
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 9635–9646
November 12-16, 2024 ©2024 Association for Computational Linguistics

LaMDA: Large Model Fine-Tuning via Spectrally Decomposed
Low-Dimensional Adaptation

Seyedarmin Azizi1*, Souvik Kundu2, Massoud Pedram1

1University of Southern California, USA 2Intel Labs, San Diego, USA

Abstract

Low-rank adaptation (LoRA) has become the
default approach to fine-tune large language
models (LLMs) due to its significant reduction
in trainable parameters. However, trainable
parameter demand for LoRA increases with in-
creasing model embedding dimensions, leading
to high compute costs. Additionally, its back-
ward updates require storing high-dimensional
intermediate activations and optimizer states,
demanding high peak GPU memory. In this pa-
per, we introduce LaMDA, a novel approach to
fine-tuning large language models, which lever-
ages low-dimensional adaptation to achieve sig-
nificant reductions in trainable parameters and
peak GPU memory footprint. LaMDA freezes a
first projection matrix (PMA) in the adaptation
path while introducing a low-dimensional train-
able square matrix, resulting in substantial re-
ductions in trainable parameters and peak GPU
memory usage. LaMDA gradually freezes a
second projection matrix (PMB) during the
early fine-tuning stages, reducing the com-
pute cost associated with weight updates to en-
hance parameter efficiency further. We also
present an enhancement, LaMDA++, incor-
porating a “lite-weight" adaptive rank alloca-
tion for the LoRA path via normalized spec-
trum analysis of pre-trained model weights.
We evaluate LaMDA/LaMDA++ across vari-
ous tasks, including natural language under-
standing with the GLUE benchmark, text sum-
marization, natural language generation, and
complex reasoning on different LLMs. Re-
sults show that LaMDA matches or surpasses
the performance of existing alternatives while
requiring up to 17.7× fewer parameter up-
dates and up to 1.32× lower peak GPU mem-
ory usage during fine-tuning. Code will be
publicly available at https://github.com/
ArminAzizi98/LaMDA.

*Correspondence author (seyedarm@usc.edu)

Figure 1: (a) LoRA (Hu et al., 2022). (b) VERA
(Kopiczko et al., 2024). (c) LaMDA. At the beginning,
PMB is trainable and gradually freezes based on the
singular values. After ti iterations, PMB is completely
frozen, and only the LDA is fine-tuned.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable performance in addressing a variety of
natural language processing (NLP) tasks due to
their generalization ability upon training on large
corpus of data (Brown et al., 2020; Touvron et al.,
2023a). To fully harness the capabilities of LLMs,
fine-tuning has become the standard approach to
serve various downstream tasks. However, full fine-
tuning of LLMs can be prohibitively costly, making
fine-tuning at the edge hardly possible. For exam-
ple, even the smaller variants of LLMs with 7B pa-
rameters may ask for ∼ 60 GB memory to perform
full fine-tuning (Pan et al., 2024a). Additionally,
such approach is prone to causing overfitting and
catastrophic forgetting in the over-parameterized
regime (Luo et al., 2023; Doering et al., 2024).

As a solution to these challenges, parameter-
efficient fine-tuning (PEFT) techniques were pro-
posed in which either a small portion of model pa-
rameters are updated, including the weight adapters
(Houlsby et al., 2019; Hu et al., 2023), or task-
specific soft prompts are trained (Lester et al.,
2021). Among these, low-rank adaptation (LoRA)

9635

https://github.com/ArminAzizi98/LaMDA
https://github.com/ArminAzizi98/LaMDA
seyedarm@usc.edu


(Hu et al., 2022) has gained significant popular-
ity. It assumes that the changes in the pre-trained
weight reside in a low-rank space and thus adds
two trainable low-rank adapters, named the pro-
jection matrix AAA (PMA) and the projection matrix
BBB (PMB) as BABABA in parallel to the frozen main
path of the model weight WWW (refer to Fig. 1(a)).
LoRA fine-tuning can reduce GPU memory de-
mand and trainable parameter-count since it only
fine-tunes the BABABA which is much smaller in param-
eter count compared to WWW . However, the number
of trainable-parameters in LoRA may still be po-
tentially larger than the low intrinsic dimension
of a pre-trained LLM (Aghajanyan et al., 2021).
Moreover, as evident in Fig 1(a), the input activa-
tions XXX that must be stored for backpropagation
reside in a d-dimensional space, where d denotes
the embedding dimension of the model. Subse-
quently, the activation’s GPU memory increases
linearly with the embedding size, and LoRA does
not provide any merit in activation memory sav-
ing. Notably, few contemporary works (Liu et al.,
2024b; Kopiczko et al., 2024) have presented so-
lutions of BABABA freezing. However, they still suffer
from increased activation storage and often demand
high rank to compensate for the accuracy drop due
to freezing (Kopiczko et al., 2024).

To address these issues, in this work we
present, Large Model Fine-tuning via Spec-
trally Decomposed Low-Dimensional Adaptation
(LaMDA). LaMDA as demonstrated in Fig. 1(c)
employs a trainable low-dimensional adapter
(LDA), which is a square matrix in the r-
dimensional space. We keep the PMA frozen
throughout the fine-tuning, while allow PMB to
freeze gradually only after few epochs based on
relative magnitude of the singular values. We only
keep the LDA trainable throughout. This allows
the trainable parameters to be independent of d and
the activations that are saved for backward pass
remain in the r-dimensional space (r ≪ d). Thus
LaMDA can significantly reduce the trainable pa-
rameter, activation, and optimizer state memory.
We summarize our contributions as follows:

• We introduce LaMDA, a novel framework to
fine-tune LLMs that significantly reduces both
parameter count and activation memory, re-
sulting in lower computational costs and GPU
memory usage.

• We then present LaMDA++, a novel enhance-
ment of LaMDA that uses adaptive rank

Table 1: Comparison of different important metrics
associated to different fine-tuning techniques.

Method Memory Adaptive
Optimizer Gradient Activation rank

Full FT ✗ ✗ ✗ ✗

LoRA ✓ ✓ ✗ ✗

AdaLoRA ✓ ✓ ✗ ✓

LoRA-FA ✓ ✓ ✓ ✗

LISA ✓ ✓ ✗ ✗

VERA ✓ ✓✓ ✗ ✗

AFLoRA ✓ ✓✓ ✗ ✗

LaMDA (Ours) ✓ ✓✓ ✓ ✗

LaMDA++ (Ours) ✓ ✓✓ ✓ ✓✓

across different layers to fine-tune the model.
Precisely, we use the pre-trained weight ten-
sors to present a “lite-weight" normalized
energy-score1 based layer ranking to adap-
tively assign rank to the LDA of each layer
allowing more optimal distribution of train-
able parameters. Table 1 compares the dif-
ferent PEFT methods and their benefits and
limitations in the context of different memory
footprint and adaptive rank allocation policy.

• We evaluate the performance of LaMDA
and LaMDA++ fine-tuning on encoder-only
(DeBERTa-V3 (He et al., 2021)), encoder-
decoder (BART-Large (Lewis et al., 2020)),
and decoder-only (LLaMA2-7B (Touvron
et al., 2023b)) models across various tasks in-
cluding the GLUE benchmark for natural lan-
guage understanding, text summarization, and
complex reasoning. Our experiments show
that LaMDA fine-tuned models consistently
yield similar or improved performance with
up to 17.7× fewer trainable parameters, at re-
duced activation storage while providing peak
GPU memory saving of up to 1.32×.

2 Background

Transformer-based models. Each module of an L
layer transformer model (Vaswani et al., 2017) usu-
ally consists of two sub-blocks: the multi-head self-
attention (MHSA) sub-block and the feed-forward
network (FFN). Each MHSA takes input token em-
bedding XXX ∈ Rn×d and applies the following:

QQQ(i) =XXXWWW
(i)
Q ,KKK(i) =XXXWWW

(i)
K ,VVV (i) =XXXWWW

(i)
V

(1)
HHH(i) = [Softmax(QQQ(i)KKK(i)T /

√
dh)VVV

(i)] (2)

MHSA(XXX) = Concat[HHH(1), ..,HHH(i), ..,HHH(h)]WWW o

(3)
1Energy-score of a matrix is defined as the summation of

the square of its singular values.

9636



LaMDA LISA LoRA Full FT
Fine-tuning Method

0

20

40

60
G

PU
 M

em
or

y 
(G

B
)

24 GB

Weight
Activation
Weight Gradient
Optimizer State

Figure 2: GPU memory usage of LLaMA2-7B on dif-
ferent fine-tuning methods including ours (LaMDA).
where WWWO ∈ Rd×d, WWWQ,K,V (all ∈ Rd×dh) are
output projection, query, key, and value matrices
with dh as model embedding dimension per head.
The FFN includes two linear transformation lay-
ers (WWWFFN1 and WWWFFN2) with a non-linear ac-
tivation function σ in the middle: FFN(XXX) =
σ(XWXWXWFFN1)WWWFFN2. With MHSA and FFN as
the two sub-blocks, the output of the transformer
block is computed as:

XXX ′ = LayerNorm(XXX +MHSA(XXX)) (4)

YYY = LayerNorm(XXX ′ + FFN(XXX ′)) (5)

LayerNorm is the layer normalization module, and
Y is the output of the transformer block.
Low-rank adaptation. LoRA adds a trainable
adaptation path (through theAAA andBBB matrix) paral-
lel to the frozen main path of the respective module
(i.e., WWW ). This results in a significant reduction in
the number of trainable parameters, the optimizer’s
state memory, and the required gradient memory:

YYY =XWXWXW + αXABXABXAB. (6)

α serves as a fine-tuning hyper-parameter.
Further numerous variants of LoRA have been

introduced to enhance its performance. DoRA
(Liu et al., 2024a) proposed the decomposition
of weights into magnitude and direction compo-
nents and used LoRA for directional updates to
enhance the learning capacity and training stability
of LoRA. Earlier works (Zhang et al., 2023b; Pan
et al., 2024a) explored different per-layer rank al-
location and layer-importance sampling strategies
to better utilize the fine-tuning budget across the
model layers. The approach learns the adapters’
ranks dynamically by analyzing the singular val-
ues of the adapters, allowing for more effective
utilization of the fine-tuning budget. More re-
cently, (Zhang et al., 2023a) addresses GPU mem-
ory savings by freezing the PMA matrix in the

adaptation path, thereby reducing the size of the
stored activations during fine-tuning. However, this
method still requires fine-tuning d× r parameters
per linear layer and compromises accuracy. VERA
(Kopiczko et al., 2024) takes a different approach
by randomly initializing and freezing PMA and
PMB with a large r dimension, focusing on fine-
tuning two feature transformation vectors instead
(Fig. 1). While this method reduces parameter
count, add significant compute and activation mem-
ory overhead. To address VERA’s computational
inefficiencies, AFLoRA (Liu et al., 2024b) was pro-
posed. However, it still suffers from high activation
storage overhead.

LaMDA, on the contrary, offers two key benefits:
1) it significantly reduces trainable parameter, acti-
vation, and optimizer storage to enhances memory
savings compared to LoRA; 2) it greatly reduces
computational cost in the forward pass during fine-
tuning. Table 1 compares various state-of-the-art
(SOTA) fine-tuning methods regarding their mem-
ory requirement and rank adaptation. Notice that
LaMDA(++) is the only method that can simulta-
neously reduce gradient, optimizer, and activa-
tion memory while also yielding adaptive ranks
based on a notion of layers’ energy-score.

3 Methodology

This section provides a detailed explanation of
LaMDA and LaMDA++ as novel parameter-
efficient fine-tuning methods.

3.1 Low-Dimensional Adapter (LDA)
One of the essential components of the LaMDA
method is a square r-dimensional matrix SSS, as de-
picted in Figure 1(c). Integrating this module into
the adapter path yields the following formulation:

YYY =XWXWXW + αXASBXASBXASB, (7)

where AAA ∈ Rd×r, SSS ∈ Rr×r, and BBB ∈ Rr×d

represent PMA, LDA, and PMB, respectively. By
freezing AAA and BBB and keeping SSS trainable, we sig-
nificantly reduce the number of trainable parame-
ters, which is reduced to r2 ≪ 2× d× r of LoRA,
and is independent of the increasing model d. This
reduction in the number of trainable parameters
offers a two-fold advantage. Firstly, it effectively
constrains the parameter count, thereby reducing
the risk of overfitting and enhancing the model’s
generalization capabilities. This is particularly ad-
vantageous considering that 2×d×r×L potentially

9637



exceeds the intrinsic dimension of large language
models (Aghajanyan et al., 2021). Secondly, fine-
tuning fewer parameters requires less computation
in the backward pass as fewer gradient-based up-
dates and optimizer states computations happen ac-
cordingly. This alleviates the overall computational
and optimizer storage overhead of fine-tuning. Ad-
ditionally, employing the low-dimensional adapter
while freezing AAA reduces activation memory usage
during fine-tuning. Assuming a fine-tuning batch
size of b and an input sequence length of n, in
LoRA, the input X in Equation 6 is represented as
a BBB × n× d tensor. This tensor must be stored in
GPU memory, as it is essential for computing the
gradient for the trainable matrix AAA. Consequently,
the required GPU memory for storing the activa-
tions is a function of the embedding dimension
d. However, when utilizing the low-dimensional
adapter SSS in Equation 7, and since AAA is not be-
ing trained, the required activation in the backward
pass is of dimension BBB×n× r. This leads to a sig-
nificant reduction in the number of stored elements
and GPU memory usage.

Figure 2 reports the peak GPU memory usage of
different fine-tuning methods for the LLaMA2-7B
model with a batch size one. As the figure shows,
compared to LoRA, most GPU memory saving is
achieved by the required activation memory reduc-
tion. Furthermore, LaMDA surpasses the current
SOTA fine-tuning approach of LISA (Pan et al.,
2024b). Having established the benefits of our low-
dimensional adapter, we delve into the details of
the LaMDA fine-tuning process in the next section.

3.2 LaMDA
Building upon the idea of the low-dimensional
adapter, we now disclose the LaMDA in detail.
Considering Figure 1(c), a natural implementation
of the idea of the low-dimensional adapter would
be to keep the AAA and BBB frozen and train the ma-
trix S until convergence. This achieves the benefits
discussed in section 3.1. One critical issue will be
the initialization of the fixed adapters PMA and
PMB. VERA (Kopiczko et al., 2024) kept them
frozen by initializing via Kaiming normal distribu-
tion. Despite frozen BABABA, the downside was that it
required the rank r to potentially converge to good
accuracy, thus costing substantial compute for the
forward and the backward pass. We on the con-
trary, propose to initialize PMA and PMB with the
singular vectors (SVs) corresponding to the most
significant singular values of the pre-trained weight.

This is accomplished by applying singular value
decomposition (SVD) to the pre-trained weight and
extracting its spectrum, then initializing AAA and BBB
with the SVs:

UUU,ΣΣΣ,VVV = SV D(WWW ) (8)

AAA = UUU [:, : r]ΣΣΣ[: r, : r], BBB = VVV [:, : r]T. (9)

Since BBB forms a basis for Rr, learning matrix SSS in
Equation 7 can be interpreted as learning a basis
change matrix. Previous studies (Hu et al., 2022;
Li et al., 2023) have emphasized the importance
of ensuring that the combined effect of the main
path and the adapters approximates the pre-trained
weights at the onset of fine-tuning. Accordingly,
based on Equations 8 and 9, we initialize SSS (LDA)
with the identity matrix Ir and set the main path
with the last d− r components of spectrum of WWW .
We note, a contemporary work (Meng et al., 2024)
has suggested similar initialization of the adapters.
However, our approach largely differ in primary
objective, as we intend to find suitable initialization
to freeze by allowing the LDA to learn. (Meng
et al., 2024), on the contrary, focuses primarily on
the impact of adapter initialization and does not
yield any memory or compute saving compared to
that with LoRA.

Having initialized all the parameters in equation
7, we perform fine-tuning by keeping the PMA al-
ways frozen and LDA always learnable. For the
PMB, we present a gradual freezing strategy, to
be discussed next. We hypothesize that having
only a trainable LDA for simpler tasks (e.g. GLUE
benchmark) would be sufficient potentially due to
much lower intrinsic dimensions of the pre-trained
weights, thus not necessitating any need of high
trainable parameters. However, for relatively com-
plex tasks, like summarizing, complex reasoning,
we believe intrinsic dimensionality of the weight
may not be very low. To tackle this challenge,
we adapt a gradual freezing strategy of the PMB
allowing the fine-tuned model to perform better
while keeping all the benefits of LaMDA. Further
analysis on the relation of task difficulty to model
intrinsic low-dimensionality may be an interesting
future research.

To enhance LaMDA’s expressiveness while
maintaining the benefits of having low parameter
count and minimal activation memory, we intro-
duce the mechanism of gradual freezing of PMB,
as illustrated in Figure 1(c). The concept involves
keeping PMB trainable during the initial iterations

9638



0 5 10 15 20 25 30
Layer Index

0.1

0.2

0.3

0.4

0.5
N

or
m

al
iz

ed
 E

ne
rg

y-
Sc

or
e

WQ

WK

WV

WFFN1
WFFN2

Figure 3: Layer-wise energy-score of the first 32 ranks
of each linear module, normalized over the total energy-
score of the same module, evaluated on a pre-trained
LLaMA2-7B.

of fine-tuning and then progressively freeze PMB
row by row. Previous work by (Liu et al., 2024b)
has suggested gradual freezing based on fixing the
scores computed during fine-tuning. In contrast,
we employ a simpler heuristic to circumvent the ad-
ditional computational and memory overhead asso-
ciated with calculating and storing these scores. As
argued in (Meng et al., 2024), learning the SVs cor-
responding to the most significant singular values is
the most effective approach for parameter-efficient
fine-tuning. Consequently, a reasonable criterion is
to freeze the rows of BBB sequentially from the last
row to the first, given that the first row represents
the highest-energy component of the spectrum of
PMB. So, we propose a linear schedule for the
number of trainable rows in PMB as below:

r(t) =

{
int(r − t

ti
), t ≤ ti

0 t ≥ ti

where ti is set to be 30% of the total iterations in
our experiments. Since BBB is an r × d matrix, the
input activation that needs to be stored for back-
propagation is again in the r−dimensional space,
so the memory-saving arguments still hold. In sec-
tion 4.5, we do an ablation study on the correct
order of freezing the rows of PMB.

3.3 LaMDA++
This section presents LaMDA++, an enhanced ver-
sion of LaMDA that incorporates the option of
varying ranks across different network layers. Pre-
vious works on adaptive rank for LLMs (Zhang
et al., 2023b) have introduced multiple hyperpa-
rameters, that can lead to increased training time.
Furthermore, changing the rank of the matrices dy-
namically could result in more complex training.
Conversely, We rely on a “lite-weight" static analy-
sis for fine-tuning with adaptive rank. In specific,

we analyze the normalized energy-score of the pre-
trained model weights to simplify implementation
and adoption.

To motivate this approach, Figure 3 reports the
normalized energy-score of the first 32 singular
vectors (El

r with r = 32) for each trainable lin-
ear module l of a LLaMA2-7B across all layers.
The normalization factor is the total energy-score
computed over all the singular vectors (El

T ) of the
corresponding module l. As the figure indicates,
some modules capture significantly higher normal-
ized energy-score than others when applying SVD
to the weights. This observation suggests that, to
achieve a similar normalized energy-score across
all layers, the WWWQ and WWWK modules may require
a lower rank. In contrast, the WWWFFN1, WWWFFN2,
and WWW V modules might necessitate a higher rank
to reach an equivalent level of normalized energy-
score. This can be of great importance, as previous
works (Hu et al., 2023) have shown that all lin-
ear layers of the LLMs (including the attention
weights) are essential to be fine-tuned.

To implement this heuristic while maintain-
ing the same number of trainable parameters,
LaMDA++ employs a pre-processing step to se-
lect the ranks of each LoRA path. Intuitively, ranks
should be reduced from the budget of layers less
affected by rank reduction and reallocated to lay-
ers that capture the least normalized energy-scores.
Firstly, we define a rank budget set RS , contain-
ing S potential candidate ranks, RS = {r1, ..., rS},
with r1 < r2 < rS , to be selected for a LoRA path.
We ensure that the summation of all the different
ranks selected for the layers gets averaged to the
target rank rT . Additionally, for a module at layer
l, LaMDA++ assigns a candidacy score νl as,

νl =
El

rS
− El

r1

El
rT

(10)

LaMDA++ then sorts the linear modules based on
the ascending order of νl. The initial elements of
this sorted array are the layers that potentially re-
quire higher ranks to yield better energy-scores. In
contrast, the later elements can potentially sacrifice
rank reduction without losing significant energy.
Based on this ranking, and to maintain simplicity,
LaMDA++ assigns rS to the first 1

S th quantile of
the sorted array, rS−1 to the second 1

S th quantile,
and so on. This heuristic approach favors allocat-
ing higher rank to modules that would benefit most
and lower rank to modules that would suffer the
least from rank reduction.

9639



4 Experiments

This section evaluates LaMDA and LaMDA++ on
NLU, NLG, and reasoning tasks.

4.1 Experimental Setup

Our experiments encompass a broad range of mod-
els and datasets. For NLU, we utilize DeBERTa-V3
(He et al., 2023) and conduct evaluations on the
GLUE benchmark (Wang et al., 2019). For NLG,
we employ BART-large (Lewis et al., 2020) and
assess performance on the XSUM (Narayan et al.,
2018) and CNN/DailyMail (Hermann et al., 2015)
datasets. Additionally, we evaluate the LLaMA2
series (Touvron et al., 2023b) on GSM8K (Cobbe
et al., 2021), Wikitext-2 (Merity et al., 2017), and
a collection of commonsense reasoning datasets.
Following prior works on LoRA variants (Hu et al.,
2022; Zhang et al., 2023b; Meng et al., 2024), we
freeze the main path of the model while treating the
LoRA path according to the LaMDA methodology.
LaMDA is applied to the MHSA and FFN blocks
of all models, encompassing the WWWQ, WWWK , WWW V ,
WWWFFN1, and WWWFFN2 linear modules. As base-
lines, we compare LaMDA with full fine-tuning,
LoRA, LoRA-FA (Zhang et al., 2023a), AFLoRA
(Liu et al., 2024b), and VERA (Kopiczko et al.,
2024). Our implementation of LaMDA is based on
HuggingFace’s Transformers library (Wolf et al.,
2019), and all experiments are conducted on a sin-
gle NVIDIA A6000 GPU.

4.2 Encoder-only Model: DeBERTa-V3

We fine-tuned DeBERTa-V3 (He et al., 2023) using
LaMDA and LaMDA++ on the GLUE NLU bench-
mark. For LaMDA, the rank of the adapter path is
set to 32, and in LaMDA++, the target rank rT is
set to 32 as well. For LaMDA++, the set of poten-
tial candidate ranks is RS = {16, 24, 32, 40, 48}.
For further details on experimental hyperparame-
ters please refer to Appendix A. Table 2 presents
the performance and the number of trainable pa-
rameters for LaMDA, LaMDA++, and SOTA PEFT
methods. As shown in the Table, LaMDA achieves
performance close to LoRA with a 17.7× reduc-
tion in the number of trainable parameters. Simi-
larly, LaMDA achieves reductions of 17×, 2.1×,
and 1.8× compared to AdaLoRA, VERA, and
AFLoRA, respectively. Furthermore, LaMDA++
achieves SOTA performance with only a negligible
increase in the parameter count. Please note, here
we trained the LDA only while keeping the PMA,

BS=8 BS=16 BS=32
Batch Size (BS)

0

10

20

30

40

Pe
ak

 G
PU

 M
em

or
y 

(G
B

)

14.5

23.6

42.7

11.5

20.9

39.1

8.9

15.7

29.5

Full Fine-tune
LoRA
LaMDA

Figure 4: Peak GPU memory usage during fine-tuning
BART-large on XSUM dataset.

PMB frozen throughout the fine-tuning period.

4.3 Encoder-Decoder Model: BART-large

For the text summarization tasks, we utilize the
BART-large model (Lewis et al., 2020) and fine-
tune it on the XSUM (Narayan et al., 2018) and
CNN/DailyMail (Hermann et al., 2015) datasets us-
ing LaMDA. The selected rank and the set RS are
the same as those used for DeBERTa-V3. The low-
rank path is added parallel to the math path of the
MHSA and FFN blocks of the encoder and decoder
across all model layers. As mentioned in section
3.2, here we freeze PMA, keep LDA trainable, and
gradually freeze PMB. The hyperparameter ti is
set to be 30% of the total training iterations. For
evaluation, we report the ROUGE-1, ROUGE-2,
and ROUGE-L scores (R1/2/L) (Lin, 2004). Table
3 showcases the number of trainable parameters
and the performance of LaMDA and LaMDA++.
Compared to LoRA, LaMDA achieves compara-
ble performance while requiring 10× fewer pa-
rameter updates. LaMDA++ surpasses LoRA on
the XSUM dataset and performs similarly to it on
CNN/DailyMail. The hyperparameters used for
fine-tuning are provided in appendix A.
To better understand the memory saving of
LaMDA, we profile the total memory usage of fine-
tuning BART-large on the XSUM dataset for full
fine-tuning, LoRA, and LaMDA across different
batch sizes. Figure 4 shows the peak GPU memory
usage for various methods. In specific, LaMDA
provides a peak memory saving of up to 1.32×
to fine-tune the BART-large, profiled for differ-
ent batch-sizes. This saving is primarily due to
reduced memory required for activations. Such
system-level benefit allows us to fine-tune larger
models with larger batch sizes.

4.4 Decoder-only Model: LLaMA2

We fine-tune and evaluate LLaMA2-7B (Touvron
et al., 2023b) on complex reasoning task GSM8K

9640



Table 2: Comparison of different fine-tuning methods for DeBERTa-V3 on GLUE benchmark.

Method #Params. CoLA ↑ SST-2 ↑ MRPC ↑ QNLI ↑ STS-B ↑ RTE ↑ MNLI ↑ QQP ↑ Avg. ↑
FFT 184M 69.21 95.64 89.22 93.78 91.59 82.49 89.98 92.05/89.31 87.82
LoRA (r = 8) 1.33M 69.73 95.57 89.71 93.76 91.86 85.32 90.46 91.95/89.26 88.38
AdaLoRA 1.27M 70.86 95.95 90.22 94.28 91.39 87.36 90.30 92.13/88.41 88.83
VERA 0.16M 70.74 95.18 90.93 93.58 91.08 87.36 90.22 90.69/87.63 88.53
AFLoRA (r = 4) 0.14M 72.01 96.22 91.91 94.42 91.84 88.09 90.17 90.81/87.77 89.23
LaMDA (r = 32) 0.075M 71.60 95.70 90.44 93.72 91.30 87.50 90.05 90.70/87.70 88.87
LaMDA++ (rT = 32) 0.078M 72.12 96.25 91.65 94.30 91.55 88.01 90.56 90.80/87.75 89.28

Table 3: Comparison of fine-tuning methods for Bart-
large. NR denotes not reported. The three values in the
last column correspond to R1/R2/RL scores.

Method #Params(M) XSUM CNN/DailyMail

Full fine-tuning 415 45.14/22.27/37.25 44.16/21.28/40.90
LoRA 8.6 43.95/20.72/35.68 45.03/21.84/42.15
AdaLoRA 8.6 44.72/21.46/36.46 45.00/21.89/42.16
AFLoRA 5.1 NR 43.96/21.06/NR
LaMDA (LDA-only) 0.20 40.64/18.11/33.20 40.92/17.53/38.1
LaMDA (r=32) 0.85 43.92/20.68/35.21 44.12/21.16/40.45
LaMDA++ (rT=32) 0.92 44.32/21.08/36.10 45.01/21.85/42.15

(Cobbe et al., 2021) and token generative task
Wikitext-2 (Merity et al., 2017) using LaMDA and
LaMDA++. The low-rank path is incorporated
into the WQWQWQ, WKWKWK , WVWVWV , WWWFFN1, and WWWFFN2

matrices in all layers of the model. The hyperpa-
rameter ti is set to 30% of the total fine-tuning
iterations. For the LoRA and LaMDA experi-
ments, the rank r is set to 16 and 32, respectively,
while the set of potential ranks in LaMDA++ is
RS = {16, 24, 32, 40, 48}. We report accuracy for
GSM8K and perplexity for Wikitext-2. The results
are reported in Table 4; LaMDA and LaMDA++
both surpass LoRA on GSM8K complex reasoning
task. And for the Wikitext-2, LaMDA achieves
a very close perplexity to that of LoRA, and
LaMDA++ outperforms LoRA, while fine-tuning
with 5.5× fewer trainable parameters. This clearly
shows the efficacy of LaMDA in yielding improved
performance even for complex generative tasks.

Table 4: Comparison of fine-tuning results for LLaMA2-
7B on GSM8K and Wikitext-2.

Method #Params(M) GSM8K ↑ Wikitext-2 ↓
LoRA (r = 16) 28 36.9 5.43
LaMDA (r=32) 4.37 37.9 5.45
LaMDA++ (rT=32) 5.12 38.2 5.41

We also evaluate the performance of LaMDA on
commonsense reasoning. We follow the settings in
(Hu et al., 2023) and use the Commonsense170K
dataset as a combination of training examples of
various tasks. Then we evaluate the fine-tuned

model on the validation set of each task separately.
The collection includes samples of the following
datasets: BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), SIQA (Sap et al., 2019), the Hel-
laSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2020), ARC-e and ARC-c (Clark
et al., 2018), and OBQA (Mihaylov et al., 2018).
For this experiment, the set RS of LaMDA++ is
{32, 48, 64, 80, 96}. The fine-tuning results are
shown in Table 8. LaMDA achieves a higher
average accuracy than LoRA, while fine-tuning
∼ 11.5× less parameters.

4.5 Ablations and Discussions

Impact of initialization choices. A primary step
in LaMDA involves initializing the PMA and PMB
with the singular vectors (SVs) of the pre-trained
weight WWW . LaMDA utilizes the SVs correspond-
ing to the most significant singular values because,
according to SVD theory, these vectors capture
the highest proportion of the matrix’s total energy-
score compared to any other set of r SVs. Con-
sequently, fine-tuning these vectors has the most
significant impact on adaptation. To verify this hy-
pothesis and validate the findings of (Meng et al.,
2024), we also initialize PMA and PMB with the
set of SVs associated with the smallest singular
values.

Conversely, VERA (Kopiczko et al., 2024) ini-
tializes the adapters randomly and keeps them
frozen. An insightful ablation study would exam-
ine the performance of LaMDA when PMA and
PMB are initialized randomly, with PMA frozen at
the beginning and PMB gradually frozen over time.
In this scenario, LDA is initialized to a zero matrix
instead of Ir, ensuring that the combined effect of
the main path and the adapter path equals the main
path at the onset of fine-tuning.

We fine-tune LLaMA2-7B on GSM8K and
Wikitext-2 using the three discussed initialization
methods and report the results in Table 6. For ran-
dom initialization, we perform Kaiming normal

9641



Table 5: Commonsense reasoning results for LLaMA2-7B

Method #Params.(M) BoolQ ↑ PIQA ↑ SIQA ↑ HellaSwag ↑ WinoGrande ↑ ARC-e ↑ ARC-c ↑ OBQA ↑ Avg. ↑
LoRA (r=32) 56 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
LaMDA (r=64) 4.85 71.6 80.3 79.1 84.0 82.4 81.5 65.8 79.6 78.0
LaMDA++ (rT=64) 5.65 71.8 80.6 79.5 84.0 82.7 81.5 66.0 80.6 78.3

initialization for both PMA and PMB. The remain-
ing hyperparameters are consistent with those in
Section 4.4. The Table shows that LaMDA initial-
ized with the first r SVs outperforms the random
initialization when using the same r. Additionally,
random initialization surpasses the model initial-
ized with the last r SVs. The r is set to 32 for this
ablation study. The result underscores the critical
impact of fine-tuning the high-energy components
of the model.

Table 6: Effect of the initialization in LaMDA.

Initialization #Params(M) GSM8K ↑ Wikitext-2 ↓
First r SV 4.37 37.9 5.45
Last r SV 4.37 35.8 5.55
Kaiming normal 4.37 37.1 5.49

Number of iterations ti in gradual freezing.
LaMDA freezes PMB in ti first iterations of fine-
tuning based on linear schedule. Adjusting this
hyperparameter (ti) significantly alters the effec-
tive number of trainable parameters (#Params), as
the size of PMB (r× d) is considerably larger than
that of LDA (r × r). To investigate the impact
of this hyperparameter, we conducted the GSM8K
experiment using LLaMA2-7B with various val-
ues of ti. We present the resulting #Params and
accuracy in Table 7. By comparing these results
with those in Table 4, we observe that allocating a
sufficient number of iterations to training PMB is
crucial for surpassing LoRA. Specifically, LaMDA
with ti set to 10% of the total iterations fails to out-
perform LoRA, whereas allocating 20% and 30%
of the iterations to PMB training results in superior
performance relative to LoRA. In the appendix B,
we explain how to count the effective number of
trainable parameters (#Params).

Effect of the LaMDA++ ranking. As explained
in Section 3.3, LaMDA++ generates a sorted list of
all linear modules based on the candidacy score
ν. We conduct an essential study to validate
the effectiveness of such sorting. First, we al-
locate ranks according to the list generated by
LaMDA++, assigning more ranks to layers with
smaller scores. Subsequently, we conduct another

0 500 1000 1500 2000
Iterations

1.4

1.6

1.8

2.0

Tr
ai

ni
ng

 L
os

s

LaMDA
LaMDA++
Reverse of LaMDA++

Figure 5: Training Curve of LLaMA2-7B on Wikitext-2.

experiment where ranks are allocated in the reverse
order of LaMDA++, assigning more ranks to lay-
ers with higher scores. The training curves for
this experiment are shown in Figure 5. The re-
sults indicate that LaMDA++ with reverse ordering
exhibits noisier training behavior and ends with a
higher loss value, translating into higher perplexity
on Wikitext-2. Among the three approaches pre-
sented in the figure, LaMDA++ demonstrates the
lowest training loss, attributable to its appropriate
allocation of the rank budget.

Table 7: Effect of the fine-tuning iteration % before
freezing PMB.

ti #Params(M) Accuracy ↑
10% of iterations 1.56 36.1
20% of iterations 2.97 37.0
30% of iterations 4.37 37.9

5 Conclusion

In this work, we proposed LaMDA, a novel
framework for fine-tuning large language mod-
els. LaMDA employs a low-dimensional adapter,
significantly reducing the number of trainable pa-
rameters and conserving activation memory. The
methodology involves freezing the projection ma-
trix AAA from the outset and gradually freezing the
projection matrix BBB. We further enhanced LaMDA
by incorporating the flexibility of varying ranks
across layers, allocating ranks to adapters based on
the energy components of the pre-trained weights.
Both LaMDA and LaMDA++ demonstrate the ca-
pability to facilitate the fine-tuning of larger mod-
els on commercial GPUs, offering an efficient and
scalable approach to model adaptation.

9642



6 Limitations

This study has a few limitations. Firstly, the largest
model we tested was LLaMA2-7B. Due to time
constraints associated with the paper’s deadline,
we could not extend our experiments to larger
models, which could provide further insights into
the scalability and effectiveness of LaMDA. Our
methodology, LaMDA, has not yet been tested on
instruction-following tasks. While the current re-
sults are promising, evaluating the performance
of LaMDA in these specific tasks is essential to
fully understanding its potential and versatility. We
plan to address these limitations in future work by
conducting experiments on larger models and a
broader range of tasks. We are also eager to test
the applicability of our method to vision-language
models, which was not explored in this paper.

References
Armen Aghajanyan, Sonal Gupta, and Luke Zettle-

moyer. 2021. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021, pages 7319–
7328. Association for Computational Linguistics.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7432–
7439. AAAI Press.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. CoRR,
abs/2005.14165.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surpris-
ing difficulty of natural yes/no questions. Preprint,
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
Preprint, arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Nigel Doering, Cyril Gorlla, Trevor Tuttle, and Ad-
hvaith Vijay. 2024. Empirical analysis of efficient
fine-tuning methods for large pre-trained language
models. CoRR, abs/2401.04051.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023.
Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding
sharing. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neu-
ral Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pages 1693–
1701.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

9643

https://doi.org/10.18653/V1/2021.ACL-LONG.568
https://doi.org/10.18653/V1/2021.ACL-LONG.568
https://doi.org/10.1609/AAAI.V34I05.6239
https://doi.org/10.1609/AAAI.V34I05.6239
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.48550/ARXIV.2401.04051
https://doi.org/10.48550/ARXIV.2401.04051
https://doi.org/10.48550/ARXIV.2401.04051
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://openreview.net/pdf?id=sE7-XhLxHA
https://openreview.net/pdf?id=sE7-XhLxHA
https://openreview.net/pdf?id=sE7-XhLxHA
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po-
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters: An
adapter family for parameter-efficient fine-tuning of
large language models. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 5254–5276. Association for
Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Dawid Jan Kopiczko, Tijmen Blankevoort, and
Yuki Markus Asano. 2024. Vera: Vector-based ran-
dom matrix adaptation. CoRR, abs/2310.11454.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 7-11 November, 2021, pages 3045–
3059. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.
Association for Computational Linguistics.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos
Karampatziakis, Weizhu Chen, and Tuo Zhao. 2023.
Loftq: Lora-fine-tuning-aware quantization for large
language models. CoRR, abs/2310.08659.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024a. Dora: Weight-
decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

Zeyu Liu, Souvik Kundu, Anni Li, Junrui Wan, Liang-
hao Jiang, and Peter Anthony Beerel. 2024b. Aflora:
Adaptive freezing of low rank adaptation in param-
eter efficient fine-tuning of large models. CoRR,
abs/2403.13269.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou,
and Yue Zhang. 2023. An empirical study of catas-
trophic forgetting in large language models during
continual fine-tuning. CoRR, abs/2308.08747.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024.
Pissa: Principal singular values and singular vec-
tors adaptation of large language models. Preprint,
arXiv:2404.02948.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? A new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018,
pages 2381–2391. Association for Computational
Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 1797–1807. Association
for Computational Linguistics.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi,
Jipeng Zhang, Chi Han, and Tong Zhang. 2024a.
LISA: layerwise importance sampling for memory-
efficient large language model fine-tuning. CoRR,
abs/2403.17919.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng
Zhang, Chi Han, and Tong Zhang. 2024b. Lisa: Lay-
erwise importance sampling for memory-efficient
large language model fine-tuning. Preprint,
arXiv:2403.17919.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 8732–
8740. AAAI Press.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le
Bras, and Yejin Choi. 2019. Socialiqa: Common-
sense reasoning about social interactions. CoRR,
abs/1904.09728.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

9644

https://doi.org/10.18653/V1/2023.EMNLP-MAIN.319
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.319
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.319
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.48550/ARXIV.2310.11454
https://doi.org/10.48550/ARXIV.2310.11454
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243
https://doi.org/10.18653/V1/2020.ACL-MAIN.703
https://doi.org/10.18653/V1/2020.ACL-MAIN.703
https://doi.org/10.18653/V1/2020.ACL-MAIN.703
https://doi.org/10.48550/ARXIV.2310.08659
https://doi.org/10.48550/ARXIV.2310.08659
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.48550/ARXIV.2403.13269
https://doi.org/10.48550/ARXIV.2403.13269
https://doi.org/10.48550/ARXIV.2403.13269
https://doi.org/10.48550/ARXIV.2308.08747
https://doi.org/10.48550/ARXIV.2308.08747
https://doi.org/10.48550/ARXIV.2308.08747
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2404.02948
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.18653/V1/D18-1260
https://doi.org/10.18653/V1/D18-1260
https://doi.org/10.18653/V1/D18-1260
https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.48550/ARXIV.2403.17919
https://doi.org/10.48550/ARXIV.2403.17919
https://arxiv.org/abs/2403.17919
https://arxiv.org/abs/2403.17919
https://arxiv.org/abs/2403.17919
https://doi.org/10.1609/AAAI.V34I05.6399
https://doi.org/10.1609/AAAI.V34I05.6399
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/1904.09728
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971


Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4791–4800. Association for Computational Linguis-
tics.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen
Chu, and Bo Li. 2023a. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-
tuning. CoRR, abs/2308.03303.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023b. Adaptive budget allocation for
parameter-efficient fine-tuning. In International Con-
ference on Learning Representations. Openreview.

9645

https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.48550/ARXIV.2308.03303
https://doi.org/10.48550/ARXIV.2308.03303
https://doi.org/10.48550/ARXIV.2308.03303


A Training Details

Table 8: Hyperparameters for fine-tuning DeBERTa-V3
on GLUE benchmark

Hyperparameter CoLA SST-2 MRPC QNLI STS-B RTE MNLI QQP

Learning rate 1e-2 4e-3 8e-2 4e-3 2e-2 4e-2 4e-3 4e-3
#Epochs 20 10 20 10 20 20 10 10
Max Seq. Len. 512 512 512 512 512 512 512 512

Table 9: Hyperparameters for fine-tuning LLaMA2-7B

Hyperparameters GSM8K Wikitext-2 Commonsense170k

Learning rate 3e-4 3e-4 3e-4
#Epochs 6 2 3
Batch size 16 16 16

Table 10: Hyperparameters for fine-tuning BART-large

Hyperparameters XSUM CNN/DailyMail

Learning rate 2e-4 2e-4
#Epochs 25 15
Batch size 32 64

Here we provide the implementation details and
the hyperparameters used for training. In all ex-
periments, we used the PyTorch framework and
ADAM (Kingma and Ba, 2015) optimizer.

A.1 DeBERTa-V3

To fine-tune DeBERTa-V3 on the GLUE bench-
mark, we use a batch size of 32 and use the fol-
lowing setup for the learning rate and number of
epochs, which are similar to what (Li et al., 2023)
used.

A.2 BART-large

For fine-tuning BART-large on XSUM and
CNN/DailyMail we set the maximum input se-
quence to 1024 and the maximum target sequence
to 128. Learning rate, number of epochs, and batch
size are shown in the Table 10, which are similar
to what (Li et al., 2023) used.

A.3 LLaMA2-7B

We follow the setting of (Li et al., 2023) to
fine-tune LLaMA2-7B on GSM8K and Wikitext-
2 datasets. Moreover, we adopt the Common-
sense170K dataset from (Hu et al., 2023) and use
the default setup to fine-tune LLaMA2-7B for com-
monsense reasoning. For evaluation, we use lm-
evaluation-harness library (Gao et al., 2023). The
hyperparameters are provided in Table 9.

B Effective number of trainable
parameters (#Params) in LaMDA

Assuming L trainable linear modules in the model,
ti initial iteration for gradual freezing, and T total
iterations, the effective number of trainable param-
eters can be computed as below:

#Params =

L∑

l=1

[
ti
T
×NP(PMBl)

2
+NP(LDAl)]

(11)
where NP(XXX) is a function that counts the num-
ber of trainable elements in the matrix XXX; PMBl

and LDAl are the projection matrix B and low-
dimensional adapter in the linear module l.

9646


