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Abstract

Recent advancements in educational platforms
have emphasized the importance of personal-
ized education. Accurately estimating question
difficulty based on the ability of the student
group is essential for personalized question rec-
ommendations. Several studies have focused
on predicting question difficulty using student
question-solving records or textual informa-
tion about the questions. However, these ap-
proaches require a large amount of student
question-solving records and fail to account
for the subjective difficulties perceived by dif-
ferent student groups. To address these lim-
itations, we propose the LLaSA framework
that utilizes large language models to repre-
sent students at various levels. Our proposed
method, LLaSA and the zero-shot LLaSA, can
estimate question difficulty both with and with-
out students’ question-solving records. In eval-
uations on the DBE-KT22 and ASSISTMents
2005–2006 benchmarks, the zero-shot LLaSA
demonstrated a performance comparable to
those of strong baseline models even without
any training. When evaluated using the clas-
sification method, LLaSA outperformed the
baseline models, achieving state-of-the-art per-
formance. In addition, the zero-shot LLaSA
showed a high correlation with the regressed
IRT curve when compared to question diffi-
culty derived from students’ question-solving
records, highlighting its potential for real-world
applications.1

1 Introduction

The advancement of online learning platforms such
as Coursera2 and Udemy3 has recently emphasized
the importance of personalized education. These

*These authors contributed equally to this work.
†Corresponding author.
1https://github.com/cuk-nlp/

llms-are-students-at-various-levels
2https://www.coursera.org/
3https://www.udemy.com/

platforms utilize extensive educational question
data to recommend questions with suitable diffi-
culty levels to students. This enables students to ef-
fectively learn by solving questions that match their
proficiency levels (Jafari et al., 2019). To provide
questions that match students’ proficiency levels, it
is important to accurately estimate the difficulty of
the questions before presenting them (Boopathiraj
and Chellamani, 2013).

Question difficulty estimation (QDE) has tradi-
tionally been performed using manual estimation
(Ning et al., 2023) or the item response theory (IRT)
(Hambleton et al., 1991). Manual estimation was
performed by educational experts, such as teachers
and course instructors, who assigned difficulty la-
bels to each question (Abdelrahman et al., 2023).
However, manual estimation has the drawback of
varying results based on the subjective judgment of
experts (Huang et al., 2017). By contrast, QDE us-
ing the IRT predicts question difficulty based on stu-
dent question-solving records, thereby minimizing
subjective bias. This method offers the advantages
of explainability, and the ability to track changes
in the abilities of students and difficulties of ques-
tions over time (Benedetto et al., 2020). However,
a significant limitation lies in the need to collect
vast amounts of student question-solving records.

To overcome these limitations, recent studies
have explored new approaches using natural lan-
guage processing (NLP) techniques to perform
QDE based on textual information. For instance,
the study (Huang et al., 2017) employed a TACNN,
a CNN-based sentence classifier, and attention
layers to estimate question difficulty from a text-
based perspective. Leveraging the powerful lan-
guage understanding capabilities of transformer-
based pre-trained language models (PLMs), stud-
ies (Benedetto et al., 2021; Fang et al., 2019; Tong
et al., 2020; Zhou and Tao, 2020) have utilized
PLMs to comprehend the textual information of
questions and answers in QDE.
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NLP-based QDE methodologies have various
advantages; however, they solely focus on the in-
formation of the questions themselves, not on the
students solving them. The same question may have
different difficulty levels depending on the profi-
ciency level of the student group. Although it is
possible to address this aspect by training on the
difficulty of each question measured through the
IRT, there are still drawbacks. These include the
requirement for separate question-solving records
and the need to train models for each student group.

To address these limitations, we focus on the
general question-solving capabilities of large lan-
guage models (LLMs). Noting the achievement of
human-level performance by LLMs across diverse
domains (OpenAI, 2023; Street et al., 2024), we
hypothesize that LLMs can substitute for students
at various levels. Based on this hypothesis, we pro-
pose a novel framework, LLMs are Students At
various levels (LLaSA). In LLaSA, we target the
abilities of student groups to form LLM clusters
with question-solving abilities similar to those of
students. Considering LLMs as representatives of
students, LLaSA can effectively predict the ques-
tion difficulty perceived by student groups using
the question-solving records of LLMs. In contrast
to traditional QDE methods, our approach can eas-
ily adapt to changes in the perceived difficulty of
questions among different student groups by modi-
fying the composition of the LLMs.

In particular, LLaSA utilizes individual student
ability levels derived from the IRT to form an LLM
cluster that represents the student group. Typically,
LLaSA requires student question-solving records
to estimate these abilities. However, if alternative
information is available (e.g., grades and levels),
LLaSA can perform QDE without any question-
solving records. To demonstrate this, we propose a
zero-shot LLaSA that performs QDE using alterna-
tive information about student abilities without any
question-solving records.

To validate the effectiveness of our approach,
we evaluated LLaSA on two QDE benchmarks:
DBE-KT22 (Abdelrahman et al., 2023) and AS-
SISTMents 2005–2006 (Heffernan and Heffer-
nan, 2014). Regarding the performance in re-
gressing the question difficulty, LLaSA achieved
a performance comparable to those of state-of-
the-art (SOTA) QDE models, despite not being
trained itself. Remarkably, in the classification set-
ting, LLaSA achieved SOTA performance on both
benchmarks. Compared to question difficulty de-

rived from students’ question-solving records, the
zero-shot LLaSA achieved over 74% of the per-
formance of the strongest baseline, even without
using any of these records. This result strongly sup-
ports LLaSA’s ability to substitute students using
only approximate distributions, without any student
question-solving records.

In summary, our contributions are three-fold:

• We propose a novel framework, LLaSA, in which
LLMs solve the question and use the IRT to es-
timate the difficulty of the question even though
students have not solved the question.

• We utilize various LLMs and prompting tech-
niques to represent students at various levels, suc-
cessfully simulating their distribution and demon-
strating effectiveness on benchmarks.

• We perform a comprehensive analysis of the ef-
fectiveness of LLaSA in the QDE task, present-
ing an in-depth analysis of the efficacy of both
LLaSA and zero-shot LLaSA compared to vari-
ous baselines.

2 Method

Our framework, LLaSA, estimates question diffi-
culty by performing the IRT on LLM-generated
question-solving records. In Section 2.1, we de-
scribe the methods used to answer the questions us-
ing LLMs within the LLaSA framework. In Section
2.2, we describe LLaSA, which performs the IRT
on the question-solving results of students to esti-
mate their abilities and select similar LLM clusters.
In Section 2.3, we describe the zero-shot LLaSA,
which assigns student groups into low/middle/high
ability categories based on teacher intuition, and
selects the appropriate LLMs.

2.1 Question-Solving with LLMs
Various Levels of LLMs We represent the abil-
ities of students at various levels in LLMs by uti-
lizing their structural diversity and training tech-
niques. Inspired by the fact that students exhibit
idiosyncratic abilities and possess both inherent
talents and acquired skills, we aim to consider
diversity rather than merely using the highest-
performing LLMs. We took into account various
factors such as the LLMs’ model sizes, training
methods like pre-training and alignment tuning
(e.g., reinforcement learning from human feedback
(Ouyang et al., 2022)), and the data used during
pre-training. Based on these criteria, we select 65
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Figure 1: Overview of LLaSA. (a) Performing IRT to the question-solving records of students and LLMs to extract
ability. (b) Using IRT results to select LLM clusters that substitute students, aggregate the question-solving results
of LLM clusters, and re-perform IRT to estimate the question difficulty as perceived by the simulated students.

LLMs from the HuggingFace open LLM leader-
board4 and API models. The list of LLMs used
in LLaSA is provided in Appendix A.1. The left
side of Figure 1-a illustrates the question-solving
process of LLMs.

Question-solving Prompting Technique LLMs
demonstrate in-context learning abilities that allow
them to perform new tasks without additional train-
ing (Brown et al., 2020). Because LLMs are based
on a causal language modeling architecture, various
inference methods have been designed to solve mul-
tiple choice questions (MCQs) with LLMs (Zhao
et al., 2021; Brown et al., 2020; Holtzman et al.,
2021; Min et al., 2022). Considering the aspects
of performance and inference efficiency, we follow
the multiple choice prompt (MCP) method from
the previous study (Robinson and Wingate, 2023).

To further leverage the question-solving ability
of LLMs, we utilize prompting techniques in con-
junction with MCP such as process of elimination
(POE) (Ma and Du, 2023), chain-of-thought (CoT)
(Wei et al., 2022), and plan-and-solve (PS) (Wang
et al., 2023b). Across all prompting techniques, we
experiment with zero-, 1-, 3-, and 5-shot prompting.

4https://huggingface.co/spaces/
open-llm-leaderboard/open_llm_leaderboard/

For the models used via the OpenAI API5, we con-
duct further experiments with 10-, 20-, and 30-shot
prompting owing to its extended context length.
In addition, we utilize GPT-4 (OpenAI, 2023) to
generate hints for questions, use them to enhance
the question-solving capabilities of LLMs. More
details of hints are described in Appendix A.4.

2.2 LLaSA

2.2.1 LLM Clustering Module

To effectively replicate students’ question-solving
abilities, we propose an LLM clustering module
with three components: IRT for QDE, student rep-
resentative LLM cluster selection, and LLM cluster
response aggregation.

IRT for QDE In this study, we use the Rasch
model (Rasch, 1960) for IRT to estimate question
difficulty and extract abilities from LLM question-
solving records. The Rasch model assigns an ability
level αm to each student m and a difficulty level βn
to each item (i.e., question) n, defined as follows:

pnm =
exp(αm − βn)

1 + exp(αm − βn)
, (1)

5https://www.openai.com/api/
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Figure 2: Overview of zero-shot LLaSA. The zero-shot LLaSA estimates student and LLM abilities as low, middle
or high. The LLM selection module compose LLMs based on these groups and performs IRT to estimate student
abilities and question difficulty.

where βn denotes question difficulty and αm de-
notes student ability. The question response func-
tion pnm is defined as the probability that a stu-
dent with ability αm will correctly answer a ques-
tion with difficulty βn. The IRT optimizes αm and
βn using the Rasch probabilistic model and the
Expectation-Maximization algorithm (Bock and
Aitkin, 1981) based on question-solving records.
Once the optimization process converges, the stu-
dent’s ability αm and the question’s difficulty βn
are effectively estimated. The IRT is applied in
LLaSA for two key purposes: estimating students’
question-solving abilities and the perceived diffi-
culty of questions (used as ground truth), and eval-
uating LLMs’ question-solving abilities along with
their perception of question difficulty. The right
side of Figure 1-a illustrates this process.

Student Representative LLM Cluster Selection
Based on the question-solving abilities of the stu-
dents and LLMs obtained through the IRT, we form
LLM clusters as substitutes for the students. We
identify the top-k LLMs whose abilities closely
match those of individual students. The process in-
volves calculating the difference in ability between
each student and each LLM, and thereafter select-
ing the top-k LLMs with the smallest difference
for each student. These top-k LLMs collectively
represent the question-solving capabilities of the
students, ensuring accurate and reliable substitu-
tion. This process is illustrated on the left side of
Figure 1-b.

LLM Cluster Response Aggregation During
the course of our research, substituting each stu-

dent with a single LLM has proven challenging
to achieve the same question-solving performance.
Some of the high-performance models (e.g., GPT-4
and Llama-3) have shown potential in substitut-
ing a single student with a single LLM. However,
smaller or outdated models performed significantly
worse, failing to achieve human-level question-
solving performance. Relying solely on a few high-
performance LLMs as substitutes for students lacks
diversity and, due to the nature of IRT, makes it
challenging to predict the difficulty of questions
that all students either answer correctly or incor-
rectly. To overcome this, we utilize LLM clusters.
As shown in the middle side of Figure 1-b, we ag-
gregate the LLM responses to substitute for student
responses. If any LLM within a cluster correctly
solves the question, the expected outcome of the
LLM cluster is considered correct. By integrating
the question-solving abilities of multiple LLMs,
each LLM cluster surpasses the performance lim-
its of a single LLM, effectively mimicking the re-
sponse patterns of individual students while ensur-
ing diversity.

2.2.2 LLM Distribution Adjustment

To further enhance the LLM cluster selection
performance, we introduce a selective method,
the LLM distribution adjustment (LLMDA). The
LLMDA method involves randomly removing
1–10 LLMs from the LLM pool, re-estimating the
abilities of the remaining LLMs using the Rasch
model, and iteratively evaluating their performance.
Applying LLMDA to all possible combinations
would require intensive computations. Therefore,
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we adopt a method that randomly removing 1-10
LLMs. LLMDA is essential for overcoming the
limitations of simulating student level distributions
when selecting LLMs without prior knowledge
of student distributions. LLMDA removes outlier
LLMs during the estimation process, ensuring a
more accurate reflection of student level distribu-
tions in the selected LLM pool.

2.3 Zero-shot LLaSA

In the LLM cluster selection process, LLaSA uti-
lizes the question-solving records of students to
obtain information regarding their abilities. How-
ever, LLM cluster selection can proceed without the
question-solving records of students if alternative
information representing their abilities (e.g., grades
and levels) is available. To demonstrate the effec-
tiveness of LLaSA in scenarios without question-
solving records, we propose the zero-shot LLaSA.

Figure 2 illustrates an example in which a
teacher has an approximate understanding of the
distribution of student levels. The LLM selection
module of zero-shot LLaSA utilizes information
such as the number of students at high, medium,
and low proficiency levels. It then combines the in-
formation with the proficiency levels of the LLMs
to configure an LLM cluster that represents a
student group. In this study, we use the number
of high-, medium-, and low-performing students
within a group as approximate information. How-
ever, with slight modifications, various types of
information such as grades or levels can be utilized.

LLM Selection Module To evaluate the profi-
ciency level of LLMs, we divide the levels based
on their question-solving accuracy. Rather than di-
viding by relative ranking, we categorize the pro-
portion of performance they achieved relative to
the highest-performing LLM. For instance, if the
highest performing LLM has 0.8 accuracy, then
LLMs with 0.6–0.8 accuracy (75%–100% of 0.8)
are grouped into the high-level cluster. Those with
0.0–0.2 accuracy (0%–25% of 0.8) are grouped
into the low-level cluster, and the remainder are
placed into the medium-level cluster.

The importance of this approach lies in the fact
that the distribution of question-solving abilities
in LLMs does not mirror that of students. Gener-
ally, LLMs demonstrate question-solving abilities
similar to those of students. However, unlike the
normally distributed abilities of students, the abili-
ties of LLMs exhibit significant polarization, with

extremely few falling within the mid-range. Using
this approach, LLaSA can effectively construct an
LLM pool that substitutes for students, regardless
of differences in question-solving ability distribu-
tions between LLMs and student groups.

3 Experiments

3.1 Datasets

To verify the effectiveness of LLaSA, we used two
QDE benchmarks. DBE-KT22 (Abdelrahman et al.,
2023) was collected from a relational database
course at the Australian National University and
included MCQ data and responses from 131 stu-
dents who answered 206 questions. ASSISTMents
2005–2006 (Heffernan and Heffernan, 2014) fea-
tures math questions solved by 8th-grade students.
Images were converted to text, and short-answer
questions were transformed into the MCQ format
for LLMs. We used data from 1,194 students who
answered more than the median number of 233
questions. For zero-shot LLaSA, we categorized
students based on their question-solving accuracy,
used as teacher intuition. DBE-KT22 and ASSIST-
Ments are provided under licenses that allow for
academic use, and we have used them for research
purposes. In addition, both datasets have undergone
de-identification to ensure privacy and safety. More
details are described in Appendix B.3.

3.2 Metrics

In this study, we employed the root mean square
error (RMSE) (Willmott and Matsuura, 2005) and
Pearson correlation (P-Corr) (Freedman et al.,
2007) to evaluate the QDE regression effective-
ness. To enhance LLaSA’s evaluation, we adopted
a method from a previous study (Pérez et al., 2012)
that evaluates regression-based QDE in a classifi-
cation setting. Typical QDE classification settings
use binary (2 classes) or multi-class (3 to 5 classes)
approaches (AlKhuzaey et al., 2023). To further
evaluate LLaSA’s robustness, we applied a more
challenging 6-class classification scheme (Deng
et al., 2010). The difficulty levels were divided into
equal intervals, and performance was measured
using the F1-score (Chinchor, 1992). We also eval-
uated DBE-KT22 across 2 to 5 classes; detailed
results are in Appendix C.2.

3.3 Baselines

To demonstrate the efficacy of our methodology, we
selected several baseline methods. We included the
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System
DBE-KT22 ASSISTMents

Full dataset Sampled dataset Full dataset Sampled dataset
RMSE F1 RMSE (Δδ) F1 (Δδ) RMSE F1 RMSE (Δδ) F1 (Δδ)

Published
R2DE 1.3940.04 0.2450.02 1.5560.05 (-11.67%) 0.2530.02 (3.27%) 1.1550.04 0.2780.04 1.1420.04 (1.18%) 0.2230.05 (-20.04%)

TACNN 1.6370.02 0.257<0.01 1.7870.01 (-9.16%) 0.2560.01 (-0.70%) 1.139<0.01 0.2900.01 1.3410.03 (-17.77%) 0.2920.02 (0.76%)
BERTbase 1.4820.04 0.2130.04 1.8670.50 (-25.92%) 0.2290.05 (7.50%) 1.2010.08 0.3130.03 1.1180.01 (6.88%) 0.181<0.01 (-42.25%)
BERTlarge 1.4000.04 0.2210.03 1.9150.56 (-36.78%) 0.2470.01 (11.97%) 1.1350.07 0.2730.09 1.1850.07 (-4.39%) 0.1920.02 (-29.42%)

DistillBERT 1.5170.03 0.2260.03 1.6020.13 (-5.61%) 0.2190.02 (-3.45%) 1.091<0.01 0.2110.05 1.101<0.01 (-0.93%) 0.181<0.01 (-14.38%)
Additional Systems

RoBERTabase 1.3820.08 0.2610.04 1.6840.07 (-21.88%) 0.2610.03 (0.23%) 1.098<0.01 0.2140.05 1.1970.04 (-9.09%) 0.183<0.01 (-14.50%)
RoBERTalarge 1.4650.03 0.2260.03 1.5950.14 (-8.88%) 0.2040.04 (-9.57%) 1.094<0.01 0.2230.05 1.1660.04 (-6.53%) 0.3350.03 (49.78%)

DeBERTaV3base 1.4990.08 0.2420.02 1.6210.14 (-8.13%) 0.2240.03 (-7.76%) 1.1110.02 0.180<0.01 1.1950.02 (-7.58%) 0.181<0.01 (0.11%)
DeBERTaV3large 1.5180.07 0.2390.04 1.6600.04 (-9.39%) 0.2330.02 (-2.26%) 1.112<0.01 0.2300.05 1.1130.01 (-0.09%) 0.2340.05 (1.74%)

Llama38B w/ LoRA 2.0250.21 0.2410.03 2.2280.23 (-10.01%) 0.2410.05 (-0.08%) 2.3280.46 0.2530.02 2.2150.39 (4.83%) 0.2260.08 (-10.51%)
Gemma7B w/ LoRA 2.7710.64 0.1800.04 4.0011.18 (-44.38%) 0.1860.03 (3.22%) 2.1830.73 0.2620.03 2.6500.40 (-21.38%) 0.2070.06 (-21.11%)

Ours
LLaSA w/o LLMDA 1.858<0.01 0.295<0.01 1.764<0.01 (5.06%) 0.334<0.01 (13.22%) 1.589<0.01 0.183<0.01 1.602<0.01 (-0.82%) 0.246<0.01 (34.43%)
LLaSA w/ LLMDA 1.6400.02 0.3210.02 1.668<0.01 (-1.66%) 0.3220.03 (0.31%) 1.6110.04 0.3380.02 1.6140.02 (-0.20%) 0.2980.04 (-12.00%)
Zero-shot LLaSA 2.3600.04 0.1500.01 2.3600.04 (=) 0.1500.01 (=) 1.323<0.01 0.2740.01 1.323<0.01 (=) 0.2740.01 (=)

Table 1: Experimental results (with standard deviation) on DBE-KT22 and ASSISTMents, using full and sampled
datasets. Δδ shows the improvement rate between full and sampled datasets. Zero-shot LLaSA shows no difference
as it doesn’t utilize student data. The best results are boldfaced, and the second-best results are underlined.

R2DE (Benedetto et al., 2020) model, which uses
TF-IDF to extract features from question-related
texts and employs random forest regression to pre-
dict the IRT difficulty. The TACNN model, which
combines a CNN-based sentence classifier with
attention layers, was also included. In addition,
we considered recent QDE models utilizing PLMs
such as BERTbase/large and DistilBERT. We also
included custom baselines like RoBERTabase/large
(Liu et al., 2019) and DeBERTaV3base/large (He
et al., 2023), and using low-rank adaptation (LoRA)
(Hu et al., 2022) to tune the LLMs for QDE
tasks. Specifically, we fine-tuned Llama 38B and
Gemma 37B (Team et al., 2024) using LoRA.

3.4 Experimental Details
In our training process on baselines, we conducted
experiments with various combinations of hyper-
parameters and reported the results averaged on
five different random seeds. When conducting ex-
periments on LLMs, the temperature was fixed at
0. All experiments were conducted with PyTorch6

and HuggingFace Transformers (Wolf et al., 2020)
on three NVIDIA A100 GPUs, with IRT performed
using mirt (Chalmers, 2012). More experimental
details are provided in the Appendix A.

3.5 QDE Results of LLaSA
Unlike baselines that train on the difficulty of
each question derived from the IRT results using
student question-solving records, LLaSA sets up
LLM clusters. These clusters can substitute for stu-
dents based on their abilities. It then estimates the

6https://pytorch.org/

question difficulty by performing the IRT on the
question-solving results of the LLM clusters.

To verify the efficacy of our approach on small
question-solving data, we experimented with both
full and sampled datasets, using approximately
50% of the questions for the latter. In a sampled
dataset, the baseline methods train on the ques-
tion difficulty from the IRT results performed with
fewer questions. The LLaSA adjusts the LLM clus-
ters based on the student question-solving ability
from these IRT results, which were also performed
with fewer questions. Both approaches suffer from
reduced IRT performance owing to the limited
amount of question data in the sampled dataset,
leading to a decline in the overall performance.

Full Dataset As summarized in Table 1, our
evaluation results indicate that the LLaSA outper-
formed the baselines. In the classification setting
on DBE-KT22, LLaSA with LLMDA achieved the
best F1 of 0.321 among the baselines, reaching
SOTA performance, followed by LLaSA without
LLMDA. On ASSISTMents, LLaSA with LLMDA
achieved the best F1 of 0.338, significantly out-
performing the other baselines. In the regression
setting, LLaSA exhibited a minimal RMSE differ-
ence of only 0.258 on DBE-KT22 and 0.498 on AS-
SISTMents, compared to the best performing base-
line. Remarkably, the zero-shot LLaSA achieved
an RMSE of 1.323 on ASSISTMents, outperform-
ing LLaSA and exhibiting little difference from
the baseline models. However, on DBE-KT22, the
zero-shot LLaSA demonstrated poor performance.

For further analysis, we compared the P-Corr
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System
DBE-KT22

Full dataset Sampled dataset
P-Corr P-value P-Corr P-value

Published
R2DE 0.4360.02 <0.001<0.01 0.2740.03 0.008<0.01

TACNN -0.2120.02 0.034<0.01 0.282<0.01 0.004<0.01
BERTbase 0.3680.03 <0.001<0.01 0.3160.02 0.001<0.01
BERTlarge 0.4240.02 <0.001<0.01 0.2930.02 0.003<0.01

DistillBERT 0.3710.02 <0.001<0.01 0.3740.04 <0.001<0.01

Additional Systems
RoBERTabase 0.4700.05 <0.001<0.01 0.3370.02 0.001<0.01
RoBERTalarge 0.4030.05 <0.001<0.01 0.3130.02 0.002<0.01

DeBERTaV3base 0.3730.03 <0.001<0.01 0.2970.03 0.004<0.01
DeBERTaV3large 0.3700.03 <0.001<0.01 0.3190.05 0.003<0.01

Llama38B w/ LoRA 0.2250.07 0.0550.08 0.2100.07 0.0710.09
Gemma7B w/ LoRA 0.1030.11 0.4200.42 0.1090.10 0.4440.41

Ours
LLaSA w/o LLMDA 0.143<0.01 0.149<0.01 0.223<0.01 0.023<0.01
LLaSA w/ LLMDA 0.2330.02 0.020<0.01 0.2830.02 0.005<0.01
Zero-shot LLaSA 0.348<0.01 <0.001<0.01 0.348<0.01 <0.001<0.01

Table 2: The comparison between the student IRT and
the prediction of LLaSA, evaluated using P-Corr on the
full and sampled DBE-KT22. The best results are bold-
faced, and the second-best results are underlined. Each
value represents the mean of the experimental results
from five different random seeds, with the subscripted
number indicating the standard deviation.

value between the question difficulty derived from
the IRT using the question-solving records of
students and the question difficulty predicted by
LLaSA on DBE-KT22. As shown in Table 2, the
zero-shot LLaSA achieved a notable P-Corr value
of 0.348 on DBE-KT22, demonstrating over 74%
of the performance relative to the best-performing
baseline. The zero-shot LLaSA achieves this perfor-
mance solely based on teacher intuition about the
students’ proficiency levels, without using any stu-
dent question-solving records, further highlighting
its potential in practical applications.

Sampled Dataset As summarized in Table 1,
even with fewer questions to perform the IRT,
LLaSA did not exhibit a significant performance
decline. Similar to the full dataset, LLaSA outper-
formed the other baselines on the sampled dataset.
In the classification setting experiments on DBE-
KT22, LLaSA without LLMDA achieved the best
F1 of 0.334 among the baselines, achieving SOTA
performance with a large difference. On ASSIST-
Ments, LLaSA with LLMDA achieved the second-
best performance among the baselines, exhibiting
little difference from the best-performing baseline.
In the regression setting on DBE-KT22, LLaSA
with LLMDA exhibited a 1.66% RMSE increase,
whereas LLaSA without LLMDA improved by
5.06% and was the least affected by the reduced
training dataset. On ASSISTMents, the RMSE

Figure 3: Predicted difficulty histograms for the DBE-
KT22 and ASSISTMents comparing student IRT diffi-
culty, the best resulting model, and LLaSA w/ LLMDA.

changes compared with the full dataset setting for
LLaSA with and without LLMDA were only 0.2%
and 0.82%, respectively. Notably, the P-Corr for the
zero-shot LLaSA on ASSISTMents achieved the
second-best performance on the sampled dataset,
as shown in Table 2. This demonstrates that LLaSA
maintains robust performance even with limited
question-solving records.

4 Analysis of LLaSA

4.1 Question-Solving Based QDE of LLMs

Comparison of Question Difficulty Distribution
We compared the QDE results of a best-performing
baseline and LLaSA to the question difficulty de-
rived from students’ question-solving records. Fig-
ure 3 presents the question difficulty histograms for
each dataset. For DBE-KT22, the best-performing
baseline, RoBERTabase, rarely predicted difficulties
above zero, likely because of the scarcity of such
values in the training data. In contrast, the predic-
tions of LLaSA closely matched the student IRT
distribution, as shown by the kernel density estima-
tion lines. In ASSISTMents, the best-performing
baseline, DistillBERT, excessively predicts values
at approximately 0. Conversely, LLaSA predicts a
broader range of difficulties, similar to the distribu-
tion of the student IRT. This analysis highlights the
robustness of LLaSA, avoiding the local minimum
trap for predicting a single value to minimize the
loss in the training process.
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Figure 4: RMSE and F1 for each dataset, comparing the results of applying LLMDA and the top-k of LLM cluster.

System
DBE-KT22 ASSISTMents

Full datasets Sampled datasets Full datasets Sampled datasets
RMSE F1 RMSE F1 RMSE F1 RMSE F1

Voting LLaSA w/o LLMDA 3.083 0.164 2.961 0.149 2.109 0.171 2.020 0.179
Voting LLaSA w/ LLMDA 2.766 0.187 2.976 0.121 2.037 0.181 1.871 0.242
Sum LLaSA w/o LLMDA 1.858 0.295 1.764 0.334 1.589 0.183 1.602 0.246
Sum LLaSA w/ LLMDA 1.640 0.321 1.668 0.322 1.611 0.338 1.614 0.298

Table 3: Experimental results on ablations of cluster response aggregation. The best results are boldfaced, and the
second-best results are underlined.

Effectiveness of top-k LLM Cluster Selection
In Figure 4, we adjust the value of k, the number of
LLMs used to substitute for a single student, from
one to four. For DBE-KT22, increasing k improve
the RMSE and F1. In contrast, for ASSISTMents,
the performance did not consistently improve with
higher k. In ASSISTMents, not all students an-
swered every question, limiting the IRT estimation.
Therefore, we set k to a maximum of 4 for clus-
tering experiments. The differences in the results
across the two datasets are analyzed in Section 4.2.

Effectiveness of LLMDA To evaluate the effec-
tiveness of LLMDA, we conducted experiments
with and without LLMDA. As shown in Figure
4 and Table 1, applying LLMDA resulted in bet-
ter performance for both DBE-KT22 and ASSIST-
Ments. In the sampled DBE-KT22, the method
with LLMDA exhibited an improvement over that
without LLMDA, and the RMSE was improved by
5.45%. LLMDA enhances performance by allow-
ing the model to more accurately simulate student
distributions through a random selection of LLMs.
This led to more precise IRT measurements and
better functioning of the LLM clustering module.

4.2 LLM Cluster Representation

Ablations of Cluster Response Aggregation To
explore alternatives, we compared the original sum
aggregation method with another approach called
voting aggregation. In voting aggregation, LLM
clusters reflecting student abilities are chosen, and

a question is marked correct only if the majority of
LLMs within the cluster solve it correctly (e.g., 3
out of 5 LLMs). As shown in Table 3, experimental
results showed that sum aggregation significantly
outperformed voting aggregation, likely due to the
limited question-solving abilities of current LLMs.
As LLMs improve, we expect voting aggregation
to become more robust.

Representational Capability of LLM Clusters
We conducted experiments to evaluate the effective-
ness of the LLM clustering module in representing
various levels of students. To evaluate how well the
module selected LLM clusters that represented stu-
dent responses, we measured the cosine similarity
between the LLM clusters’ question responses and
the student answers on the DBE-KT22 dataset. The
module achieved an cosine similarity of 0.749 for
the training set and 0.741 for the test set, indicat-
ing that it accurately represented student question
responses. The detailed results of the question re-
sponses of the LLM clusters compared with student
question responses are provided in Appendix C.3.

Is LLaSA Performing as Intended? In DBE-
KT22, models such as Llama 3 (AI@Meta, 2024)
and Falcon (Almazrouei et al., 2023) were fre-
quently adopted, prompting methods used in the
order of MCP, CoT, POE, and PS, and the number
of few-shot examples in the order of 3-5-0-1. In
ASSISTMents, models such as Amber (Street et al.,
2024) and Openchat (Wang et al., 2023a) were fre-
quently adopted, prompting methods used in the
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order of MCP, POE, PS, and CoT, and the number
of few-shot examples in the order of 0-1-3-5. The
relevant figures are provided in Appendix C.4.

In DBE-KT22, a larger number of LLMs rep-
resenting students, high-performance models, and
prompting methods with larger few-shot examples
resulted in a better performance. By contrast, in AS-
SISTMents, a smaller number of LLMs represent-
ing students, relatively lower-performance models,
and prompting methods with fewer few-shot ex-
amples yielded a better performance. Considering
the characteristics of the datasets, DBE-KT22 com-
prises questions aimed at university undergradu-
ates, whereas ASSISTMents comprises questions
for 8th-grade students. Remarkably, appropriate
LLMs and inference methodologies appear to be
adopted according to the question levels and abili-
ties of the student groups.

5 Related Works

5.1 Question-Solving Skills of LLM

Since the release of GPT-3 (Brown et al., 2020),
LLMs have rapidly advanced. Notable models such
as GPT-4 (OpenAI, 2023) and Llama 3 (AI@Meta,
2024) have emerged, exhibiting billions of pa-
rameters and excelling in various NLP tasks. Re-
cently, MCQs have been used to evaluate the rea-
soning abilities of these models, with LLMs achiev-
ing human-like performances. Advanced studies
(Robinson and Wingate, 2023; Ma and Du, 2023;
Pezeshkpour and Hruschka, 2023) have improved
MCQs by eliminating least probable options and
reducing bias in answer positioning.

5.2 Question Difficulty Estimation

Traditionally, QDE relies on the IRT (Hamble-
ton et al., 1991) method, which statistically mea-
sures question difficulty and learner ability based
on responses. Prominent IRT models include the
Rasch model (Rasch, 1960) and 2-parameter lo-
gistic model; however, they require substantial re-
sponse data, posing challenges in data-scarce sce-
narios. To address this issue, recent studies have
used text analysis to estimate the difficulty without
response data. For instance, one study (Benedetto
et al., 2020) used TF-IDF and a random forest re-
gressor to infer difficulty, while another (Xue et al.,
2020) utilized ELMo embeddings to predict re-
sponse times and correct answer probabilities. In
addition, research (Benedetto et al., 2021) using
BERT (Devlin et al., 2019) and DistilBERT (Sanh

et al., 2020) has explored methods for analyzing
question statements and choices to infer difficulty.

6 Conclusion

In this study, we proposed LLaSA framework by
leveraging LLMs to estimate question difficulty
in personalized education. LLaSA demonstrated
a competitive performance with strong baseline
models, even without extensive training data. The
zero-shot LLaSA exhibited a high correlation with
the student IRT, indicating its potential for effective
real world applications. This study highlights the
potential of LLMs in QDE, suggesting that they
can substitute for human abilities in mathematics
and computer science domains.

Limitations

Our study introduces a novel framework for QDE
but has several limitations. First, due to the lack of
publicly available datasets with student question-
solving records, our experiments were restricted
to mathematics and computer science. However,
institutions with proprietary datasets could lever-
age LLaSA for deeper insights. Second, LLaSA
requires significant storage and computational re-
sources due to its use of multiple LLMs. Running
QDE with LLaSA on the DBE-KT22 dataset would
cost around $3,000 in cloud services, potentially
posing a cost barrier. As LLMs become more effi-
cient, these challenges could be mitigated, improv-
ing the efficiency of the LLaSA framework. Fur-
ther details on practical applicability are provided
in Appendix C.6. Third, while LLaSA outperforms
baseline methods in classification, it underperforms
compared to lighter BERT-based models in regres-
sion. As shown in Figure 3, LLaSA’s predictions
better align with actual question difficulty distri-
butions, but further research is needed to close the
performance gap in the regression setting. Lastly,
the adoption of LLaSA could potentially impact
jobs in the QDE domain.

Acknowledgements

We thank the anonymous reviewers for their
helpful comments. This work was supported
by the Basic Research Program through a Na-
tional Research Foundation of Korea (NRF) grant
funded by the Korean government (MSIT) (No.
2022R1C1C1010317) and the Research Fund,
2024, of The Catholic University of Korea.

8165



References
Ghodai Abdelrahman, Sherif Abdelfattah, Qing Wang,

and Yu Lin. 2023. Dbe-kt22: A knowledge tracing
dataset based on online student evaluation. Preprint,
arXiv:2208.12651.

01. AI, :, Alex Young, Bei Chen, Chao Li, Chen-
gen Huang, Ge Zhang, Guanwei Zhang, Heng Li,
Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong
Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin Yang,
Shiming Yang, Tao Yu, Wen Xie, Wenhao Huang,
Xiaohui Hu, Xiaoyi Ren, Xinyao Niu, Pengcheng
Nie, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai,
Zhenyu Gu, Zhiyuan Liu, and Zonghong Dai. 2024.
Yi: Open foundation models by 01.ai. Preprint,
arXiv:2403.04652.

AI@Meta. 2024. Llama 3 model card.

Samah AlKhuzaey, Floriana Grasso, Terry Payne, and
Valentina Tamma. 2023. Text-based question diffi-
culty prediction: A systematic review of automatic
approaches. International Journal of Artificial Intel-
ligence in Education.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Étienne Goffinet, Daniel Hesslow,
Julien Launay, Quentin Malartic, Daniele Mazzotta,
Badreddine Noune, Baptiste Pannier, and Guilherme
Penedo. 2023. The falcon series of open language
models. Preprint, arXiv:2311.16867.

Luca Benedetto, Giovanni Aradelli, Paolo Cremonesi,
Andrea Cappelli, Andrea Giussani, and Roberto Tur-
rin. 2021. On the application of transformers for
estimating the difficulty of multiple-choice questions
from text. In Proceedings of the 16th Workshop on
Innovative Use of NLP for Building Educational Ap-
plications, pages 147–157, Online. Association for
Computational Linguistics.

Luca Benedetto, Andrea Cappelli, Roberto Turrin, and
Paolo Cremonesi. 2020. R2de: a nlp approach to es-
timating irt parameters of newly generated questions.
In Proceedings of the Tenth International Conference
on Learning Analytics & Knowledge, LAK ’20, page
412–421, New York, NY, USA. Association for Com-
puting Machinery.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Sid Black, Gao Leo, Phil Wang, Connor Leahy, and
Stella Biderman. 2021. GPT-Neo: Large Scale
Autoregressive Language Modeling with Mesh-
Tensorflow. If you use this software, please cite it
using these metadata.

R. Darrell Bock and Murray Aitkin. 1981. Marginal
maximum likelihood estimation of item parameters:
Application of an em algorithm. Psychometrika,
46(4):443–459.

C Boopathiraj and K Chellamani. 2013. Analysis of
test items on difficulty level and discrimination index
in the test for research in education. International
journal of social science & interdisciplinary research,
2(2):189–193.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33, pages
1877–1901. Curran Associates, Inc.

R. Philip Chalmers. 2012. mirt: A multidimensional
item response theory package for the R environment.
Journal of Statistical Software, 48(6):1–29.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Nancy Chinchor. 1992. MUC-4 evaluation metrics. In
Fourth Message Understanding Conference (MUC-
4): Proceedings of a Conference Held in McLean,
Virginia, June 16-18, 1992.

Jia Deng, Alexander C. Berg, K. Li, and Li Fei-Fei.
2010. What does classifying more than 10, 000 im-
age categories tell us? In European Conference on
Computer Vision.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Olive Jean Dunn. 1961. Multiple comparisons among
means. Journal of the American statistical associa-
tion, 56(293):52–64.

Jiansheng Fang, Wei Zhao, and Dongya Jia. 2019. Exer-
cise difficulty prediction in online education systems.
In 2019 International Conference on Data Mining
Workshops (ICDMW), pages 311–317.

8166

https://arxiv.org/abs/2208.12651
https://arxiv.org/abs/2208.12651
https://arxiv.org/abs/2403.04652
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1007/s40593-023-00362-1
https://doi.org/10.1007/s40593-023-00362-1
https://doi.org/10.1007/s40593-023-00362-1
https://arxiv.org/abs/2311.16867
https://arxiv.org/abs/2311.16867
https://aclanthology.org/2021.bea-1.16
https://aclanthology.org/2021.bea-1.16
https://aclanthology.org/2021.bea-1.16
https://doi.org/10.1145/3375462.3375517
https://doi.org/10.1145/3375462.3375517
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.1007/BF02293801
https://doi.org/10.1007/BF02293801
https://doi.org/10.1007/BF02293801
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v048.i06
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://aclanthology.org/M92-1002
https://api.semanticscholar.org/CorpusID:1274537
https://api.semanticscholar.org/CorpusID:1274537
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/ICDMW.2019.00053
https://doi.org/10.1109/ICDMW.2019.00053


D. Freedman, R. Pisani, and R. Purves. 2007. Statis-
tics: Fourth International Student Edition. Emer-
sion: Emergent Village Resources for Communities
of Faith Series. W.W. Norton & Company.

R.K. Hambleton, H. Swaminathan, and H.J. Rogers.
1991. Fundamentals of Item Response Theory. Num-
ber V. 2 in Fundamentals of Item Response Theory.
SAGE Publications.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. Preprint, arXiv:2111.09543.

Neil T. Heffernan and Cristina Lindquist Heffernan.
2014. The assistments ecosystem: Building a plat-
form that brings scientists and teachers together for
minimally invasive research on human learning and
teaching. International Journal of Artificial Intelli-
gence in Education, 24(4):470–497.

Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi,
and Luke Zettlemoyer. 2021. Surface form competi-
tion: Why the highest probability answer isn’t always
right. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 7038–7051, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Zhenya Huang, Qi Liu, Enhong Chen, Hongke Zhao,
Mingyong Gao, Si Wei, Yu Su, and Guoping Hu.
2017. Question difficulty prediction for reading prob-
lems in standard tests. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 31(1).

Haleh Jafari, Abbas Aghaei, and Alireza Khatony.
2019. Relationship between study habits and aca-
demic achievement in students of medical sciences
in kermanshah-iran. Advances in Medical Education
and Practice, 10:637–643.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,

Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts. Preprint, arXiv:2401.04088.

Dahyun Kim, Chanjun Park, Sanghoon Kim, Wonsung
Lee, Wonho Song, Yunsu Kim, Hyeonwoo Kim,
Yungi Kim, Hyeonju Lee, Jihoo Kim, Changbae Ahn,
Seonghoon Yang, Sukyung Lee, Hyunbyung Park,
Gyoungjin Gim, Mikyoung Cha, Hwalsuk Lee, and
Sunghun Kim. 2024. Solar 10.7b: Scaling large lan-
guage models with simple yet effective depth up-
scaling. Preprint, arXiv:2312.15166.

John P. Lalor, Hao Wu, Tsendsuren Munkhdalai, and
Hong Yu. 2018. Understanding deep learning perfor-
mance through an examination of test set difficulty:
A psychometric case study. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4711–4716, Brussels,
Belgium. Association for Computational Linguistics.

John P. Lalor, Hao Wu, and Hong Yu. 2016. Building
an evaluation scale using item response theory. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 648–
657, Austin, Texas. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger,
Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li,
Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard
Fan, Yi Gu, Victor Miller, Yonghao Zhuang, Guowei
He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ran-
jan, Zhiqiang Shen, Xuguang Ren, Roberto Iriondo,
Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov,
Tim Baldwin, and Eric P. Xing. 2023. Llm360: To-
wards fully transparent open-source llms. Preprint,
arXiv:2312.06550.

Chenkai Ma and Xinya Du. 2023. POE: Process of elim-
ination for multiple choice reasoning. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 4487–4496,
Singapore. Association for Computational Linguis-
tics.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022. Noisy channel language
model prompting for few-shot text classification. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5316–5330, Dublin, Ireland. As-
sociation for Computational Linguistics.

Arindam Mitra, Luciano Del Corro, Shweti Mahajan,
Andres Codas, Clarisse Simoes, Sahaj Agrawal, Xuxi
Chen, Anastasia Razdaibiedina, Erik Jones, Kriti Ag-
garwal, Hamid Palangi, Guoqing Zheng, Corby Ros-
set, Hamed Khanpour, and Ahmed Awadallah. 2023.

8167

https://books.google.co.kr/books?id=vWeQDAAAQBAJ
https://books.google.co.kr/books?id=vWeQDAAAQBAJ
https://books.google.co.kr/books?id=cmJU9SHCzecC
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://doi.org/10.1007/s40593-014-0024-x
https://doi.org/10.1007/s40593-014-0024-x
https://doi.org/10.1007/s40593-014-0024-x
https://doi.org/10.1007/s40593-014-0024-x
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1609/aaai.v31i1.10740
https://doi.org/10.1609/aaai.v31i1.10740
https://doi.org/10.2147/AMEP.S208874
https://doi.org/10.2147/AMEP.S208874
https://doi.org/10.2147/AMEP.S208874
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2312.15166
https://arxiv.org/abs/2312.15166
https://arxiv.org/abs/2312.15166
https://doi.org/10.18653/v1/D18-1500
https://doi.org/10.18653/v1/D18-1500
https://doi.org/10.18653/v1/D18-1500
https://doi.org/10.18653/v1/D16-1062
https://doi.org/10.18653/v1/D16-1062
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2312.06550
https://arxiv.org/abs/2312.06550
https://doi.org/10.18653/v1/2023.emnlp-main.273
https://doi.org/10.18653/v1/2023.emnlp-main.273
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.18653/v1/2022.acl-long.365


Orca 2: Teaching small language models how to rea-
son. Preprint, arXiv:2311.11045.

Yuting Ning, Zhenya Huang, Xin Lin, Enhong Chen,
Shiwei Tong, Zheng Gong, and Shijin Wang. 2023.
Towards a holistic understanding of mathematical
questions with contrastive pre-training. Proceedings
of the AAAI Conference on Artificial Intelligence,
37(11):13409–13418.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Pouya Pezeshkpour and Estevam Hruschka. 2023.
Large language models sensitivity to the order of
options in multiple-choice questions. Preprint,
arXiv:2308.11483.

Elena Verdú Pérez, Luisa M. Regueras Santos, María
Jesús Verdú Pérez, Juan Pablo de Castro Fernández,
and Ricardo García Martín. 2012. Automatic clas-
sification of question difficulty level: Teachers’ esti-
mation vs. students’ perception. In 2012 Frontiers in
Education Conference Proceedings, pages 1–5.

G. Rasch. 1960. Probabilistic Models for Some Intelli-
gence and Attainment Tests. Studies in mathematical
psychology. Danmarks Paedagogiske Institut.

Matthew Renze and Erhan Guven. 2024. The effect of
sampling temperature on problem solving in large
language models. Preprint, arXiv:2402.05201.

Joshua Robinson and David Wingate. 2023. Leveraging
large language models for multiple choice question
answering. In The Eleventh International Conference
on Learning Representations.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. Preprint,
arXiv:1910.01108.

Winnie Street, John Oliver Siy, Geoff Keeling, Adrien
Baranes, Benjamin Barnett, Michael McKibben,
Tatenda Kanyere, Alison Lentz, Blaise Aguera y Ar-
cas, and Robin I. M. Dunbar. 2024. Llms achieve
adult human performance on higher-order theory of
mind tasks. Preprint, arXiv:2405.18870.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay
Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam

Roberts, Aditya Barua, Alex Botev, Alex Castro-
Ros, Ambrose Slone, Amélie Héliou, Andrea Tac-
chetti, Anna Bulanova, Antonia Paterson, Beth
Tsai, Bobak Shahriari, Charline Le Lan, Christo-
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya,
Eric Ni, Eric Noland, Geng Yan, George Tucker,
George-Christian Muraru, Grigory Rozhdestvenskiy,
Henryk Michalewski, Ian Tenney, Ivan Grishchenko,
Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Bren-
nan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin
Mao-Jones, Katherine Lee, Kathy Yu, Katie Milli-
can, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon,
Machel Reid, Maciej Mikuła, Mateo Wirth, Michael
Sharman, Nikolai Chinaev, Nithum Thain, Olivier
Bachem, Oscar Chang, Oscar Wahltinez, Paige Bai-
ley, Paul Michel, Petko Yotov, Rahma Chaabouni,
Ramona Comanescu, Reena Jana, Rohan Anil, Ross
McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith,
Sebastian Borgeaud, Sertan Girgin, Sholto Douglas,
Shree Pandya, Siamak Shakeri, Soham De, Ted Kli-
menko, Tom Hennigan, Vlad Feinberg, Wojciech
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao
Gong, Tris Warkentin, Ludovic Peran, Minh Giang,
Clément Farabet, Oriol Vinyals, Jeff Dean, Koray
Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani,
Douglas Eck, Joelle Barral, Fernando Pereira, Eli
Collins, Armand Joulin, Noah Fiedel, Evan Senter,
Alek Andreev, and Kathleen Kenealy. 2024. Gemma:
Open models based on gemini research and technol-
ogy. Preprint, arXiv:2403.08295.

Hanshuang Tong, Yun Zhou, and Zhen Wang. 2020.
Exercise hierarchical feature enhanced knowledge
tracing. In Artificial Intelligence in Education: 21st
International Conference, AIED 2020, Ifrane, Mo-
rocco, July 6–10, 2020, Proceedings, Part II, page
324–328, Berlin, Heidelberg. Springer-Verlag.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-

8168

https://arxiv.org/abs/2311.11045
https://arxiv.org/abs/2311.11045
https://doi.org/10.1609/aaai.v37i11.26573
https://doi.org/10.1609/aaai.v37i11.26573
https://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2308.11483
https://arxiv.org/abs/2308.11483
https://doi.org/10.1109/FIE.2012.6462398
https://doi.org/10.1109/FIE.2012.6462398
https://doi.org/10.1109/FIE.2012.6462398
https://books.google.co.kr/books?id=aB9qLgEACAAJ
https://books.google.co.kr/books?id=aB9qLgEACAAJ
https://arxiv.org/abs/2402.05201
https://arxiv.org/abs/2402.05201
https://arxiv.org/abs/2402.05201
https://openreview.net/forum?id=yKbprarjc5B
https://openreview.net/forum?id=yKbprarjc5B
https://openreview.net/forum?id=yKbprarjc5B
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2405.18870
https://arxiv.org/abs/2405.18870
https://arxiv.org/abs/2405.18870
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://doi.org/10.1007/978-3-030-52240-7_59
https://doi.org/10.1007/978-3-030-52240-7_59
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971


nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, Nathan Sarrazin, Omar San-
seviero, Alexander M. Rush, and Thomas Wolf. 2023.
Zephyr: Direct distillation of lm alignment. Preprint,
arXiv:2310.16944.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Guan Wang, Sijie Cheng, Qiying Yu, and Changling Liu.
2023a. OpenLLMs: Less is More for Open-source
Models.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023b. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2609–2634, Toronto,
Canada. Association for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

C. Willmott and K Matsuura. 2005. Advantages of the
mean absolute error (mae) over the root mean square
error (rmse) in assessing average model performance.
Climate Research, 30:79.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Kang Xue, Victoria Yaneva, Christopher Runyon, and
Peter Baldwin. 2020. Predicting the difficulty and
response time of multiple choice questions using
transfer learning. In Proceedings of the Fifteenth
Workshop on Innovative Use of NLP for Building

Educational Applications, pages 193–197, Seattle,
WA, USA → Online. Association for Computational
Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
pre-trained transformer language models. Preprint,
arXiv:2205.01068.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Vir-
tual Event, volume 139 of Proceedings of Machine
Learning Research, pages 12697–12706. PMLR.

Ya Zhou and Can Tao. 2020. Multi-task bert for prob-
lem difficulty prediction. In 2020 International Con-
ference on Communications, Information System and
Computer Engineering (CISCE), pages 213–216.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu,
and Jiantao Jiao. 2023. Starling-7b: Improving llm
helpfulness harmlessness with rlaif.

8169

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2310.16944
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.5281/zenodo.8105775
https://doi.org/10.5281/zenodo.8105775
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.3354/cr030079
https://doi.org/10.3354/cr030079
https://doi.org/10.3354/cr030079
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.bea-1.20
https://doi.org/10.18653/v1/2020.bea-1.20
https://doi.org/10.18653/v1/2020.bea-1.20
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
http://proceedings.mlr.press/v139/zhao21c.html
http://proceedings.mlr.press/v139/zhao21c.html
https://doi.org/10.1109/CISCE50729.2020.00048
https://doi.org/10.1109/CISCE50729.2020.00048


Appendix

A Experimental Settings

A.1 List of LLMs Used in LLaSA

LLaSA utilizes various LLMs with comprehensive
question-solving capabilities to substitute for stu-
dents in answering questions. We employed 65
models ranging in size from 125M to 70B parame-
ters, including various API-based models such as
GPT-4. The LLMs used are Amber, Crystal (Liu
et al., 2023), Falcon (Almazrouei et al., 2023), GPT-
J (Wang and Komatsuzaki, 2021), GPT-Neo (Black
et al., 2021), GPT-3.5, GPT-4 (OpenAI, 2023), Mis-
tral (Jiang et al., 2023), Mixtral (Jiang et al., 2024),
OpenChat (Wang et al., 2023a), OPT (Zhang et al.,
2022), Orca (Mitra et al., 2023), Pythia (Bider-
man et al., 2023), Solar (Kim et al., 2024), Star-
ling (Zhu et al., 2023), Llama 1 (Touvron et al.,
2023a), Llama 2 (Touvron et al., 2023b), Llama 3
(AI@Meta, 2024), Vicuna (Chiang et al., 2023), Yi
(AI et al., 2024), and Zephyr (Tunstall et al., 2023).
These models were sourced from the HuggingFace
Transformers library (Wolf et al., 2020) and the
OpenAI API. A detailed list can be found in Table
9.

A.2 Question-Solving Prompts

In the DBE-KT22 and ASSISTments datasets, we
utilized the MCP, POE, CoT, and PS prompting
techniques for LLM question-solving. The spe-
cific prompts for each technique used in question-
solving are detailed in Table 10 and Table 11.

A.3 Details of Baseline Experiments

Our baseline models included R2DE, TACNN,
PLMs, and LLMs with LoRA. To comprehensively
compare their performance with LLaSA, we first
optimized the baseline models through extensive
hyperparameter tuning.

For R2DE, we tuned the number of estimators
{10, 25, 50, 100, 150, 200, 250} and the max
depth {2, 5, 10, 15, 25, 50} in RandomForest. For
TACNN, we tuned the learning rates {5e-5, 2e-5,
5e-6} and batch sizes {8, 16, 32}. For PLMs, we
tuned the learning rates {2e-6, 5e-6, 2e-5, 5e-5}
and batch sizes {16, 32}. For LLMs with LoRA, we
tuned the learning rates {2e-6, 5e-6, 2e-5}, batch
sizes {16, 32}, and LoRA parameters such as alpha
{4, 8} and r as alpha * 2. Using these optimized hy-
perparameters, we trained and evaluated the models
across five different seeds. We averaged the results

Without hint With hint
Average accuracy 0.445 0.464
Standard deviation 0.121 0.157
Minimum accuracy 0.155 0.155
Maximum accuracy 0.640 0.703

Table 4: Experimental results on DBE-KT22 comparing
question-solving performance with and without hints.

and calculated the standard deviation to ensure a
robust baseline experiment.

The R2DE model was implemented using pub-
licly available code, TACNN was implemented
manually, and PLM and LLM models with LoRA
were implemented using the PyTorch-based Hug-
gingface Transformers library. All experiments
were conducted on three NVIDIA A100 GPUs.

A.4 Generating Hints for Question-Solving

While some LLMs (e.g., GPT-4, Llama-3) demon-
strated near-human question-solving abilities, their
performance generally fell slightly short. To ad-
dress this, hints were employed as a prompting
strategy. We used GPT-4 to generate hints for each
question in the datasets and incorporated them into
the LLM’s prompts. For example, in DBE-KT22,
we used prompts like, "You’re a teacher creating a
relational database exam question. Write indirect
hints concisely."

To evaluate the impact of hint provision, we con-
ducted question-solving experiments. The results
showed that hints improved overall performance
while preserving the LLM’s characteristics and per-
formance distribution. Table 4 presents the results
on the DBE-KT22 dataset, comparing performance
with and without hints. The results indicate im-
provements in both average and maximum accu-
racy, with minimal changes in standard deviation,
indicating that the "ceiling effect" was not present.
Additionally, hints were generated carefully to en-
sure no solution leakage occurred.

B Implementation Details of LLaSA

B.1 IRT for LLaSA

LLaSA estimate question difficulty based on stu-
dents’ abilities derived from IRT. To achieve this,
question-solving records are input into the IRT
model. We used the R package mirt (Chalmers,
2012) to perform IRT analysis, estimating students’
abilities and question difficulties. This allowed
us to obtain each student’s ability level and the
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perceived difficulty of questions based on their
question-solving records.

B.2 LLM Clustering Module of LLaSA
LLaSA includes a LLM Clustering Module, which
consists of LLM cluster selection and LLM Cluster
Response Aggregation. In LLM cluster selection,
question-solving records (transactions) are input
into IRT to measure the question-solving ability of
respondents and the difficulty of questions based
on these respondents. Each student’s ability is then
used to select top-k LLMs with similar abilities,
forming an LLM Cluster.

In the LLM Cluster Response Aggregation, the
question-solving records of the selected LLM Clus-
ter are aggregated using sum aggregation. This pro-
cess of the LLM clustering module simulates the
question-solving records of an individual student.
Finally, the aggregated question-solving records of
the LLM Cluster are input into IRT to measure the
question-solving ability of the LLM Cluster and
the difficulty of questions from their perspective.
For more details, in Algorithm 1.

B.3 Zero-Shot LLaSA
Zero-shot LLaSA typically requires teacher intu-
ition to categorize students. However, lacking this
intuitive understanding, we categorized students by
their question-solving accuracy. For DBE-KT22,
we selected 31 students with accuracy≤ 0.75 (low),
69 with accuracy between 0.75 and 0.85 (middle),
and 31 with accuracy > 0.85 (high). For ASSIST-
Ments, we sampled 20% from each group: 146 with
accuracy ≤ 0.5, 61 with accuracy between 0.5 and
0.67, and 30 with accuracy > 0.67.

C Additional Analysis

C.1 Preliminary Experiments for LLaSA
There are simpler methods to enhance the diversity
of LLM-generated responses. We explored whether
these methods could be used to secure the LLM
response variability that is central to the LLaSA
framework, specifically to simulate the various per-
formance levels of students.

Generation Temperature We explored the ef-
fect of LLM generation temperature settings on cap-
turing student variability in LLaSA. Using the GPT-
4 model, we experimented various generation tem-
peratures from 0.0 to 2.0 in 0.1 increments while
solving 12 sampled questions from DBE-KT22, ac-
counting for difficulty levels. Results showed that

Algorithm 1 LLM Clustering Module

1: Input:
2: TStrain : Student train questions transactions
3: TLtrain : LLM train questions transactions
4: TStest : Student test questions transactions
5: TLtest : LLM test questions transactions
6: k: Number of top similar LLMs to identify
7: Initialize:
8: LC ← ∅: Dictionary of Students with LLM

Clusters as Values
9: TLC ← ∅: LLM Cluster’s Aggregated re-

sponses
10: Rasch: Function returning ability α and diffi-

culty β parameters for question transactions
11: LLM cluster selection:
12: αS , βS ← Rasch(TStrain)
13: αL, βL ← Rasch(TLtrain)
14: for each student s and ability αs in αS do
15: ∆αi = |αs − αl| ∀l ∈ L
16: Sort LLMs by ∆αi in ascending order
17: Select top k LLMs: {L(1), L(2), . . . , L(k)}
18: LC[s]← {L(1), L(2), . . . , L(k)}
19: LLM Cluster Response Aggregation:
20: for each student s and LLM Cluster l in

LC.items() do
21: tLC ← 0: Zero vector of length |TLtest [0]|
22: for each LLM l in L do
23: tLC ← sum(tLC , TLtest [l], axis = 1)

24: tLC ← clip(tLC , 0, 1)
25: Append tLC to TLC

26: αLC , βLC ← Rasch(TLC)

the model consistently produced the same answers
across all 21 settings, indicating this method’s in-
effectiveness. This aligns with a previous study
(Renze and Guven, 2024) showing that tempera-
ture has minimal impact on question-solving.

Role-playing We experimented the effect of
LLM role-playing capabilities on capturing student
variability in LLaSA by assigning the LLM roles
as lower-, middle-, and upper-performing students.
However, this did not result in significant answer
variations, limiting the experiment’s effectiveness.

C.2 Number of Classes in the Classification

In Table 1, we present results using a 6-class clas-
sification setting to emphasize LLaSA’s robustness,
as higher class counts typically add more chal-
lenges. To provide a more comprehensive evalu-
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System
2 classes 3 classes 4 classes 5 classes

Original Small Original Small Original Small Original Small
R2DE 0.971 0.971 0.452 0.441 0.424 0.435 0.284 0.310

TACNN 0.971 0.920 0.452 0.445 0.457 0.477 0.303 0.288
BERTbase 0.971 0.971 0.434 0.465 0.407 0.395 0.283 0.301
BERTlarge 0.971 0.971 0.444 0.432 0.392 0.428 0.293 0.292

DistillBERT 0.956 0.925 0.454 0.405 0.438 0.457 0.307 0.280
RoBERTabase 0.971 0.936 0.434 0.421 0.368 0.437 0.295 0.307
RoBERTalarge 0.971 0.946 0.435 0.403 0.413 0.437 0.307 0.225

DeBERTaV3base 0.971 0.946 0.407 0.437 0.464 0.462 0.287 0.285
DeBERTaV3large 0.971 0.925 0.431 0.418 0.361 0.439 0.245 0.275

Llama38B w/ LoRA 0.956 0.909 0.477 0.445 0.398 0.383 0.316 0.298
Gemma7B w/ LoRA 0.889 0.685 0.404 0.276 0.332 0.327 0.229 0.195
LLaSA w/o LLMDA 0.989 0.989 0.518 0.518 0.395 0.469 0.304 0.368
LLaSA w/ LLMDA 0.989 0.989 0.554 0.557 0.480 0.504 0.340 0.320
Zero-shot LLaSA 0.981 0.981 0.239 0.239 0.240 0.240 0.123 0.123

Table 5: Experimental results on DBE-KT22, using full and sampled datasets across different classification settings.
The best results are boldfaced, and the second-best results are underlined.

Type Question 1 Question 2 Question 3 ... Question N
Student 1 1 0 ... 0

LLM cluster 1 0 0 ... 1

Table 6: Example of question responses for each student
and LLM cluster used to calculate cosine similarity:
‘1’ indicates a correct response, and ‘0’ indicates an
incorrect response.

System Training Set Responses Test Set Responses
LLaSA w/ Top-1 LLM 0.64 0.63

LLaSA w/ LLM Cluster 0.749 0.741

Table 7: Cosine similarity between LLM clusters and
students’ question responses on the DBE-KT22 dataset,
with results shown for both training and test set ques-
tions.

ation, Table 5 includes results across class numbers
ranging from 2 to 5. These findings confirm that
LLaSA consistently outperforms other methods,
demonstrating its adaptability and reliability across
different classification settings.

C.3 Evaluating the Student Representation in
LLM Clustering

To analyze how effectively LLM clusters represent
and simulate student performance, we evaluated
LLaSA’s LLM Clustering module. This involved
calculating the cosine similarity between the ques-
tion responses of students and those of LLM clus-
ters on the DBE-KT22 dataset. The structure of
these question responses is shown in Table 6.

We compared the LLM cluster with a single
LLM. As shown in Table 7, the LLM cluster

achieved cosine similarities of 0.749 on training
data and 0.741 on test data, closely capturing stu-
dent distributions. These results show that the LLM
clustering approach models student behavior effec-
tively and may represent diverse student abilities
in similar contexts.

C.4 Models and Prompting Techniques Used
in the LLM Clusters

LLaSA uses various models with different prompt-
ing techniques and example counts to represent
students. Each model used MCP, POE, PS, and
CoT techniques to solve questions with zero-, 1-,
3-, or 5-shot examples. Additionally, LLaSA’s clus-
tering module selected LLMs most similar to each
student’s ability, constructing LLM clusters to rep-
resent students. We aimed to analyze the diversity
of prompting techniques and models used in this
process. Figures 5 and 6 illustrate the distribution
of LLMs selected for the LLM clusters, as well
as the number of shots for the adopted prompting
techniques and model in the DBE-KT22 and AS-
SISTMents Full datasets. The analysis results are
discussed in Section 4.2.

LLaSA employs various models with different
prompting techniques and example counts to repre-
sent students. Each model utilized MCP, POE, PS,
and CoT techniques to solve questions with zero-,
1-, 3-, or 5-shot examples. Additionally, LLaSA’s
clustering module selected LLMs most similar to
each student’s ability, constructing LLM clusters
to represent students.

We aimed to analyze the diversity of prompting
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Figure 5: Histograms of prompting techniques and the
number of few-shot examples used in LLM clusters for
each dataset.

techniques and models used in this process. Figures
5 and 6 illustrate the histogram of LLMs selected
for the LLM clusters, as well as the number of
shots and models used in the DBE-KT22 and AS-
SISTments Full datasets. The analysis results are
discussed in Section 4.2.

C.5 Detailed comparison between the student
IRT and the predictions of LLaSA

In Table 2, we compared the question difficulty
prediction results of LLaSA and various baseline
methodologies with the student IRT results in terms
of P-Corr. However, there is potential for increased
Type 1 error rates due to multiple comparisons.
Therefore, we applied the Bonferroni correction
(Dunn, 1961) (by maintaining the alpha thresh-
old and multiplying the p-value by the number of
comparisons, which is 14) to evaluate the p-values
using a more conservative threshold. Even with
this stricter criterion, the adjusted p-value for zero-
shot LLaSA was around 0.0033, confirming the
effectiveness of zero-shot LLaSA. More detailed
p-values from Table 2, as well as the Bonferroni-
adjusted p-values, are provided in Table 8.

C.6 Additional Discussion on the
Applicability of LLaSA

This section discusses LLaSA’s practical applica-
bility. IRT-based QDE models can estimate the dif-
ficulty of new questions when the same set of stu-
dents is maintained. Similarly, LLaSA achieves

Figure 6: Histograms of models used in LLM clusters
for each dataset.

this by letting LLMs solve new questions and
re-running the framework, enabling straightfor-
ward real-world application. However, when new
students are added, IRT-based QDE requires ad-
ditional question-solving records and model re-
training. LLaSA, on the other hand, uses LLM clus-
ters based on alternative measures of student ability,
operating without the need for student question-
solving data and thus offering a cost-effective solu-
tion. This was demonstrated in Zero-shot LLaSA,
where LLMs were selected solely on teacher intu-
ition.

While LLaSA still requires question-solving
records and incurs inference costs, it is more cost-
efficient than collecting new records for additional
questions. For instance, gathering DBE-KT22-like
data via Amazon Mechanical Turk (Lalor et al.,
2018, 2016) is around $3,250, whereas LLaSA’s
inference on AWS7 EC2 p3.8xlarge instances costs
approximately $3,000. Although LLaSA’s compu-
tational cost is a concern, advances in model opti-
mization and reduced computational requirements
over time are expected to make it more affordable
and scalable.

7https://aws.amazon.com/ec2/pricing/
on-demand/
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System
DBE-KT22

Full dataset Sampled dataset
P-Corr P-value Adjusted P-value P-Corr P-value Adjusted P-value

Published
R2DE 0.4360.02 <0.0001<0.01 0.0001 0.2740.03 0.0078<0.01 0.1091

TACNN -0.2120.02 0.0337<0.01 0.4714 0.282<0.01 0.0039<0.01 0.0548
BERTbase 0.3680.03 0.0002<0.01 0.0029 0.3160.02 0.0013<0.01 0.0188
BERTlarge 0.4240.02 <0.0001<0.01 0.0002 0.2930.02 0.0031<0.01 0.0430

DistillBERT 0.3710.02 0.0002<0.01 0.0022 0.3740.04 0.0002<0.01 0.0031
Additional Systems

RoBERTabase 0.4700.05 <0.0001<0.01 0.0001 0.3370.02 0.0006<0.01 0.0088
RoBERTalarge 0.4030.05 0.0001<0.01 0.0019 0.3130.02 0.0017<0.01 0.0232

DeBERTaV3base 0.3730.03 0.0002<0.01 0.0025 0.2970.03 0.0035<0.01 0.0488
DeBERTaV3large 0.3700.03 0.0002<0.01 0.0035 0.3190.05 0.0034<0.01 0.0474

Llama38B w/ LoRA 0.2250.07 0.05520.08 0.7727 0.2100.07 0.07070.09 0.9904
Gemma7B w/ LoRA 0.1030.11 0.41950.42 1.0000 0.1090.10 0.44430.41 1.0000

Ours
LLaSA w/o LLMDA 0.143<0.01 0.1488<0.01 1.0000 0.223<0.01 0.0233<0.01 0.3260
LLaSA w/ LLMDA 0.2330.02 0.0200<0.01 0.2799 0.2830.02 0.0045<0.01 0.0631
Zero-shot LLaSA 0.348<0.01 0.0002<0.01 0.0033 0.348<0.01 0.0002<0.01 0.0033

Table 8: The comparison between the student IRT and the prediction of LLaSA, evaluated using P-Corr on the full
and sampled DBE-KT22. More detailed P-values and Bonferroni adjusted P-values are provided. The best results
are boldfaced, and the second-best results are underlined. Each value represents the mean of the experimental
results from five different random seeds, with the subscripted number indicating the standard deviation.
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Model Name HF Model Name Model URL Base Architecture Model Size
Amber amber https://huggingface.co/LLM360/Amber Llama 7B
Amber amber_chat https://huggingface.co/LLM360/AmberCha Llama 7B

CrystalChat crystal_chat https://huggingface.co/LLM360/CrystalChat Llama 7B
CrystalCoder crystal_coder https://huggingface.co/LLM360/CrystalCoder Llama 7B

Falcon falcon_40b https://huggingface.co/tiiuae/falcon-40b Llama 40B
Falcon falcon_40b_instruct https://huggingface.co/tiiuae/falcon-40b-instruct Llama 40B
Falcon falcon_7b https://huggingface.co/tiiuae/falcon-7b Llama 7B
Falcon falcon_7b_instruct https://huggingface.co/tiiuae/falcon-7b-instruct Llama 7B
GPT-J gpt_j_6b https://huggingface.co/EleutherAI/gpt-j-6b GPT2 6B

GPT-Neo gpt_neo_1.3b https://huggingface.co/EleutherAI/gpt-neo-1.3B GPT2 1.3B
GPT-Neo gpt_neo_125m https://huggingface.co/EleutherAI/gpt-neo-125m GPT2 125M
GPT-Neo gpt_neo_2.7b https://huggingface.co/EleutherAI/gpt-neo-2.7B GPT2 2.7B
GPT-Neo gpt_neox_20b https://huggingface.co/EleutherAI/gpt-neox-20b GPT2 20B
GPT 3.5 - https://openai.com/index/openai-api/ OpenAI unknown
GPT 4 - https://openai.com/index/openai-api/ OpenAI unknown

Llama 2 llama_2_13b https://huggingface.co/meta-llama/Llama-2-13b Llama 13B
Llama 2 llama_2_13b_chat https://huggingface.co/meta-llama/Llama-2-13b-chat-hf Llama 13B
Llama 2 llama_2_70b https://huggingface.co/meta-llama/Llama-2-70b Llama 70B
Llama 2 llama_2_70b_chat https://huggingface.co/meta-llama/Llama-2-70b-chat-hf Llama 70B
Llama 2 llama_2_7b https://huggingface.co/meta-llama/Llama-2-7b Llama 7B
Llama 2 llama_2_7b_chat https://huggingface.co/meta-llama/Llama-2-7b-chat-hf Llama 7B
Llama 3 llama_3_70b https://huggingface.co/meta-llama/Meta-Llama-3-70B Llama 70B
Llama 3 llama_3_70b_instruct https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct Llama 70B
Llama 3 llama_3_8b https://huggingface.co/meta-llama/Meta-Llama-3-8B Llama 8B
Llama 3 llama_3_8b_instruct https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct Llama 8B
Mistral mistral https://huggingface.co/mistralai/Mistral-7B-v0.1 Llama 7B
Mistral mistral_chat https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1 Llama 7B
Mixtral mixtral https://huggingface.co/mistralai/Mixtral-8x7B-v0.1 Llama 47B
Mixtral mixtral_chat https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 Llama 47B

OpenChat openchat https://huggingface.co/openchat/openchat_8192 Llama 13B
OpenChat openchat_2 https://huggingface.co/openchat/openchat_v2 Llama 13B
OpenChat openchat_2_w https://huggingface.co/openchat/openchat_v2_w Llama 13B
OpenChat openchat_3.2 https://huggingface.co/openchat/openchat_3.5 Llama 13B
OpenChat openchat_3.2_super https://huggingface.co/openchat/openchat_v3.2_super Llama 13B

OPT opt_1.3b https://huggingface.co/facebook/opt-1.3b GPT2 1.3B
OPT opt_125m https://huggingface.co/facebook/opt-125m GPT2 125M
OPT opt_2.7b https://huggingface.co/facebook/opt-2.7b GPT2 2.7B
OPT opt_350m https://huggingface.co/facebook/opt-350m GPT2 350M
Orca orca_2_13b https://huggingface.co/microsoft/Orca-2-13b Llama 13B
Orca orca_2_7b https://huggingface.co/microsoft/Orca-2-7b Llama 7B

Pythia pythia_1.4b https://huggingface.co/EleutherAI/pythia-1.4b GPT2 1.4B
Pythia pythia_12b https://huggingface.co/EleutherAI/pythia-12b GPT2 12B
Pythia pythia_1b https://huggingface.co/EleutherAI/pythia-1b GPT2 1B
Pythia pythia_2.8b https://huggingface.co/EleutherAI/pythia-2.8b GPT2 2.8B
Pythia pythia_410m https://huggingface.co/EleutherAI/pythia-410m GPT2 410M
Pythia pythia_6.9b https://huggingface.co/EleutherAI/pythia-6.9b GPT2 6.9B
Solar solar_10.7b https://huggingface.co/upstage/SOLAR-10.7B-v1.0 Llama 10.7B
Solar solar_10.7b_instruct https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0 Llama 10.7B
Solar solar_70b https://huggingface.co/upstage/SOLAR-0-70b-16bit Llama 70B
Solar solar_orcadpo_solar_instruct_slerp https://huggingface.co/kodonho/Solar-OrcaDPO-Solar-Instruct-SLERP Llama 10.7B

Starling starling https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha Llama 7B
Llama 1 upstage_llama_1_30b https://huggingface.co/upstage/llama-30b-instruct Llama 30B
Llama 1 upstage_llama_1_65b https://huggingface.co/upstage/llama-65b-instruct Llama 65B
Llama 2 upstage_llama_2_70b https://huggingface.co/upstage/Llama-2-70b-instruct Llama 70B
Vicuna 1 vicuna_1_13b https://huggingface.co/lmsys/vicuna-13b-v1.3 Llama 13B
Vicuna 1 vicuna_1_33b https://huggingface.co/lmsys/vicuna-33b-v1.3 Llama 33B
Vicuna 1 vicuna_1_7b https://huggingface.co/lmsys/vicuna-7b-v1.3 Llama 7B
Vicuna 2 vicuna_2_13b https://huggingface.co/lmsys/vicuna-13b-v1.5-16k Llama 13B
Vicuna 2 vicuna_2_7b https://huggingface.co/lmsys/vicuna-7b-v1.5-16k Llama 7B

Yi /w RLHF yi_34b_chat https://huggingface.co/01-ai/Yi-34B-Chat Llama 34B
Yi yi_6b https://huggingface.co/01-ai/Yi-6B Llama 6B

Yi /w RLHF yi_6b_chat https://huggingface.co/01-ai/Yi-6B-Chat Llama 6B
Zephyr zephyr_alpha https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha Llama 7B
Zephyr zephyr_beta https://huggingface.co/HuggingFaceH4/zephyr-7b-beta Llama 7B

Table 9: LLMs used in LLaSA with their corresponding model names, Huggingface model names, and model
information.
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Prompting
Method Input Prompt

MCP

Instruction: You are an intelligent agent specialized for database subject problem solving.
The question below is about relational databases as taught at the Australian National University.
The exam is intended for undergraduate and postgraduate students with a variety of majors,
including computer science, engineering, arts, and business. Given the diversity of students’
majors and learning experiences, the difficulty level of the exam will vary depending on the
students’ background and understanding of relational databases. The content is likely to be
relatively familiar to computer science and engineering majors, but may be more challenging
for arts or business majors. Therefore, the difficulty of the exam will vary depending on the
student’s major and relevant experience. You’ll need to step into the role of these students.
Read the questions and options below, understand the question and select one answer from the choices.
Use any hints provided to assist in solving the problems.

{Question}
A. {Choice 1}
B. {Choice 2}
...
Hint: {Hint}

Answer:

CoT

You are an intelligent agent specialized for database subject problem solving.
The question below is about relational databases as taught at the Australian National University.
The exam is intended for undergraduate and postgraduate students with a variety of majors,
including computer science, engineering, arts, and business. Given the diversity of students’
majors and learning experiences, the difficulty level of the exam will vary depending on the
students’ background and understanding of relational databases. The content is likely to be
relatively familiar to computer science and engineering majors, but may be more challenging
for arts or business majors. Therefore, the difficulty of the exam will vary depending on the
student’s major and relevant experience. You’ll need to step into the role of these students.
Read the questions and options below, understand the question and select one answer from the choices.
Use any hints provided to assist in solving the problems.

{Question}
A. {Choice 1}
B. {Choice 2}
...
Hint: {Hint}

Let’s think step by step.

PS

You are an intelligent agent specialized for database subject solving.
The question below is about relational databases as taught at the Australian National University.
The exam is intended for undergraduate and postgraduate students with a variety of majors,
including computer science, engineering, arts, and business. Given the diversity of students’
majors and learning experiences, the difficulty level of the exam will vary depending on the
students’ background and understanding of relational databases. The content is likely to be
relatively familiar to computer science and engineering majors, but may be more challenging
for arts or business majors. Therefore, the difficulty of the exam will vary depending on the
student’s major and relevant experience. You’ll need to step into the role of these students.
Read the questions and options below, understand the question and select one answer from the choices.
Use any hints provided to assist in solving the problems.

{Question}
A. {Choice 1}
B. {Choice 2}
...
Hint: {Hint}

Let’s first understand the problem and devise a plan to solve the problem. Then,
let’s carry out the plan to solve the problem step by step.

Table 10: Prompts used for question-solving in DBE-KT22
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prompting
methods Input Prompt

MCP

You are an intelligent agent specialized for various subject problem solving. The
question below is a rich educational dataset derived from the ASSISTMents online
tutoring system, which is used to help students with math and other subjects.
You’ll need to step into the role of these students. Read the questions and options
below, understand the question and select one answer from the choices. Use any
hints provided to assist in solving the problems.

{Question}
A. {Choice 1}
B. {Choice 2}
...
Hint: {Hint}

Answer:

CoT

You are an intelligent agent specialized for various subject problem solving. The
question below is a rich educational dataset derived from the ASSISTMents online
tutoring system, which is used to help students with math and other subjects.
You’ll need to step into the role of these students. Read the questions and options
below, understand the question and select one answer from the choices. Use any
hints provided to assist in solving the problems.

{Question}
A. {Choice 1}
B. {Choice 2}
...
Hint: {Hint}

Let’s think step by step.

PS

You are an intelligent agent specialized for various subject problem solving. The
question below is a rich educational dataset derived from the ASSISTMents online
tutoring system, which is used to help students with math and other subjects.
You’ll need to step into the role of these students. Read the questions and options
below, understand the question and select one answer from the choices. Use any
hints provided to assist in solving the problems.

{Question}
A. {Choice 1}
B. {Choice 2}
...
Hint: {Hint}

Let’s first understand the problem and devise a plan to solve the problem. Then,
let’s carry out the plan to solve the problem step by step.

Table 11: Prompts used for question-solving in ASSISTMents
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