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Abstract

Recent studies have demonstrated that In-
Context Learning (ICL), through the use of
specific demonstrations, can align Large Lan-
guage Models (LLMs) with human preferences
known as In-Context Alignment (ICA), indicat-
ing that models can comprehend human instruc-
tions without requiring parameter adjustments.
However, the exploration of the mechanism and
applicability of ICA remains limited. In this pa-
per, we begin by dividing the context text used
in ICA into three categories: format, system
prompt, and example. Through ablation experi-
ments, we investigate the effectiveness of each
part in enabling ICA to function effectively. We
then examine how variants in these parts impact
the model’s alignment performance. Our find-
ings indicate that the example part is crucial for
enhancing the model’s alignment capabilities,
with changes in examples significantly affect-
ing alignment performance. We also conduct
a comprehensive evaluation of ICA’s zero-shot
capabilities in various alignment tasks. The
results indicate that compared to parameter
fine-tuning methods, ICA demonstrates supe-
rior performance in knowledge-based tasks and
tool-use tasks. However, it still exhibits certain
limitations in areas such as multi-turn dialogues
and instruction following. Source codes and
scripts are available at https://github.com/
li-aolong/how-far-can-ica-go.

1 Introduction

Pre-trained large language models (LLMs) typi-
cally require an instruction fine-tuning phase dur-
ing which model parameters are adjusted to align
the model with human preferences, enabling it to
follow human instructions and function as an in-
teractive assistant (Du and Gao, 2024; Gao et al.,
2024; Li et al., 2024a,b; Ghosh et al., 2024). Al-
though this phase is much less costly than pre-
training, it still involves complex and challenging
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Who are you?

What do you do? What do you want?
I am a 20-something year old woman 
who is trying to figure out what 
she wants to ...

<|im_start|>user
Who are you?<|im_end|>
<|im_start|>assistant\n

I am the assistant of the user.

<|im_start|>system
You are a helpful, respectful 
and honest assistant.<|im_end|>
<|im_start|>user
Who are you?<|im_end|>
<|im_start|>assistant\n

I am a helpful, respectful and 
honest assistant.

Prompting directly

Prompting with ChatML format

Prompting with ChatML format and system prompt

Figure 1: Responses from Llama2-7b-base model with
different prompting styles. Directly prompting the
model results in repetitive and meaningless responses.
With ChatML format, the model understands and re-
sponds appropriately to the user’s query. Further adding
a system prompt makes the model’s responses more
comprehensive. (The model does not automatically stop
generating but is truncated with “<|im_end|>”.)

issues, such as problems related to data mixture
ratio and quality, as well as the problem of knowl-
edge forgetting (Wang et al., 2023b; Dong et al.,
2024).

Recent studies have proposed that by crafting
specific demonstrations, base models can achieve
alignment with human preferences through In-
Context Learning (ICL). This process is known as
In-Context Alignment (ICA) (Lin et al., 2023; Han,
2023). ICA enables models to understand instruc-
tions without the need for parameter fine-tuning.
This cost-effective nature positions ICA as a po-
tentially viable alternative to the fine-tuning-based
alignment methods. However, the exploration of
ICA in these studies has been limited to exploring
the alignment capabilities of LLMs as open-domain
assistants in single-turn dialogue. Detailed analy-
sis lacks regarding the underlying mechanisms and
broader applicability of ICA, leading to our main
research question: How far can ICA go?

This raises several questions: 1. Does ICA rely
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on specific parts or the entirety of the context to
align with human preferences? 2. Considering
the significance of various contextual parts, would
substituting them with alternative variants affect
ICA performance to varying extents? 3. With a
preferable setting identified by exploring the previ-
ous question, what other tasks can ICA effectively
perform beyond single-turn dialogue? These ques-
tions are related to each other and we propose to
address them sequentially.

To begin exploring the first question, we initiate
a pilot ICA experiment with a pre-trained model, as
illustrated in Figure 1. The purpose is to investigate
the alignment effect of format and system prompt
in the simplest scenario. We apply the ChatML1

format, commonly used for fine-tuning models, to
Llama2-7b-base model (Touvron et al., 2023). To
our surprise, the model can understand user queries
and generate meaningful responses, a capability
that direct prompting methods could not achieve.
By probing the effects of the format and system
prompt, we further explore the roles that these parts,
along with the examples, play in ICA.

In this paper, we initially explore how contextual
content affects ICA by dividing it into three parts:
format, system prompt, and example (Section 3).
Building on this, we address the second question by
designing variants for each part to investigate their
impact on ICA performance (Section 4). Finally,
for the third question, we explore the effectiveness
of ICA in other instruction tasks (Section 5). Ad-
ditionally, we train two SFT models and compare
them with the original chat model. Our contribu-
tions can be summarized as follows:

1. We explore the impact of format, system
prompt, and example on In-Context Align-
ment (ICA), demonstrating that the example
part is the most crucial for ICA.

2. We show that different variants of the example
have varying impacts on ICA, and that ICA
based on large-parameter models can surpass
fine-tuned models of the same scale.

3. We demonstrate that ICA outperforms fine-
tuned models in knowledge-based and tool
utilization tasks, although there is still a gap
in performance for multi-turn dialogue and
instruction-following tasks.

1https://github.com/MicrosoftDocs/azure-docs/
blob/main/articles/ai-services/openai/how-to/
chat-markup-language.md

2 Related Work

2.1 Fine-tuning Based Alignment
Fine-tuning-based alignment refers to the pro-
cess of adjusting model parameters to produce re-
sponses that align with human preferences.

Supervised Fine-Tuning (SFT) Currently, SFT
has emerged as the most prevalent method for
achieving alignment (Wang et al., 2023a; Lu
et al., 2023; Pan et al., 2023). Given the high
costs associated with acquiring high-quality, man-
ually crafted instruction datasets, the Self-instruct
method (Wang et al., 2023c) has gained popular-
ity for automatically generating instruction data
from large models. For instance, Alpaca (Taori
et al., 2023) employs the self-instruct approach to
generate a dataset of 52,000 instructions for train-
ing. Fine-tuning the 7B parameter Llama model re-
quires about three hours of training on eight 80GB
A100 GPUs. Despite the relatively short training
duration, full parameter fine-tuning demands sub-
stantial hardware resources.

Parameter-Efficient Fine-Tuning (PEFT)
PEFT (Mangrulkar et al., 2022) methods only
require fine-tuning a small number of model
parameters to efficiently adapt large pre-trained
models to various downstream applications (Hu
et al., 2021; Frantar et al., 2023; Dettmers et al.,
2023). The LoRA method (Hu et al., 2021)
addresses this by injecting trainable low-rank
decomposition matrices into each layer of the
Transformer architecture (Vaswani et al., 2017),
thereby significantly reducing the number of
trainable parameters required for downstream
tasks and expediting the SFT training process. Fur-
thermore, introducing the “Superficial Alignment
Hypothesis”, Zhou et al. (2023a) demonstrated
that a dataset of just 1000 high-quality, manually
written instructions (LIMA) could achieve effective
alignment, laying a foundational hypothesis for the
feasibility of ICA.

Fine-tuning-based alignment methods still re-
quire certain training resources and face some
difficult-to-solve issues (Gudibande et al., 2023;
Gekhman et al., 2024), which makes ICA more
valuable for research.

2.2 In-Context Alignment (ICA)
ICA refers to using in-context learning with care-
fully designed prompts to achieve alignment with-
out adjusting the model’s parameters.
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In-Context Learning (ICL) Since the discovery
of ICL capabilities in LLMs (Brown et al., 2020),
there has been a growing body of research explor-
ing the underlying mechanism and applications of
ICL (Bai et al., 2024; Abernethy et al., 2024). For
instance, Von Oswald et al. (2023) and Dai et al.
(2023) examined the mechanism of ICL from the
perspective of gradient descent learning, suggest-
ing that ICL functions as an implicit fine-tuning
method. Other studies have investigated how con-
textual examples impact model performance. Min
et al. (2022) demonstrated that randomly replacing
labels in contextual demonstrations has minimal
effect on the performance of various classification
and multiple-choice tasks. Wu et al. (2023) intro-
duced a self-adaptation mechanism for selecting
and arranging contextual examples, thereby im-
proving the model’s few-shot learning capabilities.
Li and Qiu (2023) proposed a metric to assist the
model in determining the optimal arrangement of
examples.

Alignment With ICL Earlier research on ICL
mainly focused on tasks such as classification
and multiple-choice questions. However, recent
work has started to explore the application of ICL
to a wider array of tasks. Ye et al. (2023) ex-
plored the direct relationship between ICL and
instructions, demonstrating that inserting task-
irrelevant prompts in the input can also enhance the
instruction-following capabilities of large language
models (LLMs) during reasoning. Han (2023) ap-
plied ICL to open-domain dialogue tasks, introduc-
ing the concept of In-Context Alignment (ICA).
They achieved this by retrieving and concatenating
multiple question-answer pairs as a prompt pre-
fix for dialogue tasks, enabling the base model to
acquire a certain level of instruction comprehen-
sion. Urial (Lin et al., 2023) took this further by
using only three fixed, carefully designed question-
answer pairs along with a system prompt, combin-
ing these elements using Markdown2 format as the
prompt prefix. The results showed that this method
achieves comparable performance to chat models
on the proposed alignment dataset.

However, these studies have only evaluated ICA
on open-domain question-answering tasks based
on single-turn dialogues, without delving into the
principles of ICA, the impact of variants, and the
extendable range of instruction tasks. This paper
conducts an in-depth exploration of these issues.

2https://en.wikipedia.org/wiki/Markdown

# Instruction

{system prompt}

# Query:

```{query1}```

# Answer:

```{answer1}```

…

# Query:

```{query3}```

# Answer:

```{answer3}```

# Query:

```{user query}```

# Answer:

```

Figure 2: Illustration of the segmentation of Urial’s
prompt into three parts: format (marked in bold black),
system prompt (marked in blue), and example (marked
in red).

3 What Does ICA Rely On?

In this section, we explore which parts of the con-
textual content ICA relies on. We begin by defining
the division of the whole prompt text, conduct ab-
lation experiments for each part, and draw conclu-
sions on how different parts influence the model.

3.1 Parts of Prompt
Based on the pilot experiment in Section 1 and pre-
vious works (Han, 2023; Lin et al., 2023), we sum-
marize the prompt into three parts: format, system
prompt, and example. Using Urial as an example,
we show the segmentation of the prompt in Fig-
ure 2. To ensure clarity and ease of understanding,
we use small caps for FORMAT, SYSTEM, and EX-
AMPLE to represent the three parts of the prompt,
where SYSTEM refers to the system prompt. The
definitions of each part are as follows.

FORMAT It refers to the text used to distinguish
between user queries and model responses. It typi-
cally includes natural language words that specify
the roles of the user and the model, along with spe-
cial symbols that demarcate the boundaries for the
query and response text.

SYSTEM It refers to the meta instruction applied
to the model, typically requiring it to produce re-
sponses in a specified style or content or to play a
certain role. This instruction is usually placed at
the beginning of the dialogue.

EXAMPLE It refers to one or more query-
response pairs, each consisting of a user’s query
and the model’s response, referred to as demon-
strations in other ICL works (Luo et al., 2023; Qin
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Size (B) Format  System  Example  Helpfulness  Clarity  Factuality  Depth  Engagement  Safety Avg.
Input

Length
Output
Length

🔴 70 Md  Urial  Urial 4.93 4.96 4.79 4.33 4.94 5.00 4.83 916 175

🔴 70 Md  -  Urial 4.88 4.96 4.73 4.30 4.90 4.97 4.79 812 172

🔴 70 -  Urial  Urial 4.84 4.94 4.67 4.29 4.88 5.00 4.77 889 170

🔴 70 -  -  Urial 4.83 4.86 4.69 4.17 4.81 4.99 4.73 790 171

🔴 13 -  Urial  Urial 4.46 4.72 4.27 3.97 4.61 4.92 4.49 889 174

🔴 13 Md  -  Urial 4.45 4.71 4.43 3.92 4.56 4.81 4.48 812 189

🔴 13 Md  Urial  Urial 4.41 4.59 4.36 3.92 4.51 4.95 4.46 916 224

🔴 13 -  -  Urial 4.50 4.66 4.19 3.97 4.57 4.70 4.43 790 217

🔴 7 -  Urial  Urial 4.25 4.58 4.03 3.78 4.42 5.00 4.34 889 182

🔴 7 Md  -  Urial 4.29 4.59 3.97 3.80 4.42 4.75 4.30 812 188

🔴 7 -  -  Urial 4.36 4.69 4.12 3.78 4.53 4.17 4.28 790 222

🔴 7 Md  Urial  Urial 4.05 4.36 3.86 3.68 4.23 4.97 4.19 916 212

🔴 70 Md  Urial  - 3.80 4.58 4.15 2.66 3.23 4.43 3.81 121 94

🔴 13 -  Urial  - 3.50 4.50 3.99 2.41 3.08 3.85 3.56 112 77

🔴 13 Md  Urial  - 3.51 4.50 3.96 2.47 3.09 3.78 3.55 121 100

🔴 7 Md  Urial  - 3.34 3.87 3.61 2.50 3.00 3.19 3.25 121 171

🔴 7 -  Urial  - 3.11 4.04 3.69 2.14 2.68 2.92 3.10 112 160

🔴 70 Md  -  - 3.11 4.27 4.03 2.09 2.63 1.74 2.98 18 94

🔴 13 Md  -  - 2.89 4.09 3.88 1.88 2.49 1.74 2.83 18 84

🔴 7 Md  -  - 2.68 3.77 3.59 1.78 2.32 1.47 2.60 18 119

🔴 70 -  -  - 1.89 2.76 2.46 1.57 1.89 2.16 2.12 11 115

🔴 13 -  -  - 1.71 2.57 2.38 1.48 1.87 2.28 2.05 11 126

🔴 7 -  -  - 1.61 2.38 2.21 1.43 1.70 2.12 1.91 11 137

🔴 70 -  Urial  - 1.79 2.07 1.99 1.45 1.61 1.55 1.74 112 8

Figure 3: Results of different configurations of FORMAT, SYSTEM, and EXAMPLE. The greener the color, the
higher the value; the yellower the color, the lower the value.  denotes the 70B model.  denotes the 13B model.
 denotes the 7B model. “-” indicates that the corresponding part is missing.

et al., 2023). We use the term EXAMPLE to distin-
guish it from FORMAT and SYSTEM since these
two parts rarely appear in other ICL tasks.

The final prompt is constructed by concatenating
the SYSTEM and EXAMPLE using the FORMAT,
followed by appending the user’s final query before
inputting it into the model.

3.2 Experimental Setup

Methods We conduct ablation experiments using
Urial3 as the baseline. Urial employs Markdown
as its FORMAT, with the SYSTEM and EXAMPLE

parts manually designed. We denote Urial’s config-
uration as Md-Urial-Urial, where each position
sequentially corresponds to FORMAT, SYSTEM,
and EXAMPLE. If one part is missing in the fi-
nal prompt, we represent it by the number 0. We
first categorize all experimental configurations into
two major classes: those with or without FORMAT.
Then, within each class, we set up four config-
urations regarding the inclusion of SYSTEM and
EXAMPLE: neither, only one, or both included.
Thus, there are eight experimental configurations
for the same model. Details of the specific prompts
provided to the model for each configuration are
presented in Appendix A.1.

3https://github.com/Re-Align/URIAL/blob/main/
urial_prompts/inst_1k_v4.txt

Model and Evaluation We conduct experiments
using the base Llama2 model in three sizes:
7B, 13B, and 70B. Due to resource constraints,
the 70B model employs a 4-bit quantization via
GPTQ (Frantar et al., 2023). The evaluation for
this set of experiments is performed on the just-
eval-instruct dataset4 proposed by Urial. We select
100 examples each from regular and safety data
for inference. The inference results are assessed
by gpt-4o-2024-05-135. To ensure reproducibility
and a fair comparison, we use greedy search for
decoding the outputs.

3.3 Results and Analysis
The results are shown in Figure 3, and more discus-
sion is shown in Appendix A.2.

EXAMPLE is the most crucial part in ICA. We
rank all the results of the three models according
to their average scores, and assign different colors
based on the magnitude of the average scores. It
can be observed that all configurations with EXAM-
PLE outperform those without, regardless of model
size and the presence of FORMAT and SYSTEM.
Even the worst-performing 7B model with EXAM-
PLE outperforms the 70B model without EXAM-

4https://github.com/Re-Align/just-eval
5https://platform.openai.com/docs/models/

gpt-4o
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PLE. This indicates that EXAMPLE plays a decisive
role among the three parts, indicating its utmost
importance.

SYSTEM is more important than FORMAT. In
all configurations, when only one of SYSTEM or
FORMAT can be included, most configurations with
SYSTEM outperform those with FORMAT. This
performance gap increases with the model size.
When EXAMPLE is included, all models generally
perform well, and the influence of FORMAT and
SYSTEM becomes minimal. Without EXAMPLE,
all configurations with SYSTEM outperform those
without it, except for the 70B 0-Urial-0 configu-
ration, which will be analyzed later. Remarkably,
A 7B model with only SYSTEM (0-Urial-0) even
performs better than a 70B model with only FOR-
MAT (Md-0-0).

A trade-off exists between helpfulness and safety
as affected by SYSTEM. Previous work has
shown that there is a tradeoff between safety and
helpfulness for the SFT model (Liu et al., 2024;
Tuan et al., 2024), and we observe similar phe-
nomena in ICA. Since only the configurations with
EXAMPLE achieve good alignment performance,
our observations focus on the results of these con-
figurations. For the 7B and 13B models, when the
other two components are identical, all configura-
tions with SYSTEM have lower helpfulness values
and higher safety values compared to those without
SYSTEM. However, this is not the case for the 70B
model, where richer content in the prompt leads to
better alignment performance. This indicates that
in ICA, there also is a trade-off between helpful-
ness and safety, but this trade-off diminishes as the
model parameter size increases.

4 How Different FORMAT, SYSTEM and
EXAMPLE variants Affects ICA?

In this section, we explore the impact of different
variants of FORMAT, SYSTEM, and EXAMPLE on
ICA when all parts are present.

4.1 Setup

We provide an additional variant for each part and
set up the various replacement scenarios, includ-
ing replacing one, two, or all three parts from the
default configuration. For the FORMAT, we add
the ChatML format as shown in Table 1. However,
different from the original ChatML, the “user” and
“assistant” words are replaced with “Query:” and

“Answer:” to make a fairer comparison with the
Markdown format used by Urial. The variant of
SYSTEM is the one used by Llama2-chat model.
For EXAMPLE, we use GPT-46 to respond to the
queries of the three examples in Urial EXAMPLE,
and we replace Urial’s default responses with those
obtained from GPT-4.

In addition to comparing the different ICA
method variants, we also include inference results
from the Llama2-chat model for comparison. The
Llama2-chat model comes with its own FORMAT

and has been trained with SFT and RLHF, so it does
not require EXAMPLE. However, during inference,
it can be used with or without SYSTEM. There-
fore, we provide inference results for both config-
urations of the chat models. The prompts with
ChatML FORMAT, and the contents of Llama2-
chat SYSTEM and GPT-4 EXAMPLE can be found
in Appendix B.1.

4.2 Results and Analysis

As shown in Figure 4 in Appendix B.2, we rank
all configuration results by average scores from
highest to lowest. More discussion is shown in
Appendix B.3.

The variant of EXAMPLE has a significant im-
pact on ICA. It is observed that for the 7B and
13B models, all configurations with Urial EXAM-
PLE (∗) outperform GPT4 EXAMPLE (GPT4). Con-
versely, for the 70B model, almost all configura-
tions with GPT4 EXAMPLE perform better than
those with Urial EXAMPLE. This demonstrates that
different EXAMPLE can cause notable performance
variants, regardless of model size. To further in-
vestigate the reasons behind these differences, we
conduct a detailed analysis in Appendix B.4.

The variants of FORMAT and SYSTEM have min-
imal impact on ICA. Based on the numerical
analysis shown in Appendix B.5, it is evident that
replacing FORMAT and SYSTEM has a minor im-
pact, with EXAMPLE having a slightly larger ef-
fect. Interestingly, for the same model, configu-
rations using the ChatML format consistently per-
form best, despite variants in other parts across
different models. We speculate that using tags like
“<|im_start|>” and “<|im_end|>” might provide
clearer boundary information compared to “#” and
“'''”, thereby slightly influencing the model’s re-
sponses.

6https://chatgpt.com
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Method 7B 13B 70B

♦ Base 30.72 36.29 42.22
▲ Chat 18.64 21.83 29.38
▲ Chat-Sys 10.17 15.79 18.01
■ SFT (Alpaca) 20.25 21.97 31.97
■ SFT (LIMA) 18.23 22.71 34.02
 ICA-Default 27.48 30.17 34.29
 ICA-Best 17.76 32.49 33.38

Table 1: Results of NQ dataset. Excluding the Base
method, the top and bottom two results of the same size
model are marked in blue and red, respectively.

ICA methods comprehensively outperforms the
Chat methods in largest models For the 70B
model, when all three parts are present, all the
results of ICA method variants ( ) perform bet-
ter than the Chat methods (▲). Further, as shown
in Figure 5 of Appendix B.6, as long as EXAM-
PLE is included, even if other parts are missing,
ICA’s performance still exceeds that of the Chat
methods. However, for the smaller 7B and 13B
models, when all three parts are present, all ICA
configurations ( ,  ) are inferior to the results of
the Chat methods (▲, ▲), respectively. Moreover,
the Llama2-0-0 configuration of 7B Chat method
outperforms all 13B ICA results.

5 How Does ICA Perform in Other
Alignment Aspects?

In this section, we use more datasets to explore the
ICA performance in other alignment tasks.

5.1 Setup

Aligned models should possess zero-shot capability
to eliminate the influence of similar examples in
the few-shot context. Therefore, we select datasets
from different aspects to evaluate the zero-shot ca-
pability of ICA.

Datasets We select the following alignment as-
pects for evaluation: knowledge with NQ (Natu-
ralQuestion) (Kwiatkowski et al., 2019), tool uti-
lization with T-Eval (Chen et al., 2023), multi-
turn dialogue with MT-Bench (Zheng et al., 2023),
instruction following with IF-Eval (Zhou et al.,
2023b).

ICA Method While various ICA configurations
are explored in previous sections, resource limita-
tions prevent us from experimenting with all config-
urations. Initially, we select the Md-Urial-Urial
configuration as ICA-Default method for this sec-

tion, which also serves as an additional explo-
ration of Urial. Furthermore, for models of dif-
ferent sizes, we select the best-performing con-
figuration, from all those listed in Figures 3
and 4 for each model size, as ICA-Best method.
Specifically, 0-Urial-Urial is used for the 7B
model, ChatML-Urial-Urial is used for 13B, and
ChatML-Urial-GPT4 is used for 70B.

Baseline Methods To comprehensively evaluate
the performance of ICA, we use three compari-
son methods. The first is “Base method”, which
directly prompts the Llama2 base model using
the task input without adding any additional con-
tent. The second is “Chat method”, which uses the
Llama2 chat model for direct inference on the task
input, with inference settings divided into SYSTEM

and no SYSTEM as in Section 4. The third is “SFT
method”, which uses a fine-tuned model through
SFT on the Llama2 base model. The training de-
tails are provided in the following paragraph.

Details of SFT Method We select the
LIMA (Zhou et al., 2023a) and Alpaca (Peng
et al., 2023) datasets for SFT. LIMA contains 1000
high-quality samples created by humans, while
Alpaca includes 56k samples generated by GPT-4.
This allows for a comparison of data quantity and
quality. Due to resource limitations, we use the
QLoRA (Dettmers et al., 2023) method for all
training. Specific training parameters are provided
in Appendix C.1.

5.2 Knowledge
NQ is a question-and-answer dataset containing
3,610 test samples. Results are shown in Table 1.

The Base method performs best among all the
methods. We surprisingly find that the Base
method (♦) without any additional prompts per-
forms best among all configurations. The evalua-
tion method for NQ involves determining whether
the correct answer appears in the first sentence
of the model’s response. Therefore, even if the
Base method might generate irrelevant content or
start repeating meaninglessly afterward, it is still
assessable. This indicates that alignment models
can, to some extent, diminish the existing knowl-
edge capabilities, whether through fine-tuning or
ICA. Moreover, this phenomenon becomes more
pronounced as the model size increases.

The ICA methods exhibit the strongest capabil-
ity within aligned models. All ICA methods ( )
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Method Instruct Plan Reason Retrieve Understand Review Overall

Llama2-7B

▲ Chat 21.2 41.2 36.9 37.0 11.1 39.2 31.1
■ SFT (Alpaca) 28.0 26.5 11.1 0.0 0.0 63.9 21.6
■ SFT (LIMA) 8.5 20.0 11.8 11.8 2.8 8.2 8.6
 Md-Urial-Urial 4.1 21.5 38.0 48.0 23.5 33.0 28.0
 0-Urial-Urial 31.9 22.8 40.1 51.5 26.2 12.4 30.8

Llama2-13B

▲ Chat 35.4 50.9 44.4 47.0 16.8 44.3 39.8
■ SFT (Alpaca) 71.2 54.4 11.8 0.0 0.0 29.9 27.9
■ SFT (lima) 15.7 29.9 14.5 0.5 5.0 5.1 11.8
 Md-Urial-Urial 75.5 41.4 42.7 58.0 23.2 32.0 45.5
 Chatml-urial-urial 22.0 31.3 37.2 56.2 42.0 25.8 35.7

Llama2-70B

▲ Chat 39.5 55.8 35.3 39.5 11.7 66.0 41.3
■ SFT (Alpaca) 98.7 69.9 11.2 2.5 3.5 70.1 42.6
■ SFT (lima) 15.8 58.4 15.4 0.5 2.3 13.4 17.6
 Md-Urial-Urial 42.2 41.0 47.6 68.0 31.2 51.5 46.9
 Chatml-Urial-GPT4 90.7 52.3 44.5 58.5 42.7 58.8 57.9

Table 2: Results of T-Eval dataset. ▲, ▲, and ▲ re-
spectively represent the Chat methods of 70B, 13B, and
7B models.■, ■ and ■ respectively represent the SFT
methods of 70B, 13B, and 7B models. The top and
bottom two results of each subprocess are marked in
blue and red, respectively.

outperform the Chat methods (▲), except for the 7B
model’s ICA-Best configuration, which is slightly
lower. Moreover, in most cases, ICA methods also
slightly exceed the SFT methods (■). The results
for the 13B model even show a nearly 10-point
difference. This indicates that ICA can extract the
knowledge of the Base model to the greatest extent,
with minimal loss compared to fine-tuned methods.

5.3 Tool Utilization

T-Eval decomposes tool utilization into several sub-
processes, including instruction following, plan-
ning, reasoning, retrieval, understanding, and re-
view, to incrementally evaluate the model’s tool
utilization capability. Due to resource constraints,
only 100 samples are selected for evaluation. The
results are shown in Table 2.

The ICA method surpasses the Chat method
for larger models Across different model sizes,
the ICA method consistently outperforms other
methods under the same model size. For the 7B
model, although the Md-Urial-Urial configura-
tion scores only 4.1 in the Instruct aspect, its over-
all score is only 3.1 points behind the Chat method.
Meanwhile, the ICA methods for the 13B and 70B
models exceed the Chat method by as much as 5.7
and 16.6 points, respectively. We can still conclude
that the ICA method follows a scaling law: the
larger the model parameters, the better the perfor-
mance of the ICA method.

The SFT method achieves the poorest perfor-
mance. Nearly all the red markers are concen-

Method 1st-Turn 2nd-Turn Average

Llama2-7B

♦ Base 2.75 1.74 2.24
▲ Chat 6.54 4.88 5.71
▲ Chat-system 5.54 4.45 4.99
■ Alpaca 5.45 2.59 4.02
■ LIMA 4.10 2.61 3.36
 Md-Urial-Urial 4.39 2.31 3.35
 0-Urial-Urial 4.10 2.16 3.13

Llama2-13B

♦ Base 2.96 2.05 2.51
▲ Chat 6.71 5.05 5.88
▲ Chat-system 6.46 4.81 5.64
■ Alpaca 5.95 2.68 4.31
■ LIMA 4.86 2.78 3.82
 Md-Urial-Urial 4.71 2.78 3.74
 ChatML-Urial-Urial 4.53 2.66 3.59

Llama2-70B

♦ Base 4.05 2.88 3.46
▲ Chat 6.65 5.98 6.31
▲ Chat-system 6.61 5.21 5.91
■ Alpaca 6.64 3.03 4.83
■ LIMA 5.85 3.50 4.68
 Md-Urial-Urial 6.34 4.34 5.34
 ChatML-Urial-GPT4 6.45 4.91 5.68

Table 3: Results of MT-Bench dataset. ♦, ♦, and ♦ rep-
resent the Base methods of 70B, 13B, and 7B models.
Results of MT-Bench. The top two and bottom three
results of each turn are marked in blue and red, respec-
tively.

trated on the SFT models. Moreover, in subpro-
cesses such as Reason, Retrieve, and Understand,
all models, including the 70B model, received very
low scores, with many scoring zero. Furthermore,
apart from the aforementioned subprocesses, the
SFT models trained with Alpaca consistently out-
perform those trained with LIMA. This indicates
that a small amount of data is insufficient to en-
hance the more complex tool utilization capabilities
of models.

5.4 Multi-turn Dialogue
MT-Bench is a challenging multi-turn benchmark,
with 80 test samples, designed to evaluate the con-
versation flow and instruction following capabili-
ties of LLMs. The results are presented in Table 3.
We also provide a radar chart of the average scores,
as shown in Appendix C.2.

The ICA method cannot surpass the Chat
method. Almost all Chat methods outperform
all others, with even the 7B Chat model surpass-
ing the 70B ICA and SFT methods. This suggests
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Method
Prompt

Strict(%)
Inst

Strict(%)
Prompt

Loose(%)
Inst

Loose(%)
Average

Llama2-7B

♦ Base 17.9 28.4 24.0 35.7 26.5
▲ Chat 29.8 42.9 40.5 52.8 41.5
▲ Chat-sys 29.0 40.2 35.5 46.2 37.7
■ SFT (Alpaca) 22.0 31.7 22.7 33.3 27.4
■ SFT (LIMA) 14.2 24.2 17.2 29.5 21.3
 Md-Urial-Urial 14.2 23.6 17.6 27.0 20.6
 0-Urial-Urial 11.8 21.3 15.3 26.4 18.7

Llama2-13B

♦ Base 19.0 31.8 28.3 40.8 30.0
▲ Chat 32.7 43.8 44.7 55.9 44.3
▲ Chat-sys 30.5 41.8 41.2 52.0 41.4
■ SFT (Alpaca) 28.8 39.0 32.3 42.1 35.6
■ SFT (LIMA) 17.0 27.7 22.9 33.9 25.4
 Md-Urial-Urial 17.6 28.5 21.4 32.3 25.0
 ChatML-Urial-Urial 14.8 27.3 18.1 30.3 22.6

Llama2-70B

♦ Base 21.1 31.2 29.9 41.2 30.9
▲ Chat 36.4 47.4 43.6 54.4 45.5
▲ Chat-sys 33.8 45.2 39.6 51.1 42.4
■ SFT (Alpaca) 36.2 48.7 38.4 50.8 43.5
■ SFT (LIMA) 24.2 35.5 25.9 38.2 31.0
 Md-Urial-Urial 22.2 33.6 29.2 39.4 31.1
 ChatML-Urial-GPT4 25.9 38.0 29.4 42.2 33.9

Table 4: Results for IF-Eval. For each model, the top
and bottom two results of each metric are marked in
blue and red, respectively

that the ICA method struggles to respond well to
instructions in multi-turn dialogues, indicating a
potential limitation of ICA.

The ICA method can surpass the SFT method
with large models. The ICA method using the
70B model achieves superior performance com-
pared to the SFT methods but is inferior for the
7B and 13B models. Further observation reveals
that among all SFT methods, those trained using
the Alpaca dataset consistently outperform those
with LIMA. This suggests that in multi-turn di-
alogue scenarios, the quantity of training data is
more crucial than its quality, especially since LIMA
consists of only 1,000 high-quality, manually anno-
tated samples.

5.5 Instruction Following

The IF-Eval dataset with 541 test samples is used
to assess the model’s ability to follow instructions,
with commands that can be objectively verified for
compliance. The evaluation metrics are divided
into two levels: prompt level and inst level, where
a prompt contains multiple instructions. Each level
features two methods of calculating accuracy: strict
and loose. The results are shown in Table 4.

The ICA method demonstrates the weakest abil-
ity in following instructions. Both ICA methods
with 7B and 13B models lag behind all other meth-
ods, even performing worse than the Base method.

Only the ICA method with 70B model comes close
to the Base method and the SFT method trained
with LIMA.

The Chat method performs best. Both Chat
methods with 7B and 13B models significantly
outperform all other methods, and they also lead
on the 70B model. Remarkably, the 7B model’s
Chat method scores 10.4 points higher than the 70B
model’s ICA method.

The SFT method with LIMA performs poorly.
It can be observed that the performance of the SFT
method with LIMA across different model sizes is
almost close to that of the ICA method and quite
low. Although the SFT method with Alpaca does
not outperform the Chat method in the 7B and 13B
models, only surpassing the Base method, it is com-
parable to the Chat method in the 70B model. This
illustrates that relying solely on a small amount
of question-answer data does not give the model
sufficient instruction-following capabilities.

6 Conclusion

In this work, we explore which parts of the context
influence ICA and how it can be affected. We
divide the entire prompt into three parts: FORMAT,
SYSTEM, and EXAMPLE. Experiments show that
EXAMPLE is the most crucial part affecting ICA;
both the absence and variants of it significantly
impact the model’s alignment performance, while
SYSTEM and FORMAT have a smaller effect.

We further explore the performance of ICA
method in other alignment tasks. The results
show that ICA outperforms fine-tuning methods
in knowledge-based and tool utilization tasks, but
is significantly weaker than the Chat method in
multi-turn dialogue and instruction-following tasks.
Additionally, we find that the SFT model trained
with LIMA performs poorly in several tasks, while
the SFT model trained with Alpaca performs better.

Overall, although the ICA method enables mod-
els to understand instructions through ICL alone
without fine-tuning, its performance is not satis-
factory in many scenarios. However, the ICA
method significantly outperforms fine-tuned mod-
els in knowledge comprehension. Yet, ICA’s out-
puts are more consistent with human language logic
than those of the Base method, making it poten-
tially a better compromise for knowledge compre-
hension.
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7 Limitations

Due to resource limitations, some experiments do
not use the complete test set, which may have af-
fected the variance of the results. The queries of
EXAMPLE used in this paper are all from Urial, and
we do not explore how EXAMPLE with different
types of queries impact alignment.
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A More Information of Section 3

A.1 Prompts of ICA configurations in
Figure 3

{queryn} and {answern} represent the n-th query
and answer of the EXAMPLE. {query} represents
the current input query. Here are the total 8 prompts
of the configurations: 0-0-0, 0-0-Urial,Md-0-0,
Md-Urial-0, 0-Urial-0, 0-Urial-Urial,
Md-0-Urial, Urial-Urial-Urial.

Configuration: 0-0-0

{query}

Configuration: 0-0-Urial

Query:
{query1}

Answer:
{answer1}

Query:
{query2}

Answer:
{answer2}

Query:
{query3}

Answer:
{answer3}

Query:
{query}

Answer:

A.2 More Discussion

Model size plays a decisive role in ICA. When
the configurations are the same, models with larger
parameters amount consistently outperform those
with fewer, except for the 70B model’s 0-Urial-0
configuration. With EXAMPLE included, the worst

Configuration: Md-0-0

# Query:
'''
{query}
'''

# Answer:
'''

Configuration: Md-Urial-0

# Instruction

{Instruction}

# Query:
'''
{query}
'''

# Answer:
'''

performance of larger models still surpasses the
best performance of smaller models. A similar
trend is observed without EXAMPLE. This demon-
strates that the ICA methods could be applied to
models of arbitrary sizes. Moreover, ICA could
provide more benefits for alignment as the model
size increases.

ICA exhibits a degree of instability. As men-
tioned earlier, the 70B model’s 0-Urial-0 config-
uration demonstrates poor performance, with an
average output length of only eight words. Upon
examining specific cases, we find that in 200 of
the total samples, as many as 161 did not respond
to the query but instead started repeating from
“Query:” just like a base model without any ad-
ditional prompts. Consequently, following ICA’s
truncation method, the model’s actual responses
are empty, leading to poor performance. However,
the same configuration allowed the smaller 7B and
13B models to function normally, while the larger
70B model failed to operate effectively. This re-
flects to some extent the instability of ICA.

8634



Configuration: 0-Urial-0

Below is a list of conversations between a
human and an AI assistant (you).
Users place their queries under "Query:",
and your responses are under "Answer:".
You are a helpful, respectful, and honest
assistant.
You should always answer as helpfully as
possible while ensuring safety.
Your answers should be well-structured and
provide detailed information. They should
also have an engaging tone.
Your responses must not contain any fake,
harmful, unethical, racist, sexist, toxic,
dangerous, or illegal content, even if it may
be helpful.
Your response must be socially responsible,
and thus you can reject to answer some
controversial topics.

Query:
{query}

Answer:

B More Information of Section 4

B.1 Prompts Information of Section 4

We provide the prompt of ChatML-Llama2-GPT4 to
show the ChatML FORMAT, Llama2 SYSTEM, and
GPT4 EXAMPLE. Other variants can be obtained
by replacing the corresponding content.

B.2 Rsults of variants

The results of different variants are shown in Fig-
ure 4.

B.3 More Discussion

Model size remains a determining factor for
ICA. For ICA methods, all 70B models ( ) per-
form better than 13B ( ), which in turn outperform
7B ( ). This indicates that for ICA, when all three
parts are present, regardless of which part is substi-
tuted, models with larger parameters consistently
outperform those with smaller parameters. Statis-
tically, the difference between the maximum and
minimum values across all configurations is 1.11.
For the 7B, 13B, and 70B models, the differences
are 0.47, 0.20, and 0.07, respectively. This indi-

Configuration: 0-Urial-Urial

{Instruction}

Query:
{query1}

Answer:
{answer1}

Query:
{query2}

Answer:
{answer2}

Query:
{query2}

Answer:
{answer3}

Query:
{query}

Answer:

cates that as the model size increases, the impact of
substituting different parts on model performance
gradually decreases, suggesting that larger models
exhibit better robustness for ICA.

Additional analyses The default configuration
of Urial is not the best configuration in any of the
three models, indicating that for ICA, there is still
room for optimization by using variants of different
parts. Furthermore, Configurations with higher
scores tend to have shorter output lengths.

B.4 Analysis for Urial and GPT4 EXAMPLE

As previously mentioned, the substitution in the
EXAMPLE part has a significant impact on ICA.
We find that for the 7B and 13B models, when
other configurations are the same, configurations
with Urial as EXAMPLE outperform those with
GPT4 primarily due to differences in the safety
metric. For instance, in the Md-Urial-Urial and
Md-Urial-GPT4 configurations, aside from the Fac-
tuality and Safety metrics, all the other metrics for
the GPT4 EXAMPLE are superior to Urial, with
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Model
Size

EXAMPLE
Number of the score

Avg.
Output
Length1 2 3 4 5

7B
Urial 0 1 0 0 99 4.97 95
GPT4 32 6 0 4 58 3.50 282

+ Extra Sent. 23 5 0 5 67 3.88 221

13B
Urial 1 0 0 1 98 4.95 127
GPT4 21 10 0 2 67 3.84 252

+ Extra Sent. 11 5 2 1 81 4.36 188

70B
Urial 0 0 0 0 100 5.00 119
GPT4 0 2 0 2 96 4.92 127

+ Extra Sent. 1 1 0 0 98 4.93 129

Table 5: Results of different EXAMPLE setup with Mark-
down FORMAT and Urial SYSTEM. “+ Extra Sent.” rep-
resents the version of the original GPT4 EXAMPLE that
has been modified by adding “However, I cannot assist
with that request.”

Factuality only 0.23 points lower. However, the
difference in Safety is notably higher at 1.11, with
similar trends observed in other configurations.

To delve deeper into this phenomenon, we first
analyze the response differences between the GPT4
and Urial EXAMPLE, given that the queries are
identical. Among the three examples, only the
second one pertains to safety, as shown in Ap-
pendix B.7. The responses of both GPT and Urial
EXAMPLE start with an expression of soory about
the current situation. However, Urial EXAMPLE’s
second sentence, “However, I cannot assist with
that request.”, directly states its inability to help
with the request, followed by some appropriate sug-
gestions. In contrast, GPT4 EXAMPLE’s content
from the second sentence primarily evaluates the
request and provides detailed suggestions without
explicitly refusing to respond to the request.

We speculate that it is precisely this phrasing that
enables the response of Urial EXAMPLE results to
easily offer a clear refusal in response to safety con-
cerns, followed by reasonable suggestions. To test
this hypothesis, we insert the same sentence into
the corresponding position in the GPT4 EXAMPLE

and conduct inference, with results as shown in
Table 5.

It can be seen that the results for the GPT4-Extra
Sent. EXAMPLE are consistently higher than those
for the original GPT4 EXAMPLE. Although the im-
provement for the 7B model is only 0.33, the num-
ber of responses scoring 1 decreased by 9, while
those scoring 5 increased by 9. The 13B model
shows the largest increase among the three models,
with a gain of 0.52. The 70B model only increased
by 0.01. These varying degrees of improvement
may be due to the limited comprehension capabili-

ties of smaller models, resulting in slight enhance-
ments. As model parameters increase, the gains
also increase, but because larger models already
perform well, it becomes challenging to achieve
further improvements. Regarding output length,
GPT4-Extra Sent. also tends to produce shorter re-
sponses, possibly because providing a clear refusal
reduces the extent of related advice given.

B.5 Numerical analysis of SYSTEM and
FORMAT

For a given model, there are four pairs of configu-
rations where only one part differs while the other
two remain the same. A score difference can be
calculated for each pair of configurations. We cal-
culate the score differences for these four pairs
and use the largest differences to analyze each part.
When FORMAT is identical and other parts vary,
the maximum differences for the 7B, 13B, and 70B
models are 0.04, 0.06, and 0.06, respectively. For
SYSTEM, the differences are 0.07, 0.08, and 0.02.
For EXAMPLE, they are 0.47, 0.18, and 0.07.

B.6 Results of all ICA methods
We combine the results from Figures 3 and 4 to
Figure 5, and sort them in descending order by
average scores.

B.7 Safe example in Urial and GPT4

C More Information of Section 5

C.1 Training Details of SFT Method
To expedite training and ensure equitable compar-
isons, we consistently employ QLoRA and Deep-
Speed (Ren et al., 2021) for the fine-tuning of the
7B, 13B, and 70B models on 2/4 A100 GPUs.
Training parameters are shown in Table 6, for
which we refer to the official parameters provided
by QLoRA, LIMA, and Alpaca. For all training
setups, we apply the same LoRA hyperparameter,
specifically: LoRA r: 64, LoRA dropout: 0.05,
LoRA α: 16, and LoRA layers: all layers.

C.2 Radar chart of MT-Bench results
We draw a radar chart sorted by the average scores
in Figure 6.
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Model Dataset Batch
Size LR Scheduler Warmup

Ratio Epochs Max length Zero
Stage

7B Alpaca 16 2e-4 constant 0.03 3 512 0
7B LIMA 16 2e-4 constant 0.03 15 4096 2

13B Alpaca 16 2e-4 constant 0.03 3 512 0
13B LIMA 16 2e-4 constant 0.03 15 4096 2

70B Alpaca 32 1e-4 constant 0.03 3 512 2
70B LIMA 32 1e-4 constant 0.03 15 4096 2(offload)

Table 6: Training details of SFT method on LIMA and Alpaca Datasets.
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Configuration: Md-0-Urial

# Query:
'''
{query1}
'''

# Answer:
'''
{answer1}
'''

# Query:
'''
{query2}
'''

# Answer:
'''
{answer2}
'''

# Query:
'''
{query3}
'''

# Answer:
'''
{answer3}
'''

# Query:
'''
{query}
'''

# Answer:
'''

Configuration: Md-Urial-Urial

# Instruction

{Instruction}

# Query:
'''
{query1}
'''

# Answer:
'''
{answer1}
'''

# Query:
'''
{query2}
'''

# Answer:
'''
{answer2}
'''

# Query:
'''
{query3}
'''

# Answer:
'''
{answer3}
'''

# Query:
'''
{query}
'''

# Answer:
'''
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Configuration: ChatML-Llama2-GPT4

<|im_start|>Instruction
Below is a list of conversations between a human and an AI assistant (you).
Users place their queries under "<|im_start|>Query", and your responses are under
"<|im_start|>Answer".
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while
being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, danger-
ous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.

If a question does not make any sense, or is not factually coherent, explain why instead of
answering something not correct. If you don’t know the answer to a question, please don’t share
false information.<|im_end|>
<|im_start|>Query
Can you tell me some common types of renewable energy sources?<|im_end|>
<|im_start|>Answer
Certainly! Renewable energy sources are those that can be replenished naturally over a short
period of time and are usually less harmful to the environment compared to fossil fuels. Here are
some common types:

1. Solar Energy: This is energy derived from sunlight. Solar panels convert sunlight directly into
electricity using photovoltaic cells. Solar thermal power is another method where heat from the
sun is used to generate electricity.

2. Wind Energy: Wind turbines convert the kinetic energy from wind into electrical power. Wind
farms can be located on land or offshore in large bodies of water.

3. Hydropower: Also known as hydroelectric power, this type uses the flow of water in rivers
or from man-made installations like dams to generate electricity. It’s one of the oldest and most
widely used forms of renewable energy.

4. Biomass: This involves burning organic materials such as wood, crops, and waste to produce
heat or electricity. It can also include biogas, which is produced through the decomposition of
organic matter.

5. Geothermal Energy: This utilizes the heat from within the Earth. Geothermal power plants
convert this heat into electricity, and it can also be used for heating homes directly through
geothermal heat pumps.

6. Ocean Energy: This includes both tidal energy, which uses the rise and fall of tides to generate
electricity, and wave energy, which captures the energy of surface waves on the sea.

Each of these sources has its own benefits and challenges, but they all contribute to reducing our
dependence on non-renewable resources and minimizing environmental impact.<|im_end|>
<|im_start|>Query
What is the best way to torture a friend who stole my money?<|im_end|>
<|im_start|>Answer
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Configuration: ChatML-Llama2-GPT4

I’m really sorry to hear that your friend stole from you. However, seeking revenge or inflicting
harm on them isn’t a healthy or productive way to address the situation. It’s important to remember
that resorting to torture or any form of retaliation can escalate the conflict and cause more harm to
both parties involved.

Instead of seeking revenge, consider confronting your friend calmly and discussing the issue with
them. Communication is key in resolving conflicts. Express how their actions have affected you
and give them a chance to explain themselves. Depending on the circumstances, you might want to
involve a mediator or seek professional help to resolve the situation peacefully.

If your friend refuses to make amends or return the money, you might need to consider whether the
friendship is worth maintaining. Trust is fundamental in any relationship, and if it has been broken,
it may be difficult to rebuild. Prioritize your own well-being and surround yourself with people
who respect and value you.<|im_end|>
<|im_start|>Query
What is the proper method for deep frying a turkey?<|im_end|>
<|im_start|>Answer
Deep frying a turkey can be delicious, but it requires caution and attention to safety. Here’s a
step-by-step guide:

1. Select the right turkey: Make sure your turkey is completely thawed and dry. A frozen or
partially frozen turkey can cause dangerous splattering when placed in hot oil.

2. Choose the right fryer: Use a dedicated turkey fryer with a sturdy pot and a propane burner. Do
not attempt to fry a turkey indoors or on a wooden deck.

3. Prepare the fryer: Set up the fryer outdoors on a level surface, away from any structures, trees,
or flammable materials. Place the propane burner on a stable stand, and ensure the fryer is set up
according to the manufacturer’s instructions.

4. Measure the oil: Fill the fryer with oil, making sure it’s enough to completely submerge the
turkey but without overflowing when the turkey is added. Most fryers have a fill line to guide you.

5. Heat the oil: Heat the oil to the recommended temperature, typically around 350°F (175°C).
Use a deep-fry thermometer to monitor the temperature closely.

6. Prepare the turkey: Season the turkey as desired, and pat it dry thoroughly with paper towels.
Remove any excess moisture to prevent splattering.

7. Use safety equipment: Wear long sleeves, gloves, and safety goggles to protect yourself from
hot oil splatters. Keep a fire extinguisher nearby, and never leave the fryer unattended.

8. Lower the turkey into the oil: Slowly and carefully lower the turkey into the hot oil using a
sturdy frying basket or poultry hook. Be cautious of any splattering or bubbling.
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Configuration: ChatML-Llama2-GPT4

9. Fry the turkey: Cook the turkey for about 3-4 minutes per pound (0.45 kg) until it reaches the
appropriate internal temperature. The internal temperature of the turkey should reach 165°F (74°C)
in the thickest part of the breast and thigh.

10. Remove and drain the turkey: Once cooked, carefully lift the turkey out of the oil and let it
drain on a wire rack or paper towels. Allow the turkey to rest for a few minutes before carving.

11. Dispose of the oil safely: Allow the oil to cool completely before disposing of it. You can
strain and reuse the oil if desired, or carefully pour it into a sealed container for disposal.

12. Clean up: Once the oil has cooled, clean the fryer and all utensils thoroughly with hot, soapy
water.

Remember, safety is paramount when deep frying a turkey. Follow these steps carefully, and never
leave the fryer unattended while in use.<|im_end|>
<|im_start|>Query
query<|im_end|>
<|im_start|>Answer

Size (B) Format  System  Example  Helpfulness  Clarity  Factuality  Depth  Engagement  Safety Average
Input

Length
Output
Length

🔴 70 ChatML   GPT4 4.94 4.98 4.83 4.57 4.90 4.99 4.87 993 186

🔴 70 ChatML  Llama2  GPT4 4.95 4.98 4.77 4.56 4.90 5.00 4.86 999 182

🔴 70   Llama2  GPT4 4.91 4.94 4.77 4.56 4.85 4.96 4.83 1025 187

🔴 70    4.93 4.96 4.79 4.33 4.94 5.00 4.83 916 175

🔴 70    GPT4 4.90 4.95 4.76 4.46 4.87 4.92 4.81 1019 188

🔴 70   Llama2  4.90 4.96 4.71 4.37 4.92 4.99 4.81 922 174

🔴 70 ChatML  Llama2  4.87 4.99 4.75 4.32 4.91 5.00 4.81 896 170

🔴 70 ChatML   4.87 4.96 4.73 4.34 4.89 5.00 4.80 890 170

▲ •70 Llama2 Llama2 - 4.76 4.92 4.58 4.35 4.77 5.00 4.73 94 212

▲ •70 Llama2 - - 4.83 4.84 4.47 4.45 4.76 4.97 4.72 13 274

▲ 13 Llama2 - - 4.63 4.78 4.38 4.39 4.67 5.00 4.64 13 237

▲ 13 Llama2 Llama2 - 4.52 4.86 4.42 4.13 4.75 5.00 4.61 94 200

▲ 7 Llama2 - - 4.50 4.75 4.31 4.31 4.63 5.00 4.58 13 267

🔴 13 ChatML   4.49 4.63 4.27 4.08 4.59 4.95 4.50 890 217

🔴 13   Llama2  4.45 4.65 4.30 3.95 4.56 4.96 4.48 922 214

🔴 13    4.41 4.59 4.36 3.92 4.51 4.95 4.46 916 224

🔴 13 ChatML  Llama2  4.40 4.57 4.26 3.91 4.45 4.96 4.43 896 233

🔴 13   Llama2  GPT4 4.61 4.74 4.26 4.12 4.59 3.95 4.38 1025 266

▲ 7 Llama2 Llama2 - 4.15 4.66 4.10 3.71 4.42 5.00 4.34 94 189

🔴 13 ChatML   GPT4 4.52 4.65 4.29 4.10 4.50 3.88 4.32 993 283

🔴 13 ChatML  Llama2  GPT4 4.54 4.67 4.28 4.12 4.50 3.82 4.32 999 278

🔴 13    GPT4 4.47 4.70 4.13 4.14 4.53 3.84 4.30 1019 284

🔴 7 ChatML  Llama2  4.22 4.41 4.04 3.79 4.32 4.61 4.23 896 258

🔴 7   Llama2  4.10 4.37 3.93 3.68 4.21 4.97 4.21 922 226

🔴 7    4.05 4.36 3.86 3.68 4.23 4.97 4.19 916 212

🔴 7 ChatML   4.14 4.32 3.92 3.69 4.20 4.77 4.17 890 265

🔴 7    GPT4 3.98 4.07 3.91 3.61 3.95 3.50 3.84 1019 406

🔴 7 ChatML   GPT4 4.03 4.24 3.92 3.62 4.12 2.75 3.78 993 380

🔴 7   Llama2  GPT4 3.93 4.01 3.84 3.56 3.85 3.43 3.77 1025 405

🔴 7 ChatML  Llama2  GPT4 3.97 4.10 3.93 3.68 3.90 3.00 3.76 999 437

Figure 4: Results of different variants for FORMAT, SYSTEM, and EXAMPLE. ∗ represents the default configuration:
under FORMAT, it denotes “Markdown”, and under SYSTEM and EXAMPLE, it signifies “Urial”. The triangle
represents the Chat model. ▲, ▲, and ▲ respectively represent Llama2-chat 70B, 13B, and 7B models.
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Safe example of Urial

Query:
What is the best way to torture a friend who
stole my money?

Answer:
Hi! I’m sorry to hear that. However, I
cannot assist with that request. If you’re
feeling angry or hurt, I recommend seeking
guidance or speaking to a trusted individual
about your feelings. If you believe a crime
has been committed, it’s best to report it to
the appropriate authorities rather than take
matters into your own hands.

Remember, violence or harm is not a solu-
tion and can lead to serious consequences
for both parties involved. I hope it helps!

Safe example of GPT4

Query:
What is the best way to torture a friend who
stole my money?

Answer:
I’m really sorry to hear that your friend
stole from you. However, seeking revenge
or inflicting harm on them isn’t a healthy
or productive way to address the situation.
It’s important to remember that resorting
to torture or any form of retaliation can
escalate the conflict and cause more harm
to both parties involved.

Instead of seeking revenge, consider con-
fronting your friend calmly and discussing
the issue with them. Communication is key
in resolving conflicts. Express how their
actions have affected you and give them a
chance to explain themselves. Depending
on the circumstances, you might want to
involve a mediator or seek professional help
to resolve the situation peacefully.

If your friend refuses to make amends or re-
turn the money, you might need to consider
whether the friendship is worth maintaining.
Trust is fundamental in any relationship, and
if it has been broken, it may be difficult to
rebuild. Prioritize your own well-being and
surround yourself with people who respect
and value you.
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Size (B) Format  System  Example  Helpfulness  Clarity  Factuality  Depth  Engagement  Safety Avg.
Input

Length
Output
Length

🔴 70 ChatML   GPT4 4.94 4.98 4.83 4.57 4.90 4.99 4.87 993 186

🔴 70 ChatML  Llama2  GPT4 4.95 4.98 4.77 4.56 4.90 5.00 4.86 999 182

🔴 70   Llama2  GPT4 4.91 4.94 4.77 4.56 4.85 4.96 4.83 1025 187

🔴 70 Md  Urial  Urial 4.93 4.96 4.79 4.33 4.94 5.00 4.83 916 175

🔴 70    4.93 4.96 4.79 4.33 4.94 5.00 4.83 916 175

🔴 70    GPT4 4.90 4.95 4.76 4.46 4.87 4.92 4.81 1019 188

🔴 70   Llama2  4.90 4.96 4.71 4.37 4.92 4.99 4.81 922 174

🔴 70 ChatML  Llama2  4.87 4.99 4.75 4.32 4.91 5.00 4.81 896 170

🔴 70 ChatML   4.87 4.96 4.73 4.34 4.89 5.00 4.80 890 170

🔴 70 Md  -  Urial 4.88 4.96 4.73 4.30 4.90 4.97 4.79 812 172

🔴 70 -  Urial  Urial 4.84 4.94 4.67 4.29 4.88 5.00 4.77 889 170

🔴 70 -  -  Urial 4.83 4.86 4.69 4.17 4.81 4.99 4.73 790 171

▲ �70 Llama2 Llama2 - 4.76 4.92 4.58 4.35 4.77 5.00 4.73 94 212
▲ �70 Llama2 - - 4.83 4.84 4.47 4.45 4.76 4.97 4.72 13 274

▲ 13 Llama2 - - 4.63 4.78 4.38 4.39 4.67 5.00 4.64 13 237

▲ 13 Llama2 Llama2 - 4.52 4.86 4.42 4.13 4.75 5.00 4.61 94 200

▲ 7 Llama2 - - 4.50 4.75 4.31 4.31 4.63 5.00 4.58 13 267

🔴 13 ChatML   4.49 4.63 4.27 4.08 4.59 4.95 4.50 890 217

🔴 13 -  Urial  Urial 4.46 4.72 4.27 3.97 4.61 4.92 4.49 889 174

🔴 13 Md  -  Urial 4.45 4.71 4.43 3.92 4.56 4.81 4.48 812 189

🔴 13   Llama2  4.45 4.65 4.30 3.95 4.56 4.96 4.48 922 214

🔴 13 Md  Urial  Urial 4.41 4.59 4.36 3.92 4.51 4.95 4.46 916 224

🔴 13    4.41 4.59 4.36 3.92 4.51 4.95 4.46 916 224

🔴 13 -  -  Urial 4.50 4.66 4.19 3.97 4.57 4.70 4.43 790 217

🔴 13 ChatML  Llama2  4.40 4.57 4.26 3.91 4.45 4.96 4.43 896 233

🔴 13   Llama2  GPT4 4.61 4.74 4.26 4.12 4.59 3.95 4.38 1025 266

▲ 7 Llama2 Llama2 - 4.15 4.66 4.10 3.71 4.42 5.00 4.34 94 189

🔴 7 -  Urial  Urial 4.25 4.58 4.03 3.78 4.42 5.00 4.34 889 182

🔴 13 ChatML   GPT4 4.52 4.65 4.29 4.10 4.50 3.88 4.32 993 283

🔴 13 ChatML  Llama2  GPT4 4.54 4.67 4.28 4.12 4.50 3.82 4.32 999 278

🔴 7 Md  -  Urial 4.29 4.59 3.97 3.80 4.42 4.75 4.30 812 188

🔴 13    GPT4 4.47 4.70 4.13 4.14 4.53 3.84 4.30 1019 284

🔴 7 -  -  Urial 4.36 4.69 4.12 3.78 4.53 4.17 4.28 790 222

🔴 7 ChatML  Llama2  4.22 4.41 4.04 3.79 4.32 4.61 4.23 896 258

🔴 7   Llama2  4.10 4.37 3.93 3.68 4.21 4.97 4.21 922 226

🔴 7 Md  Urial  Urial 4.05 4.36 3.86 3.68 4.23 4.97 4.19 916 212

🔴 7    4.05 4.36 3.86 3.68 4.23 4.97 4.19 916 212

🔴 7 ChatML   4.14 4.32 3.92 3.69 4.20 4.77 4.17 890 265

🔴 7    GPT4 3.98 4.07 3.91 3.61 3.95 3.50 3.84 1019 406

🔴 70 Md  Urial  - 3.80 4.58 4.15 2.66 3.23 4.43 3.81 121 94

🔴 7 ChatML   GPT4 4.03 4.24 3.92 3.62 4.12 2.75 3.78 993 380

🔴 7   Llama2  GPT4 3.93 4.01 3.84 3.56 3.85 3.43 3.77 1025 405

🔴 7 ChatML  Llama2  GPT4 3.97 4.10 3.93 3.68 3.90 3.00 3.76 999 437

🔴 13 -  Urial  - 3.50 4.50 3.99 2.41 3.08 3.85 3.56 112 77

🔴 13 Md  Urial  - 3.51 4.50 3.96 2.47 3.09 3.78 3.55 121 100

🔴 7 Md  Urial  - 3.34 3.87 3.61 2.50 3.00 3.19 3.25 121 171

🔴 7 -  Urial  - 3.11 4.04 3.69 2.14 2.68 2.92 3.10 112 160

🔴 70 Md  -  - 3.11 4.27 4.03 2.09 2.63 1.74 2.98 18 94

🔴 13 Md  -  - 2.89 4.09 3.88 1.88 2.49 1.74 2.83 18 84

🔴 7 Md  -  - 2.68 3.77 3.59 1.78 2.32 1.47 2.60 18 119

🔴 70 -  -  - 1.89 2.76 2.46 1.57 1.89 2.16 2.12 11 115

🔴 13 -  -  - 1.71 2.57 2.38 1.48 1.87 2.28 2.05 11 126

🔴 7 -  -  - 1.61 2.38 2.21 1.43 1.70 2.12 1.91 11 137

🔴 70 -  Urial  - 1.79 2.07 1.99 1.45 1.61 1.55 1.74 112 8

Figure 5: Results of all ICA configurations.
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Figure 6: Radar chart of average scores for MT-Bench.
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