems as MaC.

Automatic Evaluation Criteria Reading level
automatically assesses if MWPs are written appro-
priately. Like Norberg et al. (2023), we use Flesch-
Kincaid Grade Level (FKGL) to evaluate reading
level. FKGL is a function of the total words, sen-
tences, and syllables in a text, and the score repre-
sents a U.S. grade level (Aggarwal; Flesch, 1948;
Kincaid et al., 1975). Thus, a FKGL score above 8
for a MWP would be considered inappropriate for
an educational K-8 MWP generator. Lower reading
levels for MWPs are preferred because high read-
ing levels are known to harm student performance,
especially for students who are already struggling
(Walkington et al., 2018). Negative FKGL scores
are possible and denote text that is easy to read due
to having short words and sentences. We also cal-
culate each MWP’s average token length. Longer
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Figure 2: Llama-2 (70B) performance with 95% confidence intervals on our human evaluation metrics under
different prompting/training scenarios. FT is supervised finetuning.

token length can be a proxy for MWP complexity,
as longer questions tend to include more mathemat-
ical operations.

We follow prior works in using two automatic
metrics to compare the quality of our synthetic
MWPs to human-written MWPs: Perplexity (PPL)
and BERTScore (Jiao et al., 2023; Zhou et al.,
2023). Lower PPL implies better outputs and
we calculate PPL using Llama-2 (70B). To show
that PPL is not biased towards Llama-2 outputs,
we report GPT-2 PPL in Table 12, finding the
same trends in PPL discussed in the sections be-
low. We use BERTScore (Zhang et al., 2020) to
compute the semantic similarity of our synthetic
MWPs and compare it to existing datasets. A lower
BERTScore for synthetic MWPs relative to existing
datasets would imply they are less similar to each
other than human-written MWPs, while a higher
score would imply they are more similar. In Section
4, we also use BERTScore to compare our synthetic
MWPs to GSM8K to identify if they are similar
to human-written MWPs. We calculate GSM8K’s
within-dataset BERTScore as a reference to com-
pare each source against.

3.1 Evaluating Existing Datasets
We first aim to assess the degree to which existing
datasets can be used to prompt models to generate
educational K-8 MWPs. We focus our evaluation
on GSM8K (Cobbe et al., 2021) since it is pop-
ular and high quality. For each generation, we
randomly sample 8 MathInstruct GSM8K samples
(Yue et al., 2023)2 and use them to few-shot prompt
Llama-2 (70B) with a standard prompt asking the
model to generate a grade school MWP using PoT
to compute numerical answers (prompting details

2This dataset adds PoT solutions to GSM8K questions.

in Appendix A). We randomly sample 100 gener-
ations with executable PoT solutions and acquire
teacher annotations for solvability, accuracy, and
appropriateness (we discuss further annotation de-
tails below). The size of this evaluation sample
is consistent with the human evaluation samples
used in other MWP generator studies (Jiao et al.,
2023; Koncel-Kedziorski et al., 2016; Niyarepola
et al., 2022; Qin et al., 2024; Wu et al., 2022; Zhou
and Huang, 2019; Zhou et al., 2023; Zong and Kr-
ishnamachari, 2023). As shown in Figure 2 (red),
we find that existing data is ill-suited for prompt-
ing models to generate educational word problems,
with the worst performance being in appropriate-
ness where barely over 50% of generations are
appropriate, leading to only 35% of the generations
being labeled as MaC. This finding suggests that
educationally inappropriate samples such as the
one shown in Table 1 are prevalent in GSM8K.

3.2 Expert Annotation

To address the educational inappropriateness of
existing math datasets, we generate a high-
quality, educationally-appropriate dataset for train-
ing MWP generators. Broadly, we generate syn-
thetic data and evaluate it with teachers (see Figure
3 for our data generation process). To generate
this data, we first finetune Llama-2 (70B) (Touvron
et al., 2023) using the public MathInstruct GSM8K
dataset (Yue et al., 2023) and QLoRA (Dettmers
et al., 2023) (details in Appendix D). We next iden-
tify educationally appropriate GSM8K examples in
consultation with teachers and use them to prompt
our finetuned model to generate new grade school
MWPs. We then acquire teacher annotations for
solvability, accuracy, and appropriateness. All an-
notators were seasoned educators, with an average
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Dataset N PoT
Python

Function
Appropriate

Difficulty
Teacher

Annotated Length Reading Level ↓ BF1

GSM-Hard 1,319 ✓ ✓ ✗ ✗ 72.9 (25.6) 4.21 (2.43) 84.0
GSM8K 8,792 ✗ ✗ ✓ ✗ 67.0 (24.4) 4.24 (2.47) 84.5
MathInstruct GSM8K 6,403 ✓ ✗ ✓ ✗ 66.2 (23.9) 4.25 (2.48) 84.6
ASDIV 2,305 ✗ ✗ ✓ ✗ 45.1 (15.8) 3.56 (2.40) 85.5
SVAMP 1,000 ✗ ✗ ✓ ✗ 47.3 (11.7) 3.39 (2.07) 86.1
EGSM (Ours) 2,093 ✓ ✓ ✓ ✓ 57.2 (15.7) 2.50 (1.76) 85.2

Table 2: Characteristics of datasets with more than 1,000 examples that can be used to train reference-free grade
school MWP generators. N is the deduplicated number of questions, Length is average question length (in tokens),
readability is measured by Flesch-Kincaid grade level, and BF1 is BERTScore F1. Standard deviations, where
applicable, are in parentheses.

Figure 3: MATHWELL training and EGSM generation
process. SFT is supervised finetuning and MaC denotes
outputs that meet all criteria.

of 5.75 years of experience. They spent an aver-
age of 42 seconds per question, totaling 55.1 hours
of expert annotation. In total, teachers annotated
3,234 synthetic MWPs, with 998 being annotated
by two people and 232 annotated by three people.

Annotators agreed on solvability 84.6 ± 2.0% of
the time, accuracy 92.0 ± 1.5% of the time, appro-
priateness 74.6 ± 2.4% of the time, all three labels
66.3 ± 2.6% of the time, and MaC 76.1 ± 2.4%
of the time. The agreement rates for accuracy and
solvability are higher than reported in recent human
evaluation studies that analyze human preferences
in LLM outputs, and the agreement rates for appro-
priateness and MaC are on par with these studies
(Bai et al., 2022; Ouyang et al., 2022; Stiennon

et al., 2022; Ziegler et al., 2020). As a result, we
feel confident in the quality of our labels.

For handling disagreement, if the question was
reviewed by two annotators and they disagreed on
one of the criteria, we labeled the example as not
having the desired criteria. If the question was
reviewed by three annotators and there was a dis-
agreement on one of the criteria, we assigned the
label with the majority vote. Further details about
the annotation process and annotator directions are
in Appendix B.

3.3 Further Finetuning on High-quality
Outputs

Based on this annotation process, we identified
1,906 MWPs that are simultaneously solvable, ac-
curate, and appropriate, or meet all criteria (MaC).
As shown in Figure 2 (orange), the initial finetun-
ing and prompting using educationally appropriate
data improves model performance, especially for
appropriateness, but still less than 60% of gener-
ations meet all criteria. Therefore, to further im-
prove performance and validate the quality of our
synthetic data, we conduct additional finetuning
on these MaC outputs to create a model we call
MATHWELL. We compile MATHWELL’s MaC
outputs into a new dataset we call Educational
Grade School Math (EGSM).

In total, EGSM contains contains 2,093 MaC
question/answer pairs verified by teachers after the
first and second stage of finetuning. To support
research in automatically scoring model-generated
MWPs, we release all our annotated data. To the
best of our knowledge, this is the only teacher an-
notated MWP dataset (see Appendix B.5 for anno-
tated data details). As shown in Figure 2 (green
and blue), simply few-shot prompting with EGSM
outperforms initial finetuning on GSM8K and the
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additional finetuning on MaC outputs leads to fur-
ther improvements, showing the second stage of
finetuning is critical for educational alignment (see
Appendix C.1 for more details on this ablation).

EGSM Dataset Characteristics Table 2 shows
the advantages of EGSM over other datasets that
have grammatically-correct questions similar to
those students encounter in the classroom and are
PoT, have Python function solutions, are written at
an appropriate difficulty for K-8 students, and/or
are educationally appropriate. Critically, EGSM
is the only dataset annotated by teachers, ensuring
its questions are appropriate for students, which
Figure 2 shows leads to concrete improvements in
human evaluation criteria. Second, EGSM has the
lowest average reading level (evaluated by FKGL),
so the questions may be more appropriate for those
who struggle to read. Third, EGSM is the only
dataset with both Program of Thought (PoT) solu-
tions written as Python functions and questions that
are mathematically appropriate for K-8 students,
which we find critical for training reference-free
MWP generators (see Appendix C.7).

EGSM is similar to existing datasets on other
common evaluation metrics. While EGSM has a
shorter average token length than GSM8K (Cobbe
et al., 2021), its length is longer than ASDIV (Miao
et al., 2020) and SVAMP (Patel et al., 2021). This
suggests that EGSM’s MWP complexity, as re-
flected in average length, is similar to existing data.
EGSM’s BERTScore is close to those of existing
datasets, suggesting the MWPs are similar. Thus,
EGSM is similar to human-written data while being
more aligned with educational use.

4 Evaluating MATHWELL

Next, we thoroughly evaluate MATHWELL’s gen-
erated MWPs using both human and automatic
evaluations. We compare 250 randomly-selected
MATHWELL outputs to those of open and closed
source models. For closed-source models, we eval-
uate GPT-3.5 Turbo and GPT-4 Turbo. GPT-3.5
represents a closed-source model with similar ca-
pability to Llama-2 (70B) (Touvron et al., 2023),
while GPT-4 is a much more capable model (Ope-
nAI et al., 2024). For open-source models, we eval-
uate LLEMMA (34B) (Azerbayev et al., 2023) and
MAmmoTH (70B) (Yue et al., 2023), which have
similar capabilities to Llama-2 (70B) but are math

3We use a smaller sample size (382) to assess executable
code for GPT-4 due to the cost of querying its API.

specific. Llama-2 serves as a baseline to ensure
task-specific finetuning improves performance. We
prompt each model using examples from EGSM
and ask it to create a question/answer pair on a
random topic K-8 students are interested in (see
Appendix F for a full list of topics). Our 250 evalu-
ation sample for each model is roughly 2.5-5 times
larger than the human evaluation samples used in
other MWP generator studies (Jiao et al., 2023;
Koncel-Kedziorski et al., 2016; Niyarepola et al.,
2022; Qin et al., 2024; Wu et al., 2022; Zhou and
Huang, 2019; Zhou et al., 2023; Zong and Krishna-
machari, 2023).

4.1 Human Evaluation

MATHWELL Matches SOTA in Human Eval-
uation Criteria Teachers scored the 250 MWPs
from each model for solvability, accuracy, and ap-
propriateness (see examples in Appendix E and
additional annotation details in Appendix B). An-
notators also assessed topic specificity, or if the
MWP incorporates the specified topic. Table 3
shows MATHWELL performs best among open-
source models in all metrics, with a 19.9% higher
share of outputs that MaC, 19.9% higher share
that have executable code, and 43.4% higher share
that have executable code and MaC than the next
best open-source model. MATHWELL also out-
performs GPT-3.5 in human evaluation criteria and
matches 94.9% of GPT-4’s performance in MaC,
outperforming it in accuracy and appropriateness.

Although MATHWELL performs best in topic
specificity, the other models do well in this met-
ric, implying that LLMs can effectively customize
MWPs to student interests. Table 3 also highlights
that the open-source models lag significantly be-
hind GPT-4 in human evaluation criteria, but that
QLoRA finetuning on EGSM is enough to match
its performance. Lastly, Table 3 highlights that
open-source models have a large gap in the share of
question/answer pairs that contain executable code
relative to GPT-3.5, the best performing model in
this metric (see Appendix G for details on GPT-4’s
performance on this metric).

MATHWELL Generates High-quality, Complex
Questions MWPs involving multiplication, divi-
sion, fractions, and decimals are more complex
than those involving addition and subtraction, and
we aim to train a generator capable of creating
MWPs from each of these operations K-8 students
regularly encounter. In Table 4, we assess whether
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Model Solv. Acc. App. MaC Top. Spec. EC EC/MaC
A

PI GPT-4 Turbo 94.8 (1.41) 95.8 (1.31) 84.4 (2.36) 78.8 (2.59) 99.2 (0.56) 66.8 (2.41) 52.6 (1.73)
GPT-3.5 Turbo 88.0 (2.06) 89.5 (2.07) 75.5 (2.91) 62.8 (3.06) 98.8 (0.69) 97.5 (0.32) 61.3 (2.99)

Pu
bl

ic

LLEMMA 48.8 (3.17) 63.9 (4.37) 41.8 (4.48) 15.2 (2.28) 94.8 (1.41) 24.3 (0.70) 3.70 (0.55)
MAmmoTH 86.8 (2.15) 94.9 (1.49) 67.7 (3.18) 56.8 (3.14) 97.6 (0.97) 6.90 (0.36) 3.91 (0.22)
Llama-2 84.0 (2.32) 89.5 (2.12) 81.0 (2.72) 62.4 (3.07) 99.2 (0.56) 55.4 (0.98) 34.6 (1.70)
MATHWELL (Ours) 89.2 (1.97) 96.9 (1.17) 86.5 (2.29) 74.8* (2.75) 99.6 (0.40) 66.4* (1.00) 49.6* (1.83)

Table 3: Comparing LLMs for MWP generation. All metrics are averages over 250 generations per model for
human annotated criteria and over 2,000 for assessing the share of questions with executable code (EC).3 Solv.,
Acc., App., MaC, Top. Spec., and EC/MaC are solvability, accuracy, appropriateness, meets all criteria, topic
specificity, and the estimated share of questions that MaC and have executable code, respectively. Bold indicates
the best open-source performance in each metric and a * indicates the difference between the best open-source
performance and second open-source best performance is statistically significant at the p<.01 level. Standard errors
are in parentheses.

Solvable Questions MaC Questions

Model Add. Sub. Mult. Div. Frac. Dec. No Ops Add. Sub. Mult. Div. Frac. Dec. Total Ops

A
PI GPT-4 Turbo 53.2 44.7 61.6 25.3 0.80 4.64 1.27 54.3 45.2 59.9 25.4 1.02 3.05 1.89

GPT-3.5 Turbo 35.3 28.5 44.3 36.2 3.17 23.1 1.81 36.3 29.9 39.5 35.7 3.18 21.0 1.66

Pu
bl

ic

LLEMMA 34.4 27.0 33.6 20.5 6.56 15.6 15.6 36.8 39.5 31.6 15.8 2.63 13.2 1.39
MAmmoTH 39.6 37.8 43.8 19.4 3.69 10.6 2.30 43.0 42.2 40.8 16.9 4.93 9.86 1.58
Llama-2 57.6 58.6 22.9 14.3 8.10 11.4 4.76 59.6 60.3 24.4 12.8 5.77 8.97 1.72
MATHWELL (Ours) 69.5 69.1 24.7 10.3 5.38 7.62 1.35 71.1 70.6 24.6 8.56 4.81 7.49 1.87

Table 4: Characteristics of model-generated questions. Add., Sub., Mult., Div., Frac., Dec., No Ops, Total Ops, and
MaC are addition, subtraction, multiplication, division, fractions, decimals, no operations, total operations, and
meets all criteria, respectively. All columns are percentages except total ops, or the average number of distinct
operations per question.

Model Strange Too Hard Harmful Syntax No Ops

A
PI GPT-4 Turbo 55.3 13.2 13.2 10.5 7.89

GPT-3.5 Turbo 60.7 17.9 12.5 1.79 7.14

Pu
bl

ic

LLEMMA 41.1 24.7 6.85 1.37 26.0
MAmmoTH 77.9 7.79 5.19 2.60 6.49
Llama-2 65.1 4.65 4.65 2.33 23.3
MATHWELL 77.4 0.0 0.0 12.9 9.68

Table 5: Classification of appropriateness errors for
each model. See Figure 8 for directions presented to
annotators and Appendix E for inappropriate samples.

each model can generate MaC questions when us-
ing more complicated operations. Questions may
contain more than one operation. Solvable ques-
tions may require no math operation if they contain
the answer in the question (see Appendix E.6.3
for an example), so we also report the share of
questions containing no operations. To determine
if questions with complex operations are accurate
and appropriate, we compare the math operations
in solvable questions to those in MaC questions.
We also report the average number of distinct oper-
ations in MaC questions for each model, which is
another way to assess question complexity.

Table 4 shows that GPT-4 and MATHWELL
are the only models for which the share of MaC
questions for each operation is within two percent-
age points of that for solvable questions, show-
ing MATHWELL can generate MaC questions re-
gardless operation complexity. GPT-4 and MATH-
WELL are also the least likely to generate problems
that require no operations and have the highest av-
erage total operations, which also suggests MATH-
WELL generates high-quality, complex problems.
These findings suggest MATHWELL can effec-
tively generate MWPs that cover the full range of
problem types K-8 students encounter.

We do not prompt models for specific operations.
Under these conditions, MATHWELL generates
more problems containing addition and subtraction
relative to the other models. In turn, there is a
concern that MATHWELL’s performance in Table
3 could be due to it generating simple questions
for this experiment, which may be more likely to
MaC. To address this concern, we conduct two addi-
tional analyses reported in Appendix C: 1) logistic
regressions showing MATHWELL’s higher MaC
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relative to the other models except GPT-4 remains
statistically significant when controlling for math
operations and 2) a summary of accuracy by opera-
tion showing GPT-4 and MATHWELL are the only
models for which accuracy does not substantially
differ by operation and remains above 90% for each
operation. These results buttress our finding that
MATHWELL can generate MaC MWPs regardless
of operation and pinpoint the operations for which
each comparison model most commonly fail.

MATHWELL Makes Less Severe Appropriate-
ness Errors As shown in the annotator directions
in Figure 8, there are four primary reasons why a
question would be flagged as inappropriate: being
strange or unrealistic, being too difficult for a K-
8 student, containing inappropriate content for a
classroom setting, or having grammatical errors or
typos. A final reason why a question would be la-
beled as inappropriate is that it does not require any
mathematical operations to solve and, therefore,
is a reading comprehension question rather than a
MWP. See Appendix E for examples of each. Of
these errors, questions that contain inappropriate
content or are too difficult are the most harmful for
young learners. Questions that are strange/unreal-
istic, have typos, or assess reading comprehension
rather than math reasoning are not good, but they do
not present a harm to student learning. As shown
in Table 5, MATHWELL is the only model that
does not make these more harmful errors, showing
that it is better suited for generating MWPs that are
educationally appropriate for young learners.

4.2 Automatic Evaluation

MATHWELL Outputs Have More Appropriate
Readability Figure 4 compares the FKGL dis-
tribution of MATHWELL outputs to those of the
other models considered. As shown in the figure,
MATHWELL has the lowest FKGL and is the only
model that does not generate questions beyond an
8th grade reading level, providing evidence it cre-
ates more readable questions for K-8 students. In
Figure 9, we see a similar trend in readability for
EGSM: Fewer of EGSM’s MWPs than other exist-
ing datasets have a FKGL score greater than 8.

MATHWELL Outputs Are Human Quality
Table 6 shows EGSM has lower PPL than GSM8K
and Table 7 shows MATHWELL’s 250 evaluation
sample for the experiments in Table 3 has lower
PPL than that of the other models. As shown in
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Figure 4: Flesch-Kincaid grade level (FKGL) distribu-
tion of model MWPs. Dotted lines show mean FKGL.

Dataset PPL ↓ BERTScore F1

GSM8K 4.05 (1.18) 84.5
EGSM 2.44 (0.439) 84.3

Table 6: Automatic evaluation for datasets. PPL is
perplexity and BERTScore F1 compares each dataset’s
questions to GSM8K. Bold denotes the lowest PPL.
Standard deviations, if applicable, are in parentheses.

Tables 6 and 7, across models, datasets and com-
parisons, BERTScores are similar. Taken together,
these findings suggest our synthetic data are simi-
lar to human quality, so our MWPs will likely be
similar to ones students normally encounter.

MATHWELL Outputs Longer MaC Questions
than Existing Open-source Models Longer to-
ken length may signal more complex MWPs, as
longer MWPs often contain more information and
operations than shorter ones. Comparing the av-
erage length of all MWPs to the length of MaC
MWPs can determine if MaC MWPs are shorter
or simpler. As shown in Table 7, MATHWELL’s
MaC MWPs are the longest of the open-source
models considered, suggesting its MaC problems
may be more complex. As shown in Table 12,
MATHWELL and GPT-4 are also the only mod-
els for which MaC length is within a token of the
overall average, providing evidence that its MaC
MWPs are no simpler than its average MWP. While
GPT-4 outputs longer MWPs than MATHWELL
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Model PPL ↓ BF1 GSM BF1 MaC Length
A

PI GPT-4 Turbo 2.50 (0.03) 85.4 84.6 66.8 (2.62)
GPT-3.5 Turbo 2.64 (0.03) 85.6 84.6 49.9 (1.16)

Pu
bl

ic

LLEMMA 3.82 (0.10) 84.3 84.0 50.9 (2.89)
MAmmoTH 2.76 (0.03) 86.0 84.6 44.4 (1.15)
Llama-2 2.52 (0.03) 85.5 84.3 49.8 (1.19)
MATHWELL 2.44 (0.03) 85.5 84.2 54.1 (0.97)

Table 7: Automatic evaluation metrics for each model.
PPL is perplexity, BF1 is BERTScore F1, GSM BF1
compares each model’s questions to GSM8K, MaC is
meets all criteria, and Length is average token length.
Bold indicates the lowest PPL and longest length for
MaC generations for open-source models. Standard
errors, where applicable, are in parentheses.

Add. Sub. Mult. Div.

Prompted for Operation (n=400) 64.0 77.0 67.0 44.0
Unprompted 6.07 10.12 6.07 1.62

Table 8: Percentage of questions generated that include
only one operator when prompted to do so, compared
to overall percentages that contain only that operator.
Add., Sub., Mult., and Div. are addition, subtraction,
multiplication, and division, respectively.

on average, MATHWELL’s MWP length is still on
par with those of the human-written grade school
math datasets reported in Table 2. This finding fur-
ther supports those discussed above showing that
MATHWELL generates MWPs from a range of dif-
ficulties and complexities, which implies coverage
of concepts throughout K-8 math education.

5 Controllability

Being able to control the math operations and top-
ics present in MWPs generated by MATHWELL
would maximize the model’s educational applica-
bility by allowing teachers to generate MWPs that
target specific concepts they are teaching. To test
MATHWELL’s controllability, we prompted the
model to generate questions involving only one of
the operations from the list of Addition, Subtrac-
tion, Multiplication, and Division. Each prompt
included 8-shot in-context examples and we gen-
erated 100 questions for each operation, totaling
400 generated questions. See Appendix A for the
full prompt. We then measured the percent of gen-
erated questions that successfully include only the
intended operator. We compare this to the distri-
bution of questions produced by the unprompted
model that only contain one of the operators.

As shown in Table 8, we find that requesting
specific operators significantly increases the rate

at which they are generated. There is room for
improvement, especially for division, which we
believe is clear future work. Regardless, this rate
of operation controllability is competitive with the
rate at which existing SOTA word problem genera-
tors successfully incorporate a pre-specified equa-
tion, with the exception of division controllability,
which is similar to the rates of controllability re-
ported in many of these works (Qin et al., 2023,
2024; Wang et al., 2021; Wu et al., 2022; Zhou
and Huang, 2019; Zhou et al., 2023). These results
paired with the high rate of topic controllability
reported in Table 3 demonstrate that our model is
non-trivially controllable.

6 Conclusions

We explore educational reference-free K-8 MWP
generation and create the first dataset to train mod-
els for this task and the only one with teacher
annotations. We demonstrate the quality of this
dataset by using it to finetune MATHWELL, the
first reference-free educational MWP generator.
Our evaluations show that MATHWELL outper-
forms other open-source LLMs at reference-free
MWP generation, matching the performance of
GPT-4 while generating questions with a more
appropriate reading level and that do not contain
harmful inappropriate content. Further, we show
that our dataset, EGSM, is comparable to exist-
ing math QA data while containing questions that
are more educationally appropriate. These find-
ings suggest that reference-free MWP generation
is a feasible and practical alternative to traditional
reference-dependent generators. Future research
should train reference-free MWP generators to cre-
ate questions aligned with specific grade levels and
develop automated classification methods to reduce
human annotation costs.

Limitations

One limitation of MATHWELL is that it is not
specifically designed to generate questions aligned
with pre-specified grade levels, which we chose
to leave to future research due to the high cost of
annotating questions for these characteristics. How-
ever, we demonstrate that our model is non-trivially
promptable for specific math operations in Section
5, which highlights that exploring additional con-
trollability is a promising area for future research.
Additionally, MATHWELL is trained and evalu-
ated for generating MWPs/solutions for K-8 stu-
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dents only; therefore, we do not recommend using
it to generate question/answer pairs for other grade
levels or for other school subjects, which we be-
lieve are compelling areas for future work. Another
limitation of MATHWELL’s MWPs is that they are
text-only, and students often encounter MWPs that
are multi-modal (containing both images/tables/fig-
ures and text) in addition to those that are text-only.
Generating multi-modal problems is thus a chal-
lenging and interesting area for future work. While
we use a standard prompt for our experiments to
simplify the evaluation framework and make fair
comparisons across models, future work could con-
duct prompt tuning experiments to further improve
model performance.

The high cost of human evaluation to ensure
educational outputs is another limitation of auto-
matic MWP generation broadly. In Appendix C.6,
we explore training text classifiers to automatically
score MATHWELL outputs. We show existing
models can learn some features important for auto-
matic classification, but need refinement in order to
correctly classify unsolvable, inaccurate, or inap-
propriate questions. We hope these results and our
large annotated dataset motivate future research in
automatic classification efforts.

Another limitation of this work is the subjective
nature of the appropriateness criteria. While it is
critical model-generated questions are appropriate
for students, it is hard to fully define all aspects
of appropriateness and individuals may have dif-
fering opinions on the degree to which a question
is appropriate or not. We chose to define several
common reasons questions may not be appropri-
ate for students (see Figure 8) and use teachers as
annotators, but future research should continue to
define this criteria and include multiple evaluators.

Ethics Statement

All data used to train MATHWELL come from
open-access datasets and, therefore, should not
contain any private sensitive information. MATH-
WELL may generate questions that are inappropri-
ate for use in educational contexts and additional
research should be conducted on the model before
deploying it in classroom settings. Specifically,
future research should continue to improve per-
formance of text classifiers to filter out questions
which are not appropriate for students.

Acknowledgements

We thank Zooniverse (Zooniverse) for providing a
free and user-friendly platform for data annotation.
We also thank our expert volunteer annotators for
providing high-quality labels and feedback on our
evaluation criteria/directions. Finally, we thank
the University of Virginia’s Research Computing
team for maintaining excellent high-performance
computing resources that allowed us to conduct
this research.

References
Shivam Bansal Aggarwal, Chaitanya. textstat: Calcu-

late statistical features from text.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck.
2023. Llemma: An Open Language Model For Math-
ematics. ArXiv:2310.10631 [cs].

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel
Nanda, Catherine Olsson, Dario Amodei, Tom
Brown, Jack Clark, Sam McCandlish, Chris Olah,
Ben Mann, and Jared Kaplan. 2022. Training a
Helpful and Harmless Assistant with Reinforcement
Learning from Human Feedback. ArXiv:2204.05862
[cs].

Matthew L. Bernacki and Candace Walkington. 2018.
The role of situational interest in personalized learn-
ing. Journal of Educational Psychology, 110(6):864–
881. Place: US Publisher: American Psychological
Association.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training Verifiers to Solve Math Word Prob-
lems. ArXiv:2110.14168 [cs].

Gabriella Daroczy, Magdalena Wolska, Walt Detmar
Meurers, and Hans-Christoph Nuerk. 2015. Word
problems: a review of linguistic and numerical fac-
tors contributing to their difficulty. Frontiers in Psy-
chology, 6:348.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient Finetun-
ing of Quantized LLMs. ArXiv:2305.14314 [cs].

R. Flesch. 1948. A new readability yardstick. The
Journal of Applied Psychology, 32(3):221–233.

11923

https://github.com/shivam5992/textstat
https://github.com/shivam5992/textstat
http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2310.10631
https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.1037/edu0000250
https://doi.org/10.1037/edu0000250
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.3389/fpsyg.2015.00348
https://doi.org/10.3389/fpsyg.2015.00348
https://doi.org/10.3389/fpsyg.2015.00348
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
https://doi.org/10.1037/h0057532


Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: Program-aided Language
Models. ArXiv:2211.10435 [cs].

Hongyi Guo, Yuanshun Yao, Wei Shen, Jiaheng Wei,
Xiaoying Zhang, Zhaoran Wang, and Yang Liu. 2024.
Human-instruction-free llm self-alignment with lim-
ited samples.

Ying Jiao, Kumar Shridhar, Peng Cui, Wangchunshu
Zhou, and Mrinmaya Sachan. 2023. Automatic Edu-
cational Question Generation with Difficulty Level
Controls. In Artificial Intelligence in Education, Lec-
ture Notes in Computer Science, pages 476–488,
Cham. Springer Nature Switzerland.

Jiwoo Kim, Youngbin Kim, Ilwoong Baek, JinYeong
Bak, and Jongwuk Lee. 2023. It ain’t over: A multi-
aspect diverse math word problem dataset. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 14984–
15011, Singapore. Association for Computational
Linguistics.

J. P. Kincaid, Jr. Fishburne, Rogers Robert P., Chissom
Richard L., and Brad S. 1975. Derivation of New
Readability Formulas (Automated Readability Index,
Fog Count and Flesch Reading Ease Formula) for
Navy Enlisted Personnel:. Technical report, Defense
Technical Information Center, Fort Belvoir, VA.

Rik Koncel-Kedziorski, Ioannis Konstas, Luke Zettle-
moyer, and Hannaneh Hajishirzi. 2016. A theme-
rewriting approach for generating algebra word prob-
lems. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1617–1628, Austin, Texas. Association
for Computational Linguistics.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A Diverse Corpus for Evaluating and Develop-
ing English Math Word Problem Solvers. In Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975–984, Online.
Association for Computational Linguistics.

Swaroop Mishra, Matthew Finlayson, Pan Lu, Leonard
Tang, Sean Welleck, Chitta Baral, Tanmay Ra-
jpurohit, Oyvind Tafjord, Ashish Sabharwal, Pe-
ter Clark, and Ashwin Kalyan. 2023. Lila: A
Unified Benchmark for Mathematical Reasoning.
ArXiv:2210.17517 [cs].

Swaroop Mishra, Arindam Mitra, Neeraj Varshney,
Bhavdeep Sachdeva, Peter Clark, Chitta Baral, and
Ashwin Kalyan. 2022. NumGLUE: A Suite of Fun-
damental yet Challenging Mathematical Reasoning
Tasks. ArXiv:2204.05660 [cs].

Arindam Mitra, Hamed Khanpour, Corby Rosset, and
Ahmed Awadallah. 2024. Orca-math: Unlocking the
potential of slms in grade school math.

Kashyapa Niyarepola, Dineth Athapaththu, Savindu
Ekanayake, and Surangika Ranathunga. 2022. Math
Word Problem Generation with Multilingual Lan-
guage Models. In Proceedings of the 15th Interna-
tional Conference on Natural Language Generation,
pages 144–155, Waterville, Maine, USA and virtual
meeting. Association for Computational Linguistics.

Kole Norberg, Husni Almoubayyed, Stephen E Fanc-
sali, Logan De Ley, Kyle Weldon, April Murphy,
and Steve Ritter. 2023. Rewriting math word prob-
lems with large language models. Proceedings of
the Workshop on Empowering Education with LLMs-
the Next-Gen Interface and Content Generation 2023
co-located with 24th International Conference on
Artificial Intelligence in Education (AIED 2023),
3487:163–172.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer

11924

https://doi.org/10.48550/arXiv.2211.10435
https://doi.org/10.48550/arXiv.2211.10435
http://arxiv.org/abs/2401.06785
http://arxiv.org/abs/2401.06785
https://doi.org/10.1007/978-3-031-36272-9_39
https://doi.org/10.1007/978-3-031-36272-9_39
https://doi.org/10.1007/978-3-031-36272-9_39
https://doi.org/10.18653/v1/2023.emnlp-main.927
https://doi.org/10.18653/v1/2023.emnlp-main.927
https://doi.org/10.21236/ADA006655
https://doi.org/10.21236/ADA006655
https://doi.org/10.21236/ADA006655
https://doi.org/10.21236/ADA006655
https://doi.org/10.18653/v1/D16-1168
https://doi.org/10.18653/v1/D16-1168
https://doi.org/10.18653/v1/D16-1168
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.48550/arXiv.2210.17517
https://doi.org/10.48550/arXiv.2210.17517
https://doi.org/10.48550/arXiv.2204.05660
https://doi.org/10.48550/arXiv.2204.05660
https://doi.org/10.48550/arXiv.2204.05660
http://arxiv.org/abs/2402.14830
http://arxiv.org/abs/2402.14830
https://doi.org/10.18653/v1/2022.inlg-main.12
https://doi.org/10.18653/v1/2022.inlg-main.12
https://doi.org/10.18653/v1/2022.inlg-main.12


McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret
Zoph. 2024. Gpt-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. ArXiv:2203.02155 [cs].

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP Models really able to Solve Simple
Math Word Problems? ArXiv:2103.07191 [cs].

Daniel Pearce, Faye Bruun, Kim Skinner, and Claricia
Lopez-Mohler. 2013. What teachers say about stu-
dent difficulties solving mathematical word problems
in grades 2-5. International Electronic Journal of
Mathematics Education, 8:3–19.

Longhu Qin, Jiayu Liu, Zhenya Huang, Kai Zhang,
Qi Liu, Binbin Jin, and Enhong Chen. 2023. A Math-
ematical Word Problem Generator with Structure

Planning and Knowledge Enhancement. In Proceed-
ings of the 46th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR ’23, pages 1750–1754, New York,
NY, USA. Association for Computing Machinery.

Wei Qin, Xiaowei Wang, Zhenzhen Hu, Lei Wang, Yun-
shi Lan, and Richang Hong. 2024. Math Word Prob-
lem Generation via Disentangled Memory Retrieval.
ACM Transactions on Knowledge Discovery from
Data. Just Accepted.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Sarah Schwartz. 2023. Why Word Problems Are Such a
Struggle for Students—And What Teachers Can Do.
Education Week.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H. Chi, Nathanael Schärli,
and Denny Zhou. 2023. Large language models can
be easily distracted by irrelevant context. In Proceed-
ings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine
Learning Research, pages 31210–31227. PMLR.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M.
Ziegler, Ryan Lowe, Chelsea Voss, Alec Rad-
ford, Dario Amodei, and Paul Christiano. 2022.
Learning to summarize from human feedback.
ArXiv:2009.01325 [cs].

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthi-
ran, Daria Gitman, Fei Jia, and Igor Gitman. 2024.
Openmathinstruct-1: A 1.8 million math instruc-
tion tuning dataset. arXiv preprint arXiv: Arxiv-
2402.10176.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,

11925

http://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2103.07191
https://doi.org/10.48550/arXiv.2103.07191
https://doi.org/10.29333/iejme/271
https://doi.org/10.29333/iejme/271
https://doi.org/10.29333/iejme/271
https://doi.org/10.1145/3539618.3591937
https://doi.org/10.1145/3539618.3591937
https://doi.org/10.1145/3539618.3591937
https://doi.org/10.1145/3639569
https://doi.org/10.1145/3639569
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://www.edweek.org/teaching-learning/why-word-problems-are-such-a-struggle-for-students-and-what-teachers-can-do/2023/05
https://www.edweek.org/teaching-learning/why-word-problems-are-such-a-struggle-for-students-and-what-teachers-can-do/2023/05
https://proceedings.mlr.press/v202/shi23a.html
https://proceedings.mlr.press/v202/shi23a.html
https://doi.org/10.48550/arXiv.2009.01325
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Lieven Verschaffel, Stanislaw Schukajlow, Jon Star, and
Wim Van Dooren. 2020. Word Problems in Math-
ematics Education: A Survey. ZDM: The Interna-
tional Journal on Mathematics Education, 52(1):1–
16. Publisher: Springer ERIC Number: EJ1243930.

Candace Walkington and Matthew L. Bernacki. 2019.
Personalizing Algebra to Students’ Individual Inter-
ests in an Intelligent Tutoring System: Moderators
of Impact. International Journal of Artificial Intelli-
gence in Education, 29(1):58–88.

Candace Walkington, Virginia Clinton, and Pooja Shiv-
raj. 2018. How readability factors are differentially
associated with performance for students of differ-
ent backgrounds when solving mathematics word
problems. American Educational Research Journal,
55(2):362–414. Place: US Publisher: Sage Publica-
tions.

Candace A. Walkington. 2013. Using adaptive learn-
ing technologies to personalize instruction to student
interests: The impact of relevant contexts on per-
formance and learning outcomes. Journal of Edu-
cational Psychology, 105(4):932–945. Place: US
Publisher: American Psychological Association.

Haoyu Wang, Guozheng Ma, Ziqiao Meng, Zeyu Qin,
Li Shen, Zhong Zhang, Bingzhe Wu, Liu Liu, Yatao
Bian, Tingyang Xu, Xueqian Wang, and Peilin Zhao.
2024. Step-on-feet tuning: Scaling self-alignment of
llms via bootstrapping.

Zichao Wang, Andrew S. Lan, and Richard G. Bara-
niuk. 2021. Math Word Problem Generation with
Mathematical Consistency and Problem Context Con-
straints. ArXiv:2109.04546 [cs].

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. 2023. Chain-of-Thought Prompt-
ing Elicits Reasoning in Large Language Models.
ArXiv:2201.11903 [cs].

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingFace’s Transformers: State-of-the-art Natural
Language Processing. ArXiv:1910.03771 [cs].

Qinzhuo Wu, Qi Zhang, and Xuanjing Huang. 2022.
Automatic Math Word Problem Generation With
Topic-Expression Co-Attention Mechanism and Re-
inforcement Learning. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 30:1061–
1072.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of Thoughts: Deliber-
ate Problem Solving with Large Language Models.
ArXiv:2305.10601 [cs].

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. 2023. Meta-
math: Bootstrap your own mathematical questions
for large language models.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and
Jingren Zhou. 2023. Scaling Relationship on Learn-
ing Mathematical Reasoning with Large Language
Models. ArXiv:2308.01825 [cs].

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu
Chen. 2023. MAmmoTH: Building Math Gen-
eralist Models through Hybrid Instruction Tuning.
ArXiv:2309.05653 [cs].

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with bert.

Shen Zheng, Yuyu Zhang, Yijie Zhu, Chenguang Xi,
Pengyang Gao, Xun Zhou, and Kevin Chen-Chuan
Chang. 2023. GPT-Fathom: Benchmarking Large
Language Models to Decipher the Evolutionary Path
towards GPT-4 and Beyond. ArXiv:2309.16583 [cs].

Qingyu Zhou and Danqing Huang. 2019. Towards Gen-
erating Math Word Problems from Equations and
Topics. In Proceedings of the 12th International
Conference on Natural Language Generation, pages
494–503, Tokyo, Japan. Association for Computa-
tional Linguistics.

Zihao Zhou, Maizhen Ning, Qiufeng Wang, Jie Yao,
Wei Wang, Xiaowei Huang, and Kaizhu Huang. 2023.
Learning by analogy: Diverse questions generation
in math word problem.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu,
Tom B. Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. 2020. Fine-
Tuning Language Models from Human Preferences.
ArXiv:1909.08593 [cs, stat].

Mingyu Zong and Bhaskar Krishnamachari. 2023. Solv-
ing Math Word Problems concerning Systems of
Equations with GPT-3. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(13):15972–
15979. Number: 13.

Zooniverse. Zooniverse.

A Prompting Process

A.1 Standard Prompts and Sampling Process
For all generations reported in this paper, we set
temperature to 1.0 to strike a balance between cre-
ativity and encouraging the model to select the most

11926

http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.1007/s11858-020-01130-4
https://doi.org/10.1007/s11858-020-01130-4
https://doi.org/10.1007/s40593-018-0168-1
https://doi.org/10.1007/s40593-018-0168-1
https://doi.org/10.1007/s40593-018-0168-1
https://doi.org/10.3102/0002831217737028
https://doi.org/10.3102/0002831217737028
https://doi.org/10.3102/0002831217737028
https://doi.org/10.3102/0002831217737028
https://doi.org/10.1037/a0031882
https://doi.org/10.1037/a0031882
https://doi.org/10.1037/a0031882
https://doi.org/10.1037/a0031882
http://arxiv.org/abs/2402.07610
http://arxiv.org/abs/2402.07610
https://doi.org/10.48550/arXiv.2109.04546
https://doi.org/10.48550/arXiv.2109.04546
https://doi.org/10.48550/arXiv.2109.04546
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.1109/TASLP.2022.3155284
https://doi.org/10.1109/TASLP.2022.3155284
https://doi.org/10.1109/TASLP.2022.3155284
https://doi.org/10.48550/arXiv.2305.10601
https://doi.org/10.48550/arXiv.2305.10601
http://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2309.05653
http://arxiv.org/abs/2309.05653
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
https://doi.org/10.48550/arXiv.2309.16583
https://doi.org/10.48550/arXiv.2309.16583
https://doi.org/10.48550/arXiv.2309.16583
https://doi.org/10.18653/v1/W19-8661
https://doi.org/10.18653/v1/W19-8661
https://doi.org/10.18653/v1/W19-8661
http://arxiv.org/abs/2306.09064
http://arxiv.org/abs/2306.09064
https://doi.org/10.48550/arXiv.1909.08593
https://doi.org/10.48550/arXiv.1909.08593
https://doi.org/10.1609/aaai.v37i13.26896
https://doi.org/10.1609/aaai.v37i13.26896
https://doi.org/10.1609/aaai.v37i13.26896
https://www.zooniverse.org/


probable next token to guide effective solution gen-
eration. We also set the sampling parameter equal
to true to further diversify outputs while also en-
suring the most probable next token still receives
the most weight. The GitHub repo associated with
this paper has a sample generation script that uses
this sampling approach. The exact prompts used in
each experiment are reported below.

Prompt for Generating Synthetic Training Data
Our standard prompt for evaluating the educational
appropriateness of existing datasets (Section 3.1)
and generating synthetic training data after the first
stage of finetuning on public data (Section 3.2)
is, "Write a grade school math word problem and
Python function with a commented out step-by-
step solution to solve the word problem." We begin
each prompt with 8-shot examples, using randomly
selected examples from MathInstruct GSM8K for
evaluating existing datasets and a consistent set of
8 educationally appropriate MathInstruct GSM8K
examples for generating synthetic training data.

Prompt for Interacting with MATHWELL and
Comparing Models Our standard prompt for in-
teracting with the MATHWELL model and for
all experiments reported in Section 4 is, "Write
a grade school math word problem about {topic}
and Python function with a commented out step-
by-step solution to solve the word problem."

In this prompt, topic is an optional argument,
which we randomly select from the list of topics
discussed in Appendix F. We begin every prompt
with a random selection of 8-shot examples from
EGSM.

Prompt for Controllability Experiment: Our
prompt for the controllability experiment reported
in Section 5 is: "Write a grade school math {op-
eration} word problem about {topic} and Python
function with a commented out step-by-step so-
lution to solve the word problem. The question
you write should only require {operation} to solve,
meaning the solution should rely only on use of the
{operator} operator."

In this prompt, operation is filled in with addi-
tion, subtraction, multiplication, or division, topic
is randomly selected from the list of topics in Ap-
pendix F, and operator is filled in with +, -, *, or /.
We begin every prompt with a random selection of
8-shot examples from EGSM that contain only the
desired operation.

A.2 Expected Output Format

Using the prompting processes described above,
the prompted model should output a question/an-
swer pair with the solution being calculated by a
Python function. The response should separate
the question and solution using "Question:" and
"Solution:," respectively. Below is a sample output
from MATHWELL showing this output structure.

Sample Generation:
Question: Superman can fly 1200 miles per hour.
He can also run 500 miles per hour. If he flies for 2
hours and runs for 3 hours, how many miles has he
covered?

Solution:
def solution():

#Superman can fly 1200 miles per hour
superman_flight_speed = 1200
#He can run 500 miles per hour
superman_run_speed = 500
#He flies for 2 hours
flight_hours = 2
#He runs for 3 hours
run_hours = 3
#The answer is
result = (superman_flight_speed * flight_hours)

+ (superman_run_speed * run_hours)
return result

A.3 Additional Suggested Prompting
Strategies

We find MATHWELL is more likely to generate ex-
ecutable code when given a topic than when a topic
is not specified. For example, when prompting our
finetuned Llama-2 model before further training it
on the EGSM data, we found the model generated
executable code 63.1% of the time when given a
topic, and only 32.3% of the time when a topic was
not specified. As a result, for evaluating models
in this paper, we provide them with a randomly se-
lected topic, which also gives us the ability to assess
their ability to effectively generate topic-specific
word problems. Additionally, this evaluation strat-
egy is aligned with how a teacher or student would
use the model in practice, as they would want the
generated questions to align with a particular topic.
Qualitative evaluations of model generations also
revealed that MATHWELL is more likely to gener-
ate executable code when the topic is more specific.
For example, if their desired topic is superheroes, a
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Figure 5: Solvability directions.

user would have a higher likelihood of receiving a
generation with executable code by prompting with
a specific superhero (e.g., Superman) than leaving
the topic general (e.g., superheroes).

B Annotation Process and Details

B.1 Annotators

All annotators had K-12 teaching experience or
training, including a research team member who
annotated every question. We had three primary
annotators who reviewed at least 200 questions
each in addition to our research team member. Our
four primary annotators were seasoned educators,
with an average of 5.75 years of education expe-
rience. They spent an average of 48 seconds per
question, totaling 96.3 hours of expert annotation
throughout our full human evaluation of over 5,000
model-generated word problems.

B.2 Validating Final Evaluation Labels

For annotating the 250 samples from each model
for our experiments reported in Section 4, we ran-
domized questions from each model and had them
blindly reviewed by one of our highly trained anno-
tators with K-12 teaching experience. To evaluate
the quality of these labels, we had 357 randomly
reviewed by one additional annotator and 60 ran-
domly reviewed by two additional annotators. The
annotators agreed on solvability 89.3±3.0% of the
time, accuracy 95.5 ± 2.0% of the time, appropri-
ateness 80.4 ± 3.8% of the time, all three labels

Figure 6: Accuracy directions.

67.8 ± 4.5% of the time, and MaC 78.3 ± 3.9% of
the time. The agreement rates for accuracy and
solvability are higher than reported in recent stud-
ies that explore human alignment of LLM outputs,
and the agreement rates for appropriateness and
MaC are on par with these studies (Bai et al., 2022;
Ouyang et al., 2022; Stiennon et al., 2022; Ziegler
et al., 2020). Additional analysis reveals that most
annotator disagreement (80.1%) was due to the pri-
mary annotator being more conservative than the
additional annotators by labeling questions as not
having the desired criteria when the additional an-
notators rated them as having the desired criteria.
As a result, we chose to use the labels from the
primary annotator when reporting final results to
be conservative, though we also found the results
do not vary when switching labels based on anno-
tator disagreement. Annotators were least likely
to disagree on labels for MATHWELL and GPT-4
Turbo outputs and our primary annotator was not
more likely to rate MATHWELL outputs as having
the desired criteria than the additional annotators.
Taken together, this evidence suggests our final
labels are highly accurate.

B.3 Defining Appropriateness

Teachers participated in designing our appropriate-
ness metric. Our research team includes a former K-
12 teacher, who led metric development. We itera-
tively refined the metric with feedback from teacher
annotators using sample model outputs. This pro-
cess led to the definition described in the paper
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Figure 7: Labeling operations directions.

along with the annotator directions and response
options shown in Figure 8.

B.4 Annotation Interface

We used Zooniverse (Zooniverse) to collect our
human annotation data. Figures 5, 6, 7 and 8 show
the instructions each annotator was given for each
of our evaluation criteria.

B.5 Annotated Data Characteristics

Our full annotated dataset consists of 5,084 ques-
tion/answer pairs with teacher annotations for solv-
ability, accuracy, appropriateness, and MaC. The
data are comprised of the 3,234 word problem
dataset used to generate training data for MATH-
WELL in addition to the 250 evaluation set for each
model described in Section 4, the 100 questions we
evaluated in Section 3.1, and 250 questions we
evaluated in Appendix C.1 from training our model
using the 2nd finetuning stage only. Based on our
annotations, 82.2% of the question/answer pairs
are solvable, 87.3% have accurate solutions, 78.1%

Figure 8: Appropriateness directions.

are appropriate, and 58.4% meet all criteria.

C Additional Experiments

C.1 Finetuning Ablation

As shown in Table 9, MATHWELL shows a statisti-
cally and/or substantively meaningful improvement
in all metrics after the second stage of finetuning
on high-quality synthetic data labeled by domain
experts relative to just doing either finetuning stage
alone. These results lead us to conclude that the
second stage of finetuning is critical for improving
the model’s ability to generate questions that are
educationally appropriate, or MaC.

C.2 Logistic Regression for Predicting MaC

As shown in Table 10, the coefficients for all mod-
els except GPT-4 for MaC remain negative and
statistically significant relative to MATHWELL
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Model Solv. Acc. App. MaC EC EC/MaC

MATHWELL (1st Stage Only) 82.3 (0.67) 85.8 (0.66) 80.1 (0.77) 58.9 (0.87) 63.1 (0.73) 37.2 (0.55)
MATHWELL (2nd Stage Only) 86.0 (2.20) 91.6 (1.89) 76.7 (2.89) 60.8 (3.09) 50.9 (1.20) 31.0 (1.58)
MATHWELL (1st and 2nd Stage) 89.2 (1.97) 96.9* (1.17) 86.5* (2.29) 74.8** (2.75) 66.4** (1.00) 49.6** (1.83)

Table 9: Average metrics for MATHWELL after the first and second round of finetuning compared to the model
finetuned with both stages. Solv., Acc., App., MaC, and EC/MaC are solvability, accuracy, appropriateness, meets
all criteria, and the estimated share of questions that MaC and have executable code, respectively. Bold indicates the
best performance in each metric and a * or ** indicates the difference between the best performance and second best
performance is statistically significant at the p<.05 or p<.01 level, respectively. Standard errors are in parentheses.

Predictor Coefficient SE Z p

Constant 1.648 0.182 9.053 0.000**
GPT-4 Turbo -0.053 0.251 -0.212 0.832
GPT-3.5 Turbo -0.735 0.235 -3.121 0.002**
LLEMMA -2.441 0.267 -9.138 0.000**
MAmmoTH -1.009 0.231 -4.363 0.000**
Llama-2 -0.587 0.241 -2.435 0.015*

Constant 1.496 0.254 5.895 0.000**
GPT-4 Turbo 0.064 0.262 0.243 0.808
GPT-3.5 Turbo -0.496 0.247 -2.008 0.045*
LLEMMA -2.279 0.276 -8.269 0.000**
MAmmoTH -0.867 0.238 -3.638 0.000**
Llama-2 -0.532 0.244 -2.183 0.029*
Addition 0.130 0.153 0.850 0.395
Subtraction 0.234 0.165 1.413 0.158
Multiplication -0.123 0.165 -0.748 0.454
Division -0.124 0.193 -0.645 0.519
Fractions -0.152 0.323 -0.471 0.638
Decimals -0.345 0.208 -1.658 0.097

Table 10: Logistic regression results for meets all crite-
ria (MaC), with and without controlling for the impact
of question type. These results only consider questions
which are labeled as solvable. The reference model
for the constant is MATHWELL. A * or ** indicates
statistical significance at the p<0.05 or p<0.01 level, re-
spectively.

when controlling for the type of mathematical op-
eration. This finding supports the assertion that
MATHWELL is more capable than these models
of generating MaC questions regardless of the oper-
ation considered, even if it is less likely to generate
questions from the more complex mathematical op-
erations. Table 10 also shows that the difference
in MaC performance between MATHWELL and
GPT-4 remains statistically insignificant even when
controlling for the impact of operations, highlight-
ing that both models perform similarly on this task.

C.3 Accuracy by Question Type

As shown in Table 11, MATHWELL’s accuracy
does not differ significantly or substantively by op-

Model Add. Sub. Mult. Div. Frac. Dec.

A
PI GPT-4 Turbo 96.0 94.3 95.9 93.3 100.0 90.9

GPT-3.5 Turbo 91.0 95.2 86.6 87.5 71.4 90.2

Pu
bl

ic

LLEMMA 76.2 72.3 63.4 56.0 50.0 63.2
MAmmoTH 96.5 96.3 96.8 97.6 87.5 91.3
Llama-2 89.3 91.1 87.5 80.0 82.4 75.0
MATHWELL 96.1 97.4 94.5 91.3 100.0 94.1

Table 11: Accuracy by operation. Add., Sub., Mult.,
Div., Frac., Dec., No Ops, Total Ops, and MaC are ad-
dition, subtraction, multiplication, division, fractions,
decimals, no operations, total operations, and meets
all criteria, respectively. Bold indicates the best open-
source performance in each operation. A bold model
name indicates the difference between that model’s op-
eration with the highest accuracy and lowest accuracy
is statistically significant at the p<0.05 level.

eration, as its accuracy remains above 90% for all
operations, while the other models except GPT-4
have a significant and/or substantive gap in their
accuracy for the operation they perform best on rel-
ative to the operation they perform worst on. While
MAmmoTH outperforms MATHWELL for addi-
tion, multiplication, and division, MATHWELL
performs better in the other three operations and
in overall accuracy. Further, MATHWELL outper-
forms GPT-4 in addition, subtraction, and decimals
while maintaining similar performance in the other
three operations.

C.4 FKGL Comparisons

As shown in Figure 10, the FKGL distribution for
all versus MaC questions does not significantly
vary for all models except for LLEMMA, whose
MaC questions tend to have lower FKGL than its
average question. Figure 9 compares the FKGL
distribution of EGSM questions to the three other
existing datasets that are mathematically appropri-
ate for grade school students. Fewer of EGSM’s
questions than other existing datasets are written at
a grade level beyond 8th grade.
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Figure 9: Flesch-Kincaid grade level (FKGL) distribu-
tion of training datasets. Dotted lines show the mean for
each dataset.

C.5 Additional Automatic Evaluation
Comparisons

As shown in Table 12, the findings from the PPL
experiment remain unchanged when PPL is evalu-
ated with GPT-2 (MATHWELL outputs still have
the lowest PPL of all models considered). Addi-
tionally, PPL does not significantly vary for all
models except for LLEMMA when comparing all
to MaC generations. In the table, we also compare
the BERTScore between all and MaC questions
from each model and show they are similar. While
LLEMMA has a longer average token length for all
its generations than MATHWELL, MATHWELL’s
MaC average token length is the longest of the
open-source models considered.

C.6 Exploring Automatic Classification

Given the high cost of human evaluation, we con-
sider automatically evaluating model outputs by
training DistilBERT (Sanh et al., 2019) classifiers
for solvability, accuracy and appropriateness using
our annotated data, excluding the evaluation sam-
ples from each model. We use an 80/10/10 train,
validation and test split. The solvability dataset has
3,234 rows, the accuracy dataset has 2,830 rows,
and the appropriateness dataset has 2,660 rows. We
exclude unsolvable questions from the accuracy
and appropriateness datasets to promote special-
ization, as these questions do not have a solution
and are inappropriate. Each dataset is unbalanced,
with 82.3% of questions labeled as solvable, 85.8%
labeled as accurate, and 80.1% labeled as appropri-
ate. As a result, we modify the training objective to
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Figure 10: Flesch-Kincaid grade level (FKGL) distribu-
tion of model generations for all versus MaC questions.
Dotted lines show the mean for each model.

weight the loss based on the inverse proportion of
observations from each class. We train each model
for 8 epochs using the HuggingFace library (Wolf
et al., 2020) with strict regularization (weight de-
cay = 0.9) and use the checkpoint with the lowest
validation loss for testing.

As shown in Table 13, despite weighting the loss,
each classifier has a lower balanced accuracy than
its overall accuracy. The classifiers perform simi-
larly on outputs from all models except LLEMMA,
for which performance is significantly lower. As
would be expected, performance for all models
tends to be lower than on the test dataset. Exclud-
ing LLEMMA and the appropriateness classifier’s
precision on MAmmoTH outputs, each classifier
has fairly high precision, recall and F1, suggesting
they are effectively able to label solvable, accurate,
and appropriate questions. The classifiers tend to
have low ROC AUC across sources, suggesting
they do not perform well at different prediction
cutoffs. As a whole, Table 13 provides evidence
that text classifiers can learn some features that are
important for labelling MATHWELL outputs, but
future research should use more balanced datasets
to improve their ability to label unsolvable, inaccu-
rate, and inappropriate questions.
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Model GPT-2 PPL ↓ PPL ↓ MaC PPL ↓ BF1 MaC BF1 All/MaC BF1 GSM BF1 Length MaC AL
A

PI GPT-4 Turbo 10.68 (2.90) 2.50 (0.03) 2.49 (0.03) 85.4 85.5 85.5 84.6 66.0 (2.12) 66.8 (2.62)
GPT-3.5 Turbo 10.57 (3.60) 2.64 (0.03) 2.70 (0.04) 85.6 85.8 85.7 84.6 52.8 (1.00) 49.9 (1.16)

Pu
bl

ic

LLEMMA 15.20 (8.40) 3.82 (0.10) 3.14 (0.10) 84.3 85.3 84.6 84.0 56.4 (1.44) 50.9 (2.89)
MAmmoTH 11.96 (4.26) 2.76 (0.03) 2.74 (0.04) 86.0 86.4 86.1 84.6 45.9 (1.13) 44.4 (1.15)
Llama-2 9.97 (4.12) 2.52 (0.03) 2.52 (0.04) 85.5 85.8 85.6 84.3 51.6 (0.99) 49.8 (1.19)
MATHWELL (Ours) 9.90 (3.84) 2.44 (0.03) 2.43 (0.03) 85.5 85.7 85.6 84.2 54.7 (0.86) 54.1 (0.97)

Table 12: Automatic evaluation metrics for each model. PPL is perplexity (evaluated by Llama-2 70B unless
otherwise noted), BF1 is BERTScore F1, MaC is meets all criteria (MaC), All/MaC BF1 compares all to MaC
questions, GSM BF1 compares each model’s questions to GSM8K, and Length is average token length. Bold
indicates the lowest PPL and longest length for open-source models. Standard errors, where applicable, are in
parentheses.

Solvability Accuracy Appropriateness

Source Acc. BA P R F1 RA Acc. BA P R F1 RA Acc. BA P R F1 RA

Annotated Test 78.9 61.9 86.7 88.0 87.4 0.701 81.6 53.8 87.2 92.2 89.6 0.649 82.7 72.0 89.8 88.9 89.4 0.793
GPT-4 Turbo 83.6 62.3 96.2 86.1 90.9 0.560 95.8 54.8 96.2 99.6 97.8 0.637 77.2 59.0 87.2 85.5 86.4 0.579
GPT-3.5 Turbo 81.9 52.3 88.5 91.3 89.9 0.519 88.6 55.2 90.5 97.4 93.9 0.541 78.1 64.3 82.1 91.0 86.3 0.696
LLEMMA 48.8 49.8 48.7 90.2 63.2 0.542 59.0 47.1 62.5 89.7 73.7 0.492 45.1 50.1 41.8 80.4 55.0 0.489
MAmmoTH 84.4 52.5 87.4 95.9 91.4 0.700 93.5 57.9 95.7 97.6 96.6 0.669 66.8 54.2 69.8 89.8 78.6 0.574
Llama-2 82.4 53.1 84.9 96.2 90.2 0.619 85.2 51.6 89.8 94.1 91.9 0.677 73.8 50.4 81.1 88.2 84.5 0.628
MATHWELL 85.2 54.3 90.1 93.7 91.9 0.599 94.6 62.7 97.7 96.8 97.2 0.790 77.6 63.1 90.4 82.9 86.5 0.669

Table 13: DistilBERT (Sanh et al., 2019) text classifier performance for solvability, accuracy, and appropriateness.
Acc., BA, P, R, and RA are accuracy, balanced accuracy, precision, recall and ROC AUC, respectively.

C.7 Important Criteria for Reference-free
Word Problem Generator Training Data

In addition to high-quality grammar and problems
that are similar to those students encounter in the
classroom, the characteristics we find most impor-
tant for training reference-free word problem gener-
ators are PoT solutions written as Python functions
and questions that are educationally appropriate for
K-8 students. Regarding the former, when we mod-
ified our prompt to ask for a Python function solu-
tion instead of a Python code solution, the share of
question/answer pairs with executable code from
an early version of MATHWELL increased from
18.9% to 29.0%. For educational appropriateness,
when we used the GSM-Hard (Gao et al., 2023)
dataset as part of MATHWELL’s training data, the
model often generated questions with large num-
bers that are inappropriate for K-8 students. We
further show that existing data are not educationally
appropriate in Section 3.1. As shown in Table 2,
EGSM is the only math QA dataset that has these
two characteristics.

C.8 Early MATHWELL Experimentation

In addition to training reference-free question/an-
swer pair generators, we also experiment with train-
ing reference-free question generation models. Our
theory is that if we could train a model to generate

questions effectively, we could pass those questions
to a math QA model to retrieve answers automati-
cally. To test this theory, we finetune both Llama-
2 and MAmmoTH as question generators using
the same training data discussed in Appendix D.1,
except for excluding the solution for each ques-
tion and modifying the standard prompt to ask the
model to generate a question only. We then sample
and evaluate 100 generations from each model. We
find that MAmmoTH performs better than Llama-2
at this task, but neither model performs optimally.
For example, only 19% of the MAmmoTH gener-
ations include the requested topic and 52.6% are
solvable. Therefore, based on the results we report
in Table 3, we conclude that it is more efficient to
train a reference-free question/answer pair genera-
tor than question generator.

D Finetuning Details

D.1 Initial Finetuning

We re-format MathInstruct GSM8K (Yue et al.,
2023) into an Alpaca-style (Taori et al., 2023) in-
struction dataset of question/answer pairs with a
standard prompt asking the model to generate a
grade school math word problem. We also include
MathInstruct MATH and TheoremQA PoT (Yue
et al., 2023) question/answer pairs with a standard
prompt asking the model to generate a challenge
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math problem to expose the model to more complex
code and further promote mathematical reasoning.
We then finetune Llama-2 (70B) on this dataset of
25,926 rows using QLoRA (Dettmers et al., 2023)
for 4,250 steps. Our finetuning process uses the
following training resources and hyperparam-
eters: two A100 GPUs, a learning rate of 1e-4,
LoRA modules at every model layer, per-device
batch size of 1, and a 3% warm-up ratio. The train-
ing script in the GitHub repo linked to this paper
contains a full list of hyperparameters.

D.2 Secondary Finetuning on
Expert-annotated Data

Inspired by recent works that iteratively finetune
LLMs (Guo et al., 2024; Wang et al., 2024), in-
cluding OpenAI’s FeedME approach (Zheng et al.,
2023), we next aim to evaluate and improve how
well MATHWELL meets our three main criteria:
solvability, accuracy, and appropriateness. How-
ever, these properties are unannotated in prior
datasets and we find they are ill-suited for training
educational generators in Section 3.1. Therefore,
we few-shot prompt the finetuned model and gen-
erate 3,234 problems. We then acquire annotations
for solvability, accuracy, and appropriateness from
teachers. Further details about the annotation pro-
cess and annotator agreement are in Section 3.2 and
Appendix B. These annotations identified 1,906
problems that are simultaneously solvable, accu-
rate, and appropriate, or meet all criteria (MaC). We
then finetune MATHWELL on these MaC outputs
for 1,250 more steps using the same hyperameters
discussed above.

E Annotated Example Generations

The sections below display randomly sampled gen-
erations from each model, including examples of
both questions that do not meet evaluation crite-
ria and those that do. For the examples that do
not meet the specified criteria, we provide a short
natural language annotation explaining the error.

E.1 GPT-4 Turbo
E.1.1 Solvability
Positive Example In a volleyball match, Team A
scored twice as many points as Team B. If Team
B scored 15 points, how many points in total were
scored in the match?

Negative Example In a Fortnite Battle Royale
match, there are 100 players. If one player can elim-

inate 4 opponents, how many players in the game
can achieve such an elimination count, assuming
no other players are eliminated?

Negative Example Reasoning It is not en-
tirely clear what this question is asking. If it defined
how many players should be left in the game af-
ter eliminations, it would be possible to determine
how many players can be eliminated but, without
defining that, it is not clear what the student needs
to do to solve this problem.

E.1.2 Accuracy
Positive Example Jenny has 15 cats. She buys 2
new cat towers, each can hold 4 cats. If she places
as many cats as possible on the cat towers, how
many cats are not on the towers?

Solution:
def solution():

# Jenny starts with 15 cats
total_cats = 15
# Each new cat tower holds 4 cats
tower_capacity = 4
# She buys 2 new cat towers
total_towers = 2
# The total number of cats the towers can hold is
total_capacity = tower_capacity * total_towers
# The number of cats not on the towers is
cats_not_on_towers = total_cats - total_capacity
return cats_not_on_towers

# Uncomment the line below to test the function
with the given values
# print(solution())4

Negative Example Mrs. Johnson has 12 adult
cats and each adult cat has 3 kittens. After several
months, those kittens grow up and each new adult
cat also has 2 kittens. How many kittens are there
in total now?

Solution:
def solution():

# Mrs. Johnson has 12 adult cats originally
adult_cats_initial = 12
# Each adult cat has 3 kittens
kittens_per_adult_initial = 3

4As discussed in Appendix G, GPT-4 tends to output ad-
ditional information beyond what is requested in the prompt
and shown in few-shot examples, such as example usage or
comments about the Python function solution, as is included
here.
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# Calculate the initial number of kittens
initial_kittens = adult_cats_initial *

kittens_per_adult_initial
# The initial kittens grow up to become adults
new_adult_cats = initial_kittens
# Each new adult cat has 2 kittens
kittens_per_new_adult = 2
# Calculate the new kittens born from the
# grown-up kittens
new_kittens = new_adult_cats *

kittens_per_new_adult
# The total number of kittens now is the sum
# of the initial kittens and new kittens
total_kittens = initial_kittens + new_kittens
return total_kittens

# Call the function and print the result
print(f"There are {solution()} kittens in total
now.")

Negative Example Reasoning The solution
adds the original number of kittens to the number of
new kittens, which is incorrect because the original
kittens are now considered adults based on the text
of the question.

E.1.3 Appropriateness
Positive Example During a week of intense bat-
tles, the Power Rangers defeated 15 evil monsters
on Monday, twice as many on Tuesday as on Mon-
day, and 10 fewer on Wednesday than on Tuesday.
How many monsters did they defeat in total from
Monday to Wednesday?

Negative Example Serena Williams has won a
certain number of tennis matches this season. If she
wins 8 more matches, she will double the number
she has won so far. How many matches has Serena
won this season?

Negative Example Reasoning This question
does not require any mathematical operation to
solve and is therefore not appropriate. The question
tells you Serena’s number of wins will double if
she wins 8 more matches, which means she had to
have won 8 matches so far.

E.2 GPT-3.5 Turbo

E.2.1 Solvability
Positive Example During a basketball game, the
Lakers made a total of 84 points. LeBron James
scored 35 points, and Anthony Davis scored 20

points. How many points were scored by the rest
of the Lakers team?

Negative Example The Ninja Turtles went to the
pizza parlor and ordered 8 pizzas. Each pizza had
8 slices. If they each ate 2 slices, how many slices
of pizza were left over?

Negative Example Reasoning This question
does not define the number of Ninja Turtles. While
many students might know there are typically 4
main Ninja Turtles, not every student would know
this and all math questions should still define the
key variables you need to answer them.

E.2.2 Accuracy
Positive Example Black Panther has 1500
vibranium shards. He needs to divide them equally
amongst his 5 closest allies. How many vibranium
shards will each ally receive?

Solution:
def solution():

#Black Panther has 1500 vibranium shards
vibranium_total = 1500
#He needs to divide them equally amongst his 5
#allies
allies = 5
#The answer is
result = vibranium_total / allies
return result

Negative Example A dog shelter has 40 dogs. If
each dog needs 2 cups of food per day, and a bag
of food contains 40 cups, how many bags of food
will the shelter need for a 30-day period?

Solution:
def solution():

#The shelter has 40 dogs
dogs = 40
#Each dog needs 2 cups of food per day
food_per_dog = 2
#A bag of food contains 40 cups
food_per_bag = 40
#For 30 days, the shelter will need
total_food_needed = dogs * food_per_dog * 30
#The answer is
result = total_food_needed // food_per_bag + 1
return result

Negative Example Reasoning The solution
adds an additional bag of food to the total assuming
that the answer is a decimal and, therefore, that the

11934



shelter would need to buy another full bag since
a partial bag is not possible. However, since the
answer is whole number, this additional bag leads
to outputting an incorrect result.

E.2.3 Appropriateness
Positive Example A cheerleading team has 20
members. They want to evenly divide into 4 squads
for a competition. How many members will be on
each squad?

Negative Example In a Pokémon battle, Pikachu
has a 60% chance of winning each round. If
Pikachu and Ash battle for 5 rounds, what is the
probability that Pikachu wins all 5 rounds?

Negative Example Reasoning This question
is too hard for a middle school student. It assumes a
student knows about the probability of independent
events, which is typically not covered until high
school or an introductory statistics college course.

E.3 LLEMMA

E.3.1 Solvability
Positive Example Steph Curry makes 2133 free
throws for the year. He hits 342 more free throws
than he misses. How many free throws does Steph
Curry miss?

Negative Example There are 5175 Pokémon
available to battle in Pokémon Sword and Shield.
There are 310 ground-type Pokémon and 182 water-
type Pokémon. There are 610 Pokémon that are
not ground nor water type. How many Pokémon
are ground-type or water-type?

Negative Example Reasoning The question
contains conflicting information in that it defines
the number of ground and water type Pokémon
twice.

E.3.2 Accuracy
Positive Example Naruto eats 4 bananas a day.
How many bananas does he eat in a month if there
are 30 days in a month?

Solution:
def solution():

#Naruto eats 4 bananas a day
bananas_per_day = 4
#There are 30 days in a month
days_in_month = 30
#The answer is

result = bananas_per_day * days_in_month
return result

Negative Example 12 cats eat 400 pounds of
cat food every Saturday morning. 15 cats eat 500
pounds of cat food on Sunday morning. How many
pounds of cat food are eaten in total?

Solution:
def solution():

#12 cats eat 400 pounds of cat food every
#Saturday morning
cat_food_satuday_morning = 12*400
#15 cats eat 500 pounds of cat food on Sunday
#morning
cat_food_sunday_morning = 15*500
#In total,
result = cat_food_satuday_morning +

cat_food_sunday_morning
return result

Negative Example Reasoning The model
multiplies the number of cats by the amount of
cat food eaten, rather than adding the two sums of
cat food together.

E.3.3 Appropriateness
Positive Example Hello Kitty makes 18
bracelets in 4 hours. How many bracelets per hour
does she make?

Negative Example Batman caught a baddie with
his trademark punch. Each punch knocks out 7
baddies. If Batman has thrown 60 punches, how
many baddies has he knocked out?

Negative Example Reasoning While this
question is comical, it is not appropriate for a K-
8 student because it involves physically harming
another person.

E.4 MAmmoTH

E.4.1 Solvability
Positive Example The 5 Power Rangers, Red,
Blue, Black, Yellow, and Pink, are eating pizza.
Red ate 31 slices, Blue ate 28 slices, Black ate 23
slices, Yellow ate 21 slices, and Pink ate 15 slices.
How many slices of pizza did they eat in total?

Negative Example In Fortnite, the player has 5
health points. When the player is hit by an enemy,
they lose 2 health points. How many health points
does the player have left?
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Negative Example Reasoning This question
defines how many health points a player loses when
they get hit by an enemy, but it does not define how
many times the player got hit, so it is impossible to
determine how many health points they have left.

E.4.2 Accuracy
Positive Example Harry Potter and his friends
have just finished their exams and are looking
forward to a well-deserved break. They decide
to go on a camping trip together. They have 120
Galleons between them. They spend 30 Galleons
on food in the morning and 20 Galleons on food in
the afternoon. They have 20 Galleons left. How
many Galleons did they spend in the evening?

Solution:
def solution():

# total amount of Galleons they had
total_galleons = 120
# amount spent on food in the morning
morning_food = 30
# amount spent on food in the afternoon
afternoon_food = 20
# amount left
left_galleons = 20
# calculate the amount spent in the evening
evening_food = total_galleons - morning_food -

afternoon_food - left_galleons
return evening_food

print(solution()) 5

Negative Example Captain Marvel has 100
friends on Facebook. She has 40 more friends
than the average number of friends her friends
have. How many friends does the average friend of
Captain Marvel have?

Solution:
def solution():

#Captain Marvel has 100 friends on Facebook
captain_marvel_friends = 100
#She has 40 more friends than the average
#number of friends her friends have
captain_marvel_friends_more = 40
#The average number of friends her friends have
average_friends = (captain_marvel_friends -

captain_marvel_friends_more) / 2
return average_friends

5MAmmoTH is prone to ending its generations with
print(solution()) because its PoT training data always ends
with a print statement (Yue et al., 2023).

Negative Example Reasoning The model cal-
culates an average rather than subtract the average
number of friends Captain Marvel’s friends have
from her number of friends.

E.4.3 Appropriateness
Positive Example Taylor Swift has 11 Grammys,
29 AMAs, 12 CMAs, 8 ACMs and 35 BMAs. How
many awards has she won in total?

Negative Example The soccer team has 32 play-
ers. Each player has 2 legs. How many legs does
the team have?

Negative Example Reasoning While this
question is solvable, it is not appropriate because it
is strange to ask how many legs a soccer team has.

E.5 Llama-2
E.5.1 Solvability
Positive Example The Pittsburgh Steelers have
11 players on the field. 3 of the players are from
the 10th grade, 6 are from the 11th grade, and the
rest are from the 12th grade. How many players
are from the 12th grade?

Negative Example The cheerleaders at the
school are planning a pep rally. They need to make
200 pom-poms. Each pom-pom requires 20 min-
utes to make. How many hours will it take to make
200 pom-poms?

Negative Example Reasoning The question
does not define how many cheerleaders there are,
so it is impossible to determine how long it will
take them to make the pom-poms.

E.5.2 Accuracy
Positive Example Barbie has 100 pairs of shoes.
She gave 20 pairs of shoes to Ken, 30 pairs of
shoes to Skipper, and 40 pairs of shoes to Stacie.
How many pairs of shoes does Barbie have left?

Solution:
def solution():

#Barbie started with 100 pairs of shoes
shoes_initial = 100
#She gave 20 pairs of shoes to Ken
shoes_ken = 20
#She gave 30 pairs of shoes to Skipper
shoes_skipper = 30
#She gave 40 pairs of shoes to Stacie
shoes_stacie = 40
#The answer is
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result = shoes_initial - shoes_ken -
shoes_skipper - shoes_stacie

return result

Negative Example A basketball team scored
120 points in a game. The team scored 30 points in
the first quarter, 35 points in the second quarter,
20 points in the third quarter, and 35 points in the
fourth quarter. How many points did the team
score in the second half of the game?

Solution:
def solution():

#The team scored 120 points in a game
total_points = 120
#30 points in the first quarter
points_first_quarter = 30
#35 points in the second quarter
points_second_quarter = 35
#20 points in the third quarter
points_third_quarter = 20
#35 points in the fourth quarter
points_fourth_quarter = 35
#The answer is
result = points_second_quarter +

points_third_quarter + points_fourth_quarter
return result

Negative Example Reasoning The model cor-
rectly defines the variables, but it incorrectly adds
the points scored in the second quarter to the total
for the points scored in the second half.

E.5.3 Appropriateness
Positive Example Patrick Mahomes is a profes-
sional football player. He is 6 feet and 3 inches tall.
1 inch is 2.54 centimeters. How many centimeters
tall is Patrick Mahomes?

Negative Example A cat has 100 kittens. 20
of them are calico, 30 are tabby, and the rest are
siamese. How many kittens are siamese?

Negative Example Reasoning This question
is not based in reality, as it is not possible for one
cat to birth 100 kittens, nor is it possible for them
to be different breeds.

E.6 MATHWELL
E.6.1 Solvability
Positive Example A soccer team has 11 players
on the field at a time. They have 22 more players
on the bench. How many players are on the team
in total?

Negative Example Steph Curry, the NBA star,
is 6.2 feet tall. He wears shoes that are 1.5 inches
thick. How tall is he in inches? (1 foot is 12 inches)

Negative Example Reasoning This question
is not solvable because it is vague: we do not know
if we are calculating his height in inches with or
without shoes on.

E.6.2 Accuracy
Positive Example In the game, Super Mario can
stomp on 30 Goombas, 20 Koopas, and 10 Piranha
Plants. How many enemies does he stomp on total?

Solution:
def solution():

#Super Mario can stomp on 30 Goombas
goombas = 30
#20 Koopas
koopas = 20
#and 10 Piranha Plants
piranha_plants = 10
#The answer is
result = goombas + koopas + piranha_plants
return result

Negative Example A Minecraft player has
100000 blocks. 20000 of the blocks are dirt, 30000
of the blocks are stone, 20000 of the blocks are
wood, and 30000 of the blocks are diamond. How
many of the blocks are not dirt, stone, wood, or
diamond?

Solution:
def solution():

#100000 blocks
blocks_total = 100000
#20000 of the blocks are dirt
blocks_dirt = 20000
#30000 of the blocks are stone
blocks_stone = 30000
#20000 of the blocks are wood
blocks_wood = 20000
#30000 of the blocks are diamond
blocks_diamond = 30000
#The answer is
result = blocks_total - blocks_dirt - blocks_stone

- blocks_wood
return result

Negative Example Reasoning The model cor-
rectly defines the necessary variables, but does not
subtract the number of diamond blocks from the
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total number of blocks.

E.6.3 Appropriateness
Positive Example LeBron James has 12000
points. He is 4000 points away from the all-time
scoring record. How many more points does he
need to average per game for the next 20 games to
break the record?

Negative Example A field hockey team has 11
players. 3 of them are forwards, 3 of them are
midfielders, 3 of them are defenders, and 2 of them
are goalies. How many forwards are there?

Negative Example Reasoning This question
is inappropriate to give to a student because it does
not require any mathematical operations to solve.
It directly defines the number of forwards on the
team.

F Topics for Data Generation

We collected topics and keywords in collaboration
with our volunteer annotators with K-12 teaching
experience. The topics and keywords span a wide
array of student interests including sports, music,
video games, movies/TV, animals, vehicles, and
food. On top of being manually collected from
experts, we believe the resultant list is largely inar-
guable.

We used a list of 43 topics when comparing mod-
els for the experiments reported in Section 4 to
make sure the generations could be compared fairly
and followed a similar contextual distribution. The
full list of topics written in Python list format is
below.

Topics : [’Superman’, ’Batman’, ’Wonder
Woman’, ’Barbie’, ’Power Rangers’, ’basketball’,
’soccer’, ’football’, ’volleyball’, ’field hockey’,
’Fortnite’, ’Spiderman’, ’Iron Man’, ’Captain
America’, ’Captain Marvel’, ’Thor, the God of
Thunder’, ’Ninja Turtles’, ’Black Panther’, ’Taylor
Swift’, ’swimming’, ’Pokémon’, ’Super Mario’,
’Naruto’, ’unicorns’, ’Hello Kitty’, ’Minecraft’,
’lacrosse’, ’cheer leading’, ’LeBron James’, ’Steph
Curry’, ’Patrick Mahomes’, ’Serena Williams’,
’dogs’, ’cats’, ’dinosaurs’, ’Harry Potter’, ’cars’,
’planes’, ’trains’, ’pizza’, ’cookies’, ’ice cream’,
’candy’]

G GPT-4 Coding Performance

GPT-4 tends to output additional information be-
yond what is requested in the prompt and shown

in few-shot examples, such as example usage or
comments about the Python function solution (see
Appendix E.1.2 for an example). This results in
the model having a lower percentage of executable
code than GPT-3.5 when its output is parsed by
the same script we used to parse the output from
all other models we evaluated. We used the same
parsing script across models to evaluate them all
the same way, rather than creating a customized
script for GPT-4.
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