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Abstract

In this paper, we introduce Attributive Masking
Learning (AML), a method designed for ex-
plaining language model predictions by learn-
ing input masks. AML trains an attribution
model to identify influential tokens in the input
for a given language model’s prediction. The
central concept of AML is to train an auxiliary
attribution model to simultaneously 1) mask as
much input data as possible while ensuring that
the language model’s prediction closely aligns
with its prediction on the original input, and
2) ensure a significant change in the model’s
prediction when applying the inverse (comple-
ment) of the same mask to the input. This dual-
masking approach further enables the optimiza-
tion of the explanation w.r.t. the metric of inter-
est. We demonstrate the effectiveness of AML
on both encoder-based and decoder-based lan-
guage models, showcasing its superiority over a
variety of state-of-the-art explanation methods
on multiple benchmarks. Our code is available
at: https://github.com/amlconf/aml

1 Introduction

AI is transforming every facet of modern life, spark-
ing innovation and driving progress across diverse
fields. From groundbreaking advancements in com-
puter vision (He et al., 2016; Dosovitskiy et al.,
2020; Liu et al., 2022; Carion et al., 2020; Ass-
ran et al., 2023; Barkan et al., 2023e) and natural
language processing (NLP) (Mikolov et al., 2013;
Vaswani et al., 2017; Devlin et al., 2018; Brown
et al., 2020; Barkan, 2017; Barkan et al., 2020f,e,
2021b; Ginzburg et al., 2021; Malkiel et al., 2020,
2022b) to audio synthesis (Engel et al., 2020; Kong
et al., 2020; Barkan and Tsiris, 2019; Barkan et al.,
2019b, 2023g) and recommender systems (Barkan
and Koenigstein, 2016; He et al., 2017; Ben-Elazar
et al., 2017; Wang et al., 2019; He et al., 2020;

∗Equal contribution.

Barkan et al., 2019a, 2020a,b,d, 2021d, 2023f; Katz
et al., 2022).

In the field of NLP, the Transformer architec-
ture (Vaswani et al., 2017), has given rise to increas-
ingly sophisticated language models (LMs) (Devlin
et al., 2018; Radford et al., 2019; Brown et al.,
2020; Touvron et al., 2023; Albert Q. Jiang, 2023).
These models, characterized by their growing size
and complexity, have become pivotal components
in numerous applications. Consequently, the de-
mand for a comprehensive understanding of the
decision-making processes employed by LMs has
surged. However, the inherent complexity of these
models often obscures the transparency of their
predictions, necessitating the development of ex-
plainability methods to reveal the underlying fac-
tors in the input influencing their outputs. As
a result, a large variety of explanation methods
were developed (Ribeiro et al., 2016; Sundarara-
jan et al., 2017; Lundberg and Lee, 2017; Abnar
and Zuidema, 2020; Ferrando et al., 2022; Barkan
et al., 2021c; Malkiel et al., 2022a). In tandem with
the evolution of explanation methods, various ex-
planation metrics and benchmarks were proposed
to quantitatively assess the efficacy of explainabil-
ity methods (Samek et al., 2017; DeYoung et al.,
2020). However, consensus within the literature
regarding the ultimate explanation metric remains
elusive, with each metric providing unique insights
into different facets of the explanation quality.

In this work, we introduce the Attributive Mask-
ing Learning (AML) framework that enables ex-
planation via the generation of an attribution map
tailored to the specific metric at hand. AML in-
volves training an auxiliary attribution model to
identify influential tokens in the input for a given
LM’s prediction. This attribution model is specifi-
cally trained to achieve two goals simultaneously:
1) masking as much input data as possible while
ensuring the LM’s predictions on the masked and
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original inputs remain closely aligned, and 2) induc-
ing a significant change in the model’s prediction
when the inverse of the same mask is applied to the
input. These two objectives bear resemblance to
faithfulness metrics (DeYoung et al., 2020). The
AML optimization is self-supervised and consist-
ing of a two-phase process: a mandatory offline
AML pretraining phase (pAML), followed by an
optional online AML finetuning phase (fAML).
In the pAML phase, the attribution model is pre-
trained on a training set of examples and their re-
spective predictions (generated by the LM to be
explained). The pretraining process aims to enable
the model to generate meaningful attribution maps
by optimizing the AML dual-mask loss while mon-
itoring the metric of interest. The pAML phase
occurs once and offline. At the end of the pAML
phase, an attribution map can be generated for any
input through a single forward pass of the input and
its prediction via the pretrained attribution model.
For further refinement of the attribution map, an
optional subsequent AML finetuning (fAML) step
can be employed in an online manner by continu-
ously finetuning the pretrained attribution model
on a specific instance w.r.t. the metric of inter-
est, hence producing metric-adapted explanations.
We present a comprehensive evaluation encompass-
ing 13 explanation methods, 5 LMs (including the
latest Llama2 and Mistral models (Touvron et al.,
2023; Albert Q. Jiang, 2023)), 4 datasets, and 5
explanation metrics. Our results demonstrate the
effectiveness of AML. Specifically, pAML exhibits
competitive performance with a notably fast run-
time, while fAML surpasses all state-of-the-art ap-
proaches, achieving significant improvements in
accuracy across multiple benchmarks. In summary,
our contributions include: 1) We introduce AML
method, facilitating a novel dual-mask optimiza-
tion of the attribution map w.r.t. the specific metric
of interest. 2) We present a comprehensive inves-
tigation encompassing a wide range of datasets,
explanation methods, and evaluation metrics, ap-
plied to various LLM architectures. Our findings
show that AML set a new state-of-the-art in LLM
explainability.

2 Related Work

Explainability research has made significant strides
over the past decade, introducing a wide range of
methods across various application domains (Fong

et al., 2019; Simonyan et al., 2013; Fong and
Vedaldi, 2017; Selvaraju et al., 2017; Zhou et al.,
2018; Barkan et al., 2020c, 2021c,a, 2023d,c,a,b;
Gaiger et al., 2023; Barkan et al., 2024; Malkiel
et al., 2022a; Chefer et al., 2021a,b). Gradient-
based methods rely on the gradients of the model’s
prediction score concerning the input embeddings.
Basic gradient methods, such as Vanilla Gradi-
ents (Simonyan et al., 2013) and GradientXIn-
put (Shrikumar et al., 2016), operate on the prin-
ciple of gradient computation. Integrated Gradi-
ents (IG) (Sundararajan et al., 2017) is a path-
integration method, computing gradients on inter-
polated points along a straight line between the
data and an uninformative baseline. Approaches
like DeepLift (Shrikumar et al., 2017) and Gradi-
entShap (Lundberg and Lee, 2017) can be viewed
as approximations of IG. A recent addition, Sequen-
tial Integrated Gradients (SIG) (Enguehard, 2023),
offers a path-integration method that addresses con-
cerns about altered sentence meaning by computing
the importance of each word while keeping other
words fixed and creating interpolations between the
baseline and the word of interest.

Relevance-Decomposition methods break down
the network’s representation into vectors, each
influencing the model’s prediction differently.
GlobEnc (Modarressi et al., 2022) and ALTI (Fer-
rando et al., 2022) incorporate local-level decom-
position, aggregating resulting vector norms using
rollout (Abnar and Zuidema, 2020) to construct
global-level explanations. The recent introduction
of DecompX (Modarressi et al., 2023) showcases
state-of-the-art results by constructing decomposed
token representations and sequentially propagating
them through the model without interlayer mixing.

Perturbation-based methods, including well-
known techniques like LIME (Ribeiro et al., 2016)
and SHAP (Lundberg and Lee, 2017), introduce
perturbations to individual inputs or neurons and
observe their impact on subsequent neurons in the
network. Solvex (Zhou and Shah, 2023), on the
other hand, is a search method that applies beam-
search as an approximation to an exhaustive search
on the ranking of tokens to find the best explanation
per metric. However, a major limitation of Solvex
is its inefficiency due to the application of naive
beam-search, resulting in significantly slower run-
time compared to methods that require a single or
a small number of passes through the model, such
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as vanilla gradients and IG.
In contrast to the aforementioned works, AML

utilizes an auxiliary attribution model that learns to
preserve and alter the prediction of the model to be
explained by masking out less and more influential
elements in the input, respectively and simultane-
ously. This unique process facilitates the creation
of metric-adapted explanations through a single
pass (pAML) or, optionally, a small number of ad-
ditional passes (fAML) through the model during
inference.

3 Attributive Masking Learning

Let V represent the vocabulary, and consider v =

(vi)
k
i=1 as a sequence of k tokens, representing an

input text, where each vi ∈ V . Subsequently, we
define xv = (xvi)

k
i=1 as a sequence of embeddings,

where xvi ∈ Rd represents the token vi.
In this work, our focus is on classification tasks.

Therefore, we assume a model F that takes an input
xv and produces an output F (xv) ∈ [0, 1]c, where
Fi(xv) is the probability assigned to class i, and
c is the number of available classes. F can take
the form of a LM utilizing a classification head,
which outputs probabilities for each class in the
specific task. This involves either finetuning the
LM or using it as a backbone for transfer learning
of specific task (Liu et al., 2019).

The majority of recent LM architectures, also
known as large language models (LLMs) are
decoder-based, performing a completion task
by generating a sequence of tokens in the out-
put (Brown et al., 2020; Touvron et al., 2023).
While these LLMs can also be finetuned by em-
ploying classification heads, a more common ap-
proach is classification via completion: the LLM is
prompted with the specific task either in a few-shot
or zero-shot and instructed to output a token repre-
senting the correct class. For example, in sentiment
analysis, if the relevant classes are defined to the
LLM (via prompt) as ’pos’ and ’neg’, one can com-
pute the logit scores for the tokens ’pos’ and ’neg’
and apply softmax to obtain the probabilities of the
token associated with each individual class. We
note that this approach can be implemented either
before or after finetuning the LLM on the relevant
dataset in a completion manner. In this work, we
conduct experiments in various settings, includ-
ing finetuning with classification heads on top of
the LLM as well as classification via completion

(decoder-based models).
AML enables the attribution of the prediction

F (xv) to individual tokens in xv by training an
attribution model Gθ (parameterized by θ). This
model learns to mask as much data as possible
from xv while preserving important information,
ensuring that the predictions on the masked input
and the inversely masked input1 match and diverge
from the prediction on the original input F (xv),
respectively.

The attribution model Gθ takes the input xv and
information2 regarding F (xv) denoted by yv, and
produces an attribution map

av := Gθ(xv,yv). (1)

av ∈ [0, 1]k is a k-dimensional vector, with the
i-th entry av[i] representing the attribution score
assigned to the token xvi in the input xv. Subse-
quently, av is employed to derive the masked and
inversely masked versions of the input,

x′
v := M(av,xv) and x′′

v := M(1− av,xv),

(2)
respectively, where M is a function that masks the
information in xv based on the provided attribution
map (av or 1−av as stated in Eq. 2). Given that xv

is a sequence of tokens, the function M masks each
individual token xvi according to its attribution
score av[i] such that a lower ai value indicates a
stronger masking effect on xvi .

The masking operation is carried out in a token-
wise manner and can be implemented as either
the replacement or omission of the token to be
masked in various forms, including, but not limited
to: 1) Replacement by designated tokens, e.g., the
<MASK> or the <UNK> token in encoder-based
models and decoder-based models, respectively. 2)
Replacement by a randomly drawn token. 3) Re-
placement by another token predicted based on the
surrounding context of the token to be masked. 4)
Replacement by a new token embedding represent-
ing the mask token, which is learned as part of the
optimization process. 5) Omission of the token to
be masked from the original sequence.

In this work, we have opted for option 1, while

1The inversely masked input is obtained by masking the
input according to the inverse (complement) of the mask

2yv can be defined in two ways: either as the original
prediction F (xv) or as a one-hot vector representing a specific
class of interest. Typically, this class corresponds to the one
with the highest score in F (xv).
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leaving the exploration of other options for future
research3. Therefore, we assume the existence of
a unique embedding m ∈ Rd used for masking in-
formation, such that every token representation to
be masked is either replaced by m (hard masking)
with some masking probability or combined with
m (soft masking) according to the masking proba-
bility. In this study, we opt for soft masking, where
each token representation in the masked input x′

v

is obtained by a convex combination with the mask
token m according to the attribution map av, and
therefore, M is implemented as follows:

M(av,xv) := (av[i]xvi + (1− av[i])m)ki=1 .

(3)
Accordingly, the inversely masked input x′′

v from
Eq. 2 is obtained by employing Eq. 3 using the
inverse of the attribution map, 1− av.

3.1 AML optimization and inference

Our goal is to generate an attribution map highlight-
ing the tokens in the input xv that most significantly
contribute to and rationalize the prediction (xv). To
this end, we train Gθ to produce an attribution map
av by minimizing the following loss function:

L(xv,yv) =λpLp(F (x′
v),yv) + λaLa(av)

+ λinvLinv(F (x′′
v),yv),

(4)

where λp, λinv and λa are hyperparameters con-
trolling the inherent trade-off between the three
loss terms. Lp is the cross-entropy loss between
the prediction on the masked input F (x′

v) and yv

(derived from the prediction on the original input
F (xv) as explained earlier):

Lp(F (x′
v),yv) = −

c∑

j=1

yv[j] log(F (x′
v)[j]).

(5)
Lp encourages the prediction on the masked input
to align with the prediction on the original input.

The Linv loss is defined as follows:

Linv(F (x′′
v),yv) = − log(1− F (x′′

v)[y]), (6)

where y is the entry in yv receiving the highest
probability. Linv ensures that if the tokens with

3Our empirical findings indicate that option 1 already
achieves state-of-the-art results. However, it is noteworthy
that a study by (Zhao and Shan, 2024) suggests that option 3
may yield even better results.

the highest attribution scores are masked out (using
the inverse map 1 − av), the resulting prediction
significantly differ from the prediction on the origi-
nal input. This is since the probability of the class
y (the same class that recieved the highest score
in the prediction F (xv)) is encouraged to be mini-
mized when the prediction is made on the inversely
masked input F (x′′

v). In our initial experimentation,
we investigated other alternatives by setting Linv to
F (x′′

v)[y] or to the negative entropy of F (x′′
v). Yet,

these alternatives yielded slightly worse results.

Lastly, La is the binary cross entropy (BCE)
between av and the zero prior:

La(av) = −1

k

k∑

j=1

log(1− av[j]). (7)

La serves as a regularization term, encouraging
sparsity in attribution maps. It is worth noting
that in our initial experiments, we observed that
L1 regularization performs similarly to BCE. The
optimization of L (Eq. 4) proceeds with gradient
descent on the parameters θ of Gθ.

In practical terms, we employ a two-phase op-
timization approach: a mandatory pretraining
phase (pAML), followed by an optional finetun-
ing phase (fAML) that can be employed for fur-
ther refinement of the attribution map in inference
time. During the pretraining phase, we minimize
1
|T |

∑
v∈T L(xv,yv) on a training set T via mini-

batch training, resulting in a pretrained attribution
model GθT . Following pretraining, we can simply
use GθT during inference to generate an attribution
map for any input xv with a single forward pass
through GθT , i.e., av = GθT (xv,yv).

However, for further refinement, we propose
instance-specific finetuning of the attribution model
during inference. In this phase, we finetune the pre-
trained parameters θT for a specific instance xv by
minimizing L(xv,yv) (Eq. 4). This results in a
finetuned attribution model Gθv and subsequently,
a more refined attribution map av = Gθv(xv,yv).

A notable advantage of AML lies in its capability
to monitor a specific metric of interest throughout
the optimization process. Specifically, it allows
for the selection of the attribution model and attri-
bution map that perform the best on the metric at
hand during the pretraining and finetuning phases,
respectively. Finally, it is important to clarify that
although the explained model F participates in the
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optimization process, its parameters remain fixed
throughout the entire optimization procedure.

3.2 AML complexity

The computational complexity of the pretraining
phase depends on the size of the training set T and
the number of training epochs. In our experiments,
utilizing a training set size of about 1,000 exam-
ples proved sufficient. At inference time, once the
pretrained attribution model GθT is established, the
computational complexity of pAML involves a sin-
gle forward pass, hence comparable to the complex-
ity of vanilla gradient method. When finetuning
is applied (fAML), the best-performing attribution
map typically emerges after a very small number
of finetuning steps. If we denote the complexity
of a single forward pass through G as R, the infer-
ence complexity when applying n finetuning steps
is approximately (4n + 1)R (assuming forward
and backward passes take approximately the same
time, and that the propagation time via F and G is
consistent).

From a practical standpoint runtime compari-
son tests are reported in Sec. A.3 in the Appendix.
These runtimes are feasible even for real-time ap-
plications. Therefore, for scenarios where speed
is paramount, pAML may be the preferred option.
Conversely, when precision is of utmost impor-
tance and a slight increase in runtime is acceptable,
fAML emerges as the optimal choice.

Finally, it is worth noting that the attribution
model G is not limited to the same architecture as
the explained model F . This flexibility allows for
employing a much lighter model G, resulting in
even faster generation of the attribution map during
inference. For instance, in our experiments, we
explained Llama2 and Mistral using a much lighter
RoBERTa architecture for G.

3.3 AML implementation

Our experiments encompass both encoder-based
and decoder-based models.

Encoder-based Models For BERT, RoBERTa,
and DistilBERT (Sanh et al., 2019), we set F to
the finetuned version of each respective model4.
Since BERT, RoBERTa, and DistilBERT support
the <MASK> token, we designate m as the em-

4All encoder-based models utilize classification heads and
undergo finetuning for specific tasks.

bedding associated with this token5.
The attribution model Gθ employs the pretrained

version of the corresponding model as a backbone,
augmented with an additional shared MLP head.
This MLP head is placed on top of each token rep-
resentation generated by the last encoder block of
the backbone. The MLP head is implemented as
a d → d → 1 network (where d is the token em-
bedding dimensionality), incorporating hyperbolic
tangent activation on the hidden layer and sigmoid
activation on the output layer, yielding the attribu-
tion score for each token. It is essential to highlight
that the same MLP head is applied to each token
representation produced by the backbone. Subse-
quently, all attribution scores are consolidated into
a vector representing the attribution map. Through-
out the AML pretraining and finetuning phases
(Sec. 3.1), both the backbone and the MLP head
are optimized w.r.t. L (Eq. 4).

Decoder-based models In this work, we experi-
mented with the Llama2 7B (Touvron et al., 2023)
and Mistral 7B (Albert Q. Jiang, 2023) models,
setting F as the pretrained model. These models
support the <UNK> token, hence we set m to the
embedding associated with this token.

Llama2 and Mistral are general-purpose mod-
els for language generation and understanding.
Although few-shot prompting is typically more
aligned with the common usage of LLMs, rather
than finetuning for specific datasets, we observed
limited performance for EMR task. Therefore,
for this task, we finetuned the models on the
dataset using LoRA. For the remaining classifi-
cation tasks, we employed a few-shot prompting
approach, where task-relevant prompts and multi-
ple examples were provided to guide the model’s
responses. Specifically, we prompt the LLM with
the definition of the classification task, including
the tokens representing each class and several shots.
This prompt, denoted as u, instructs the LLM to
predict the specific token corresponding to the cor-
rect class as the initial token generated in the output.
The input example v was then concatenated with
the prompt u, forming [u, v], which was fed to the
LLM. Finally, we utilize the logit scores associated
with the relevant class tokens from the LLM’s ini-
tial token prediction as the output vector, followed

5We observed that using <MASK> performs better than
other alternatives such as the <PAD> token, omitting the
token, or replacing the token with a random token.
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by a softmax operation. The exact prompting for
each task is outlined in our GitHub repository.

The attribution model Gθ adopts the aforemen-
tioned encoder-based architecture, utilizing a pre-
trained RoBERTa backbone with an MLP head.
Since the objective of Gθ is to produce attribution
scores for the tokens in the input v, we input Gθ

with xv (and not [xu,xv]), thereby producing attri-
bution scores exclusively for the tokens in v. Con-
sequently, the masking operation, when applied,
pertains only to the tokens in v. In future work, we
plan to explore attribution for the u part, examin-
ing the attribution of tokens in the shots as well.
Furthermore, due to subtle differences between the
RoBERTa (source) and Llama2 (target) tokeniz-
ers, we employed one-to-many (source token is
split into multiple target tokens) and many-to-one
(source tokens are merged into a single target to-
ken) mappings. Specifically, in the case of source
token split (one-to-many), the attribution score was
replicated for each target token. In case of token
merge, the attribution score for the target token is
set to the maximum6 among the source tokens.

yv encoding As mentioned earlier, yv can be de-
fined in two distinct ways: either as the original
predicted probability distribution F (xv) or as a
delta distribution corresponding to the class associ-
ated with the highest score in F (xv). In this work,
we opt for the former option. To encode yv, we
introduce a dedicated set of c embeddings denoted
as Z = {zj}cj=1, where zj ∈ Rd represents the
embedding associated with class j. Additionally, a
special embedding z0 ∈ Rd is introduced, symbol-
izing the prediction information to the attribution
model (akin to the segment embedding in BERT).
In our implementation, Gθ processes xv and yv

as follows: Firstly, it encodes yv by computing a
convex combination of the class embeddings based
on their respective probabilities in F (xv) and adds
them to z0 to produce zv = z0+

∑c
j=1 F (xv)[j]zj .

Subsequently, it appends zv to xv and forwards it
as the input to the specific backbone used by Gθ.
It is crucial to clarify that the class embeddings in
Z and z0 are not part of the original vocabulary V
supported by the backbone. Consequently, learning
these embeddings is a necessary component of the
optimization process during the AML pretraining
phase. However, during the AML finetuning phase,

6Our experimentation indicates that mean aggregation per-
forms on par.

both Z and z0 remain frozen.

AML hyperparameters The hyperparameters
λp, λa, and λinv (Eq. 4) are adjusted automati-
cally (per metric) during the pretraining phase on a
separate validation set and maintain their fixed val-
ues throughout the finetuning process (if applied).
While it is feasible to continuously adjust hyperpa-
rameters during the finetuning process for specific
examples, in this work, we abstained from doing so
to prioritize inference time efficiency of fAML. In
Sec. A.2 in the Appendix, we further ablate on the
necessity of each loss term in Eq. 4 associated with
its corresponding hyperparameter. For the exact
optimization details, the reader is referred to Sec. 4
and our GitHub repository.

4 Experimental Setup and Results

Datasets We evaluate the explanation methods
on 4 different datasets, offering a comprehensive
evaluation across a wide spectrum of classifica-
tion tasks and text lengths: SST2 (Socher et al.,
2013), Rotten Tomatoes (RTN) (Pang and Lee,
2005), and IMDB (Maas et al., 2011) are bi-
nary sentiment classification in short, medium-
sized, and long texts, respectively. Emotion
Recognition (EMR) (Saravia et al., 2018): Emo-
tion classification (6 classes: Sadness, Joy, Love,
Anger, Fear, and Surprise) predominantly in short
texts. To ensure transparency and reproducibil-
ity, we processed datasets using the Hugging-
Face library (Wolf et al., 2019), employing a
procedure similar to that outlined in (Enguehard,
2023). Furthermore, our evaluation includes the
annotated Movie Reviews datasets sourced from
the ERASER benchmark (DeYoung et al., 2020),
where ground-truth annotations are provided by
human annotators. These datasets are used for as-
sessing the concordance between the generated ex-
planations and human-annotated explanations. The
code for data processing is available in our GitHub
repository. The results of this evaluation are pre-
sented in the Appendix.

Models Our evaluation includes the fol-
lowing models: BERT-Base (Devlin et al.,
2018), RoBERTa-Base (Liu et al., 2019), Distil-
BERT (Sanh et al., 2019), Llama2 7B (Touvron
et al., 2023), and Mistral 7B (Albert Q. Jiang,
2023). For the first three models, we employed
their finetuned versions specific to each dataset. In
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contrast, Llama2 and Mistral were evaluated in
few-shot prompting mode7 for the SST2, RTN,
and IMDB tasks, which aligns with the typical
usage of LLMs, as discussed in Sec. 3. Due to
their underperformance on the EMR task, we
finetuned both Llama2 and Mistral using LoRA
and report the results accordingly. All model links
are available in our GitHub repository.

Evaluated explanation methods Our eval-
uation covers a diverse set of explanation
methods: SIG (Enguehard, 2023), GlobEnc
(GLOB) (Modarressi et al., 2022), ALTI (Ferrando
et al., 2022), DecompX (DCMP) (Modarressi et al.,
2023), GradientXInput (GXI) (Shrikumar et al.,
2016), Integrated Gradients (IG) (Sundararajan
et al., 2017) DeepLift (LIFT) (Shrikumar et al.,
2017), Solvex (SLVX) (Zhou and Shah, 2023), Gra-
dientShap (SHAP) (Lundberg and Lee, 2017), and
LIME (Ribeiro et al., 2016). For each of these
methods, we used the codebase and hyperparame-
ter search procedure recommended by the original
works. Additionally, we introduce an explanation
method based on LLMs (LLM). In this approach,
we prompt the finetuned, open-source versions of
Llama-Instruct and Mistral-Instruct with the task
and input, instructing the models to explain their
predictions by ranking the tokens in the input ex-
ample according to their importance.

Lastly, our AML method was tested in its two
modes: using the pretrained attribution model GθT

(pAML), and the instance-specific finetuned attri-
bution model Gθv (fAML). The hyperparameters
λp, λa and λinv were optimized during the pretrain-
ing phase using a dedicated validation set for each
dataset-metric combination. The hyperparameters
optimization was conducted using the default TPE
sampler from the Optuna package (Akiba et al.,
2019). All hyperparameters remained fixed dur-
ing the finetuning phase. AML loss optimization
utilized the AdamW optimizer. Throughout this
process, we monitored the metric of interest, se-
lecting the best-performing attribution model and
attribution map in the pretraining and finetuning
phase, respectively. All experiments were executed
on an NVIDIA DGX 8xA100 server. The exact
optimization configuration as well as dataset splits
are available in our GitHub repository

7Prompts for decoder-based models are provided in our
GitHub repository.

Evaluation measures For quantitative assess-
ment of the explanation methods, we followed
the evaluation protocol from recent works (Engue-
hard, 2023; Ferrando et al., 2022) and report re-
sults for the following set of metrics: Log-Odds
(LO) (Shrikumar et al., 2017), Sufficiency (Suff),
Comprehensiveness (Comp) and Area Over the
Perturbation Curve (AOPC) for Sufficiency (A-S)
and Comprehensiveness (A-C) (DeYoung et al.,
2020). For Suff, LO and A-S the lower the better,
while for Comp and A-C the higher the better. Un-
less specified otherwise, we use the same metric
settings as detailed in the referenced papers. A
detailed description of the metrics appears in the
Appendix (Sec. A.5). While this set of metrics
provides a comprehensive assessment of the faith-
fulness of the produced explanations, we further
present results for the agreement with ground-truth
explanations extracted by human annotators (DeY-
oung et al., 2020). These agreement tests evaluate
the utility of the generated explanations from a
human perspective.

4.1 Results

Table 1 presents results for all combinations of
encoder-based model, explanation method, dataset,
and metric. We identify the following trends:
fAML consistently emerges as the top-performing
method in most of the scenarios. The runners-up
are typically DCMP, SLVX, and SIG, with pAML
generally securing third place. We further observe
that DCMP consistently underperforms with Dis-
tilBERT. These results demonstrate the superiority
of our AML approach, establishing it as the new
state-of-the-art. It is important to note that, due
to its inefficiency with longer texts, SLVX was ex-
cluded from evaluation on the IMDB dataset. The
substantial performance gap between fAML and
pAML underscores the importance and effective-
ness of the finetuning phase in AML. Nonetheless,
pAML alone remains competitive, offering reduced
runtime with strong performance.

Table 2 presents results for decoder-based mod-
els. To maintain focus, we report results only for
a subset of the methods from Tab. 1. Some meth-
ods, such as DCMP and ALTI, were excluded from
this comparison due to their requirement for sub-
stantial model architecture modifications, and lack
of support for Llama2 and Mistral models in their
released Git repositories. Similarly, SIG (for the
IMDB dataset) and SLVX were excluded due to
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RoBERTa DistilBERT BERT

Suff↓ LO↓ Comp↑ A-S↓ A-C↑ Suff↓ LO↓ Comp↑ A-S↓ A-C↑ Suff↓ LO↓ Comp↑ A-S↓ A-C↑

SST2

fAML 0.006 -2.033 0.576 0.012 0.273 0.001 -2.156 0.638 0.022 0.316 -0.010 -1.994 0.467 0.021 0.286
pAML 0.236 -0.614 0.235 0.097 0.100 0.131 -0.720 0.350 0.101 0.169 0.131 -0.663 0.240 0.095 0.140
SIG 0.097 -1.340 0.381 0.066 0.205 0.064 -1.920 0.453 0.051 0.242 0.083 -1.133 0.378 0.063 0.208
ALTI 0.116 -1.043 0.305 0.070 0.166 0.059 -1.407 0.368 0.047 0.205 0.093 -0.816 0.320 0.064 0.175
DCMP 0.086 -1.366 0.393 0.057 0.216 0.359 -0.321 0.089 0.201 0.063 0.037 -1.450 0.467 0.030 0.253
SLVX 0.128 -0.401 0.137 0.075 0.097 0.067 -2.931 0.595 0.059 0.322 0.125 -1.831 0.517 0.098 0.282
LIFT 0.331 -0.300 0.098 0.189 0.060 0.234 -0.605 0.162 0.140 0.098 0.289 -0.314 0.118 0.168 0.071
GLOB 0.227 -0.489 0.166 0.136 0.100 0.357 -0.262 0.073 0.199 0.060 0.233 -0.388 0.153 0.140 0.104
SHAP 0.227 -0.788 0.226 0.135 0.131 0.207 -1.264 0.291 0.122 0.167 0.250 -0.534 0.191 0.145 0.111
GXI 0.359 -0.245 0.077 0.200 0.049 0.305 -0.415 0.111 0.179 0.066 0.237 -0.401 0.153 0.140 0.094
IG 0.116 -1.249 0.360 0.073 0.200 0.100 -1.823 0.415 0.065 0.229 0.110 -0.936 0.334 0.075 0.187
LIME 0.050 -1.180 0.356 0.035 0.194 0.150 -1.281 0.298 0.104 0.162 0.134 -0.713 0.273 0.093 0.149

RTN

fAML -0.013 -1.536 0.516 0.023 0.292 -0.017 -0.653 0.477 0.032 0.212 -0.002 -2.767 0.656 0.017 0.295
pAML 0.126 -0.621 0.271 0.079 0.168 0.052 -0.501 0.296 0.071 0.124 0.181 -1.007 0.328 0.104 0.127
SIG 0.114 -0.752 0.324 0.088 0.178 0.087 -0.520 0.316 0.065 0.169 0.157 -1.524 0.353 0.109 0.190
ALTI 0.146 -0.489 0.228 0.103 0.131 0.119 -0.428 0.206 0.084 0.117 0.111 -1.266 0.334 0.079 0.193
DCMP 0.072 -0.695 0.314 0.062 0.181 0.294 -0.291 0.068 0.169 0.045 0.045 -2.058 0.471 0.042 0.263
SLVX 0.170 -0.233 0.114 0.112 0.078 -0.003 -0.620 0.466 0.032 0.256 0.153 -2.598 0.514 0.122 0.292
LIFT 0.374 -0.142 0.059 0.209 0.040 0.232 -0.322 0.095 0.145 0.060 0.310 -0.523 0.155 0.183 0.092
GLOB 0.229 -0.277 0.139 0.138 0.088 0.309 -0.273 0.046 0.174 0.035 0.269 -0.589 0.179 0.170 0.112
SHAP 0.218 -0.418 0.188 0.139 0.111 0.171 -0.431 0.213 0.105 0.123 0.310 -0.744 0.181 0.185 0.111
GXI 0.384 -0.096 0.051 0.215 0.034 0.290 -0.283 0.060 0.172 0.037 0.265 -0.652 0.173 0.163 0.102
IG 0.121 -0.700 0.316 0.092 0.177 0.095 -0.523 0.322 0.068 0.173 0.183 -1.117 0.278 0.123 0.169
LIME 0.117 -0.471 0.242 0.086 0.137 0.099 -0.469 0.269 0.072 0.145 0.186 -1.023 0.261 0.124 0.146

IMDB

fAML -0.017 -2.914 0.787 0.018 0.422 -0.029 -2.549 0.699 -0.004 0.443 -0.006 -4.823 0.808 0.009 0.418
pAML 0.057 -1.647 0.518 0.078 0.305 0.016 -1.659 0.526 0.051 0.344 0.029 -3.274 0.611 0.076 0.256
SIG -0.002 -1.303 0.383 0.060 0.238 -0.004 -2.041 0.570 0.039 0.356 0.058 -2.590 0.380 0.101 0.251
ALTI 0.023 -0.604 0.246 0.068 0.156 0.029 -0.682 0.354 0.046 0.214 0.040 -1.252 0.373 0.051 0.234
DCMP -0.016 -1.699 0.544 0.032 0.322 0.296 -0.125 0.062 0.268 0.047 -0.005 -3.739 0.706 0.016 0.412
LIFT 0.212 -0.116 0.054 0.223 0.038 0.100 -0.268 0.110 0.129 0.078 0.182 -0.330 0.085 0.191 0.060
GLOB 0.071 -0.268 0.128 0.125 0.089 0.239 -0.093 0.040 0.248 0.038 0.160 -0.382 0.140 0.183 0.109
SHAP 0.137 -0.565 0.189 0.160 0.120 0.132 -0.839 0.277 0.135 0.175 0.191 -0.887 0.167 0.198 0.111
GXI 0.262 -0.094 0.037 0.252 0.028 0.158 -0.149 0.067 0.173 0.049 0.138 -0.388 0.095 0.171 0.068
IG 0.037 -1.354 0.438 0.070 0.262 0.029 -1.649 0.550 0.049 0.330 0.083 -1.843 0.335 0.098 0.204
LIME 0.121 -0.102 0.044 0.165 0.029 0.132 -0.153 0.076 0.168 0.053 0.149 -0.224 0.069 0.198 0.045

EMR

fAML 0.111 -4.832 0.738 0.097 0.411 0.005 -2.557 0.707 0.022 0.385 0.000 -3.990 0.779 0.014 0.411
pAML 0.198 -3.872 0.595 0.141 0.324 0.069 -1.869 0.572 0.048 0.309 0.084 -2.644 0.626 0.045 0.330
SIG 0.347 -2.006 0.438 0.214 0.239 0.147 -1.398 0.494 0.091 0.269 0.190 -2.063 0.512 0.116 0.279
ALTI 0.172 -3.144 0.608 0.129 0.338 0.051 -1.635 0.562 0.036 0.307 0.044 -2.592 0.631 0.030 0.350
DCMP 0.172 -3.326 0.622 0.129 0.337 0.537 -0.370 0.118 0.278 0.082 0.060 -2.763 0.625 0.044 0.346
SLVX 0.322 -2.638 0.380 0.199 0.220 0.048 -2.392 0.664 0.037 0.361 0.101 -3.860 0.697 0.087 0.383
LIFT 0.514 -2.020 0.332 0.282 0.183 0.362 -0.891 0.287 0.198 0.157 0.380 -1.422 0.311 0.207 0.174
GLOB 0.211 -3.106 0.581 0.146 0.322 0.543 -0.369 0.120 0.278 0.084 0.094 -2.423 0.583 0.061 0.322
SHAP 0.525 -1.293 0.254 0.288 0.151 0.307 -1.024 0.337 0.169 0.186 0.426 -1.157 0.278 0.228 0.167
GXI 0.541 -1.510 0.258 0.294 0.147 0.415 -0.754 0.237 0.233 0.127 0.354 -1.472 0.330 0.197 0.187
IG 0.328 -1.917 0.431 0.205 0.237 0.139 -1.396 0.498 0.086 0.269 0.190 -2.106 0.523 0.113 0.285
LIME 0.198 -3.814 0.647 0.143 0.351 0.059 -1.911 0.593 0.041 0.320 0.104 -2.897 0.586 0.065 0.322

Table 1: Evaluation results for all combinations of encoder-based model, dataset, explanation method, and metric.
See the notations in Sec. 4.

excessive runtime, rendering them impractical for
this experiment. Similar trends to Tab. 1 emerge,
with fAML consistently outperforming other meth-
ods by a significant margin in the majority of cases.
pAML typically ranks as the runner-up. We further
observe the LLM-based explanation method un-
derperforms the leading explanation methods. We
attribute it to the fact that in many cases, the models

exhibits hallucinations, where the models generate
output tokens that are not present in the original in-
put, thus distorting the ranked list of explanations.
Further qualitative results, ablation studies, run-
time comparisons, and human evaluation metrics
are provided in the Appendix.
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Llama2 Mistral

Suff↓ LO↓ Comp↑ A-S↓ A-C↑ Suff↓ LO↓ Comp↑ A-S↓ A-C↑

SST2

fAML 0.019 -0.223 0.135 0.046 0.069 0.121 -0.325 0.228 0.086 0.120
pAML 0.093 -0.137 0.091 0.077 0.053 0.254 -0.155 0.122 0.127 0.091
SIG 0.157 -0.098 0.065 0.090 0.041 0.281 -0.256 0.176 0.160 0.100
LIFT 0.159 -0.056 0.033 0.093 0.023 0.319 -0.139 0.100 0.184 0.067
SHAP 0.152 -0.072 0.048 0.088 0.032 0.308 -0.125 0.090 0.177 0.061
GXI 0.159 -0.054 0.033 0.092 0.023 0.319 -0.142 0.102 0.184 0.067
LLM 0.119 -0.101 0.069 0.069 0.042 0.257 -0.115 0.082 0.151 0.062

RTN

fAML 0.033 -0.357 0.152 0.034 0.097 0.131 -0.432 0.275 0.120 0.143
pAML 0.156 -0.168 0.076 0.093 0.052 0.272 -0.225 0.131 0.188 0.087
SIG 0.219 -0.146 0.088 0.126 0.054 0.312 -0.323 0.215 0.184 0.121
LIFT 0.211 -0.115 0.068 0.124 0.040 0.375 -0.156 0.103 0.220 0.077
SHAP 0.216 -0.103 0.059 0.124 0.043 0.365 -0.140 0.097 0.213 0.068
GXI 0.212 -0.114 0.066 0.125 0.040 0.375 -0.161 0.105 0.220 0.077
LLM 0.172 -0.152 0.091 0.104 0.056 0.323 -0.129 0.083 0.191 0.065

IMDB

fAML 0.001 -0.518 0.203 0.078 0.125 0.026 -0.402 0.284 0.078 0.136
pAML 0.108 -0.343 0.134 0.170 0.092 0.101 -0.252 0.185 0.137 0.099
LIFT 0.238 -0.288 0.138 0.202 0.088 0.284 -0.185 0.075 0.233 0.056
SHAP 0.217 -0.289 0.116 0.191 0.073 0.263 -0.153 0.053 0.221 0.041
GXI 0.237 -0.288 0.137 0.202 0.088 0.283 -0.186 0.076 0.233 0.056
LLM 0.179 -0.306 0.081 0.168 0.045 0.250 -0.133 0.048 0.210 0.039

EMR

fAML 0.218 -2.981 0.745 0.168 0.398 0.263 -3.740 0.614 0.155 0.332
pAML 0.284 -2.214 0.608 0.194 0.336 0.545 -1.848 0.334 0.274 0.191
SIG 0.469 -1.879 0.584 0.272 0.302 0.273 -2.572 0.620 0.174 0.336
LIFT 0.661 -1.563 0.456 0.370 0.252 0.629 -1.697 0.367 0.344 0.204
SHAP 0.632 -1.316 0.386 0.344 0.216 0.451 -2.001 0.452 0.255 0.251
GXI 0.663 -1.566 0.457 0.369 0.252 0.629 -1.683 0.367 0.344 0.205
LLM 0.701 -0.773 0.204 0.364 0.124 0.561 -1.306 0.303 0.281 0.185

Table 2: Evaluation results on the Llama2 and Mistral models.

5 Conclusion

In this paper, we introduced AML - a self-
supervised optimization framework for explain-
ing LMs. By introducing an auxiliary attribution
model, AML navigates the complexity of explain-
ing model predictions through a dual-masking ap-
proach. Notably, AML presents a flexible loss fa-
cilitating the creation of a metric-adapted expla-
nation. Our extensive evaluation, encompassing
13 explanation methods, 4 datasets, 5 LMs, and 5
explanation metrics, consistently demonstrates the
superior performance of AML compared to other
state-of-the-art methods.

6 Limitations and Future Work

While AML has demonstrated remarkable perfor-
mance, we acknowledge certain limitations that
warrant further investigation. In Sec. 3, we pro-
posed several methodologies for employing mask-

ing operations. Although we have shown in this
work that employing option 1 in AML yields state-
of-the-art results, it would be worthwhile to explore
the potential of each of the other options as well.
For instance, a recent study by (Zhao and Shan,
2024) suggests that option 3, which replaces the
token to be masked with a token predicted based
on the surrounding context, may offer optimal per-
formance. Option 3 also has an advantage in cases
where models do not support <MASK> or <unk>
tokens, as the predicted token always belongs to
the vocabulary. However, option 3 also necessitates
the use of a designated prediction model. Lastly,
this work focuses on assessing explainability via
objective evaluation metrics and agreement with
human rationales (DeYoung et al., 2020). A promis-
ing avenue for future research would be to explore
other facets of explainability (Krishna et al., 2022),
including stability and fairness.
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A Appendix

A.1 Agreement with human rationales

In this section, we assess the explanations based
on their alignment with human-annotated explana-
tions. This evaluation examines a distinct aspect of
explainability, focusing on human rationale rather
than model rationale. In other words, it gauges the
usefulness of the generated explanation for humans
rather than its faithfulness to the model’s prediction.
While one might argue that faithfulness tests are
more critical as they reveal the actual elements in
the input that the model relies on for its prediction,
for the sake of completeness, we also report results
for human agreement tests on the Movie Reviews
dataset8 from the ERASER benchmark9 (DeYoung
et al., 2020), which includes ground-truth annota-
tions provided by human annotators.

In this experiment, we employed a BERT model
finetuned on the SST2 dataset. It is important to
note that neither pAML nor fAML can be opti-
mized for this type of test, as it is impermissible
to expose them to ground-truth annotations. We
chose to optimize pAML and fAML based on w.r.t.
the A-C metric. This design choice further tests
whether optimizing explanations with respect to
faithfulness objectives results in explanations that
align with human rationales.

Table 3 displays the Macro and Micro F1
scores (DeYoung et al., 2020) computed based on
the top 25 tokens, for a selection of top-performing
methods from Tabs. 1-2. We observe that both
fAML and pAML surpass the other methods, de-
spite being optimized w.r.t. the A-C metric. There-
fore, the results in Tab. 3 suggest that the ability
of fAML and pAML to optimize for model faith-
fulness also results in explanations that align with
ground-truth annotations, thereby providing sat-
isfactory explanations from a human perspective.
Overall, Tab. 3 provides further evidence of the
usefulness of the AML methodology in generat-
ing explanations that are faithful not only to model
rationales, but to human rationales as well.

A.2 AML ablation study

To assess the individual contributions and neces-
sity of each component in the AML loss (Eq. 4),
we conducted an ablation study using the EMR

8https://www.eraserbenchmark.com/zipped/
movies.tar.gz

9https://www.eraserbenchmark.com/

Macro F1 Micro F1

fAML 0.118 0.096
pAML 0.110 0.092
DCMP 0.102 0.088
SIG 0.094 0.082

Table 3: Movie Reviews reasoning task. Macro and
Micro F1 scores (for the top 25 tokens) are computed
based on the human annotated ground-truth.

dataset and the DistilBERT model. In this study,
we compared fAML (pAML) with two ablated ver-
sions: fAMLXinv (pAMLXinv) and fAMLXpred
(pAMLXpred), which omit the Linv and Lp loss
terms from Eq. 4, respectively.

Table 4 reports results for both Suff and Comp
metrics, assessing the quality of explanations from
two complementary perspectives. Consistent trends
are observed for both the pretrained and finetuned
cases, where fAMLXpred and fAMLXinv exhibit
inferior performance compared to fAML. This
observation underscores the crucial contribution
gained from the simultaneous optimization of both
Linv and Lp in the AML framework.

Notably, we observe fAMLXpred (pAMLXpred)
outperforms fAMLXinv (pAMLXinv) on the Comp
metric, while the opposite trend emerges on the
Suff metric. This can be attributed to the nature of
their respective optimization: fAMLXpred (pAM-
LXpred) combines Linv with La, leading to the
production of attribution maps that prioritize com-
prehensiveness. This is since this combination en-
courages a reduction in the score assigned to the
class that received the highest score in the original
prediction, when the input elements are masked
proportionally to their assigned attribution scores.
On the other hand, fAMLXinv (pAMLXinv) com-
bines Lp with La, aiming to preserve the original
prediction while masking the less important ele-
ments in the input, thereby promoting sufficiency.
Indeed, empirically, we observed that higher values
of λinv and λp are selected when optimizing for
the Comp and Suff metrics, respectively.

Overall, the complete AML loss (Eq. 4 facilitates
an adaptable trade-off among all its components by
configuring λinv, λp, and λa on the validation set
during the pretraining phase for each metric. This
approach results in optimal performance for both
Suff and Comp metrics.
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Suff↓ Comp↑

fAML 0.01 0.71
pAML 0.07 0.57
fAMLXpred 0.02 0.71
pAMLXpred 0.09 0.59
fAMLXinv 0.01 0.67
pAMLXinv 0.06 0.55

Table 4: Ablation study results using the DistilBERT
model on the EMR dataset.

SST2 IMDB

fAML 1.5s 1.6s
pAML 0.01s 0.01s
SIG 6.5s ∼1.4m
DCMP 0.14s 1.6s
SLVX-beamsize-10 1.2s ∼35m
SLVX-beamsize-50 3.0s ∼1h
SLVX-beamsize-100 4.3s ∼1.5h

Table 5: Runtime comparison tests. ’s’, ’m’ and ’h’
stand for seconds, minutes, and hours. See Sec. A.3 for
details.

A.3 Runtime comparison

In this section, we present the runtime performance
of the top-performing methods: fAML, pAML,
SIG, and DCMP. We also provide runtime perfor-
mance for the SLVX method, which allows opti-
mization per metric via the application of beam-
search. Table 5 presents the average runtime perfor-
mance based on two experimental runs using the
RoBERTa model, each involving examples drawn
from the SST2 and IMDB datasets. For SST2, con-
sisting of short texts with an average length of 14
words, we used 50 examples. For IMDB, com-
prising longer texts with an average length of 226
words, 15 examples were used. Specifically for
SLVX, we reported results across various beam
sizes.

We observe the following trends: pAML exhibits
significantly better runtime efficiency compared to
all other methods. Notably, fAML remains nearly
unaffected by text length, demonstrating consistent
performance for longer texts. These findings sug-
gest that both fAML and pAML are practical even
in real-time scenarios. In contrast, SIG and SLVX
exhibit runtimes that become impractical for long
texts.

As a final note, it is important to highlight
that the attribution model employed in fAML and
pAML is not restricted to the same architecture
as the model under explanation. This flexibility
allows for the utilization of a much lighter attribu-
tion model compared to the explained model. For
instance, in our experiments, we utilized a lighter
RoBERTa model as the attribution model to explain
the Llama2 model. In future research, we aim to
explore even lighter architectures suitable for the
attribution model.

A.4 Qualitative Results

Table 6 presents qualitative comparison of AML
and the two runner-ups methods from Tabs. 1 and
2: SIG, DCMP and SLVX. The examples are taken
from the SST2 and EMR datasets, and the predic-
tions and attributions are computed using the corre-
sponding finetuned BERT and RoBERTa models.
The top three words are highlighted in bold for each
example based on token importance in the attribu-
tion map produced by each explanation method.
As both pAML and fAML yielded the same rank-
ing of attribution scores, we present a single line
for both of them for each example. It is evident
that AML produces the most meaningful attribu-
tion. For more examples, the reader is referred to
our GitHub repository10.

A.5 Evaluation metrics

For quantitative assessment of the explanation
methods, we consider the following set of metrics:

1. Log-Odds (LO) (Shrikumar et al., 2017) score
is defined as the average difference of the
negative logarithmic probabilities on the pre-
dicted class before and after masking the top
k% words with <MASK> padding (Encoder-
based models) and <UNK> padding (Decoder-
based models). Lower scores are better. In
this work, we used LO with k = 20.

2. Comprehensiveness (Comp) (DeYoung et al.,
2020) score is defined as the average differ-
ence of the change in predicted class proba-
bility before and after removing the top k%

features. Similar to Log-odds, this measures
the influence of the top-attributed tokens on
the model’s prediction. For a single example

10https://github.com/amlconf/aml/blob/main/
qualitative_examples.md
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Dataset Prediction Model Method Attribution

SST2 Positive BERT

AML a modest pleasure that accomplishes its goals with ease and confidence .
SIG a modest pleasure that accomplishes its goals with ease and confidence .

DCMP a modest pleasure that accomplishes its goals with ease and confidence .
SLVX a modest pleasure that accomplishes its goals with ease and confidence .

SST2 Positive BERT

AML finds a way to tell a simple story , perhaps the simplest story of all , in a way that seems compelling and even original .
SIG finds a way to tell a simple story , perhaps the simplest story of all , in a way that seems compelling and even original .

DCMP finds a way to tell a simple story , perhaps the simplest story of all , in a way that seems compelling and even original .
SLVX finds a way to tell a simple story , perhaps the simplest story of all , in a way that seems compelling and even original .

SST2 Negative BERT

AML a grim , flat and boring werewolf movie that refuses to develop an energy level .
SIG a grim , flat and boring werewolf movie that refuses to develop an energy level .

DCMP a grim , flat and boring werewolf movie that refuses to develop an energy level .
SLVX a grim , flat and boring werewolf movie that refuses to develop an energy level .

SST2 Negative BERT

AML there ’s something fundamental missing from this story : something or someone to care about .
SIG there ’s something fundamental missing from this story : something or someone to care about .

DCMP there ’s something fundamental missing from this story : something or someone to care about .
SLVX there ’s something fundamental missing from this story : something or someone to care about .

EMR Joy RoBERTa

AML
hawke draws out the best from his large cast in beautifully articulated portrayals that
are subtle and so expressive they can sustain the poetic flights in burdette ’s dialogue .

SIG
hawke draws out the best from his large cast in beautifully articulated portrayals that

are subtle and so expressive they can sustain the poetic flights in burdette ’s dialogue .

DCMP
hawke draws out the best from his large cast in beautifully articulated portrayals that

are subtle and so expressive they can sustain the poetic flights in burdette ’s dialogue .

SLVX
hawke draws out the best from his large cast in beautifully articulated portrayals that
are subtle and so expressive they can sustain the poetic flights in burdette ’s dialogue .

EMR Sadness RoBERTa

AML i was feeling really troubled and down over what my dad said
SIG i was feeling really troubled and down over what my dad said

DCMP i was feeling really troubled and down over what my dad said
SLVX i was feeling really troubled and down over what my dad said

Table 6: Examples of RoBERTa attributions on several sentences from the SST2 and EMR dataset. The bold tokens
represent the top 3 tokens in the sentence, according to each attribution method. See Sec. A.4 for details.

Comp is computed as:

p(y′|xi)− p(y′|x(k)i ),

where y′ is the predicted class, x is the input
sequence of tokens, and x(k) denotes the mod-
ified sequence with the top k% attributed to-
kens deleted from the sequence. Higher scores
are better. In this work, we used Comp with
k = 20.

3. Sufficiency (Suff) (DeYoung et al., 2020)
score is defined as the average difference of
the change in predicted class probability be-
fore and after keeping only the top k% tokens.
This measures the adequacy of the top k% at-
tributions for model’s prediction. It is defined
in a similar fashion as comprehensiveness, ex-
cept the x(k) is defined as the sequence con-
taining only the top k% tokens. Lower scores
are better. In this work, we used Suff with
k = 20.

4. Area Over the Perturbation Curves (AOPC):
AOPC-Sufficiency (A-S) and AOPC-
Comprehensiveness (A-C) (DeYoung et al.,
2020) - are the average differences of the
change in predicted class probability before

and after keeping and removing the top k% to-
kens for Sufficiency and Comprehensiveness,
respectively:

AOPC-S =
1

|B|
∑

k∈B
Suff(k),

AOPC-C =
1

|B|
∑

k∈B
Comp(k).

Here, we evaluate Comp and Suff for 5 differ-
ent values of k, setting B = {1, 5, 10, 20, 50}
as suggested by (DeYoung et al., 2020). A-S
and A-C measure how well a specific token
ordering is scored under a model from two
complementary perspectives and across the k

axis.
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