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Abstract

New intent discovery is a crucial capability
for task-oriented dialogue systems. Existing
methods focus on transferring in-domain (IND)
prior knowledge to out-of-domain (OOD) data
through pre-training and clustering stages.
They either handle the two processes in a
pipeline manner, which exhibits a gap between
intent representation and clustering process or
use typical contrastive clustering that overlooks
the potential supervised signals from the whole
data. Besides, they often individually deal with
open intent discovery or OOD settings. To
this end, we propose a Pseudo-Label enhanced
Prototypical Contrastive Learning (PLPCL)
model for uniformed intent discovery. We it-
eratively utilize pseudo-labels to explore po-
tential positive/negative samples for contrastive
learning and bridge the gap between representa-
tion and clustering. To enable better knowledge
transfer, we design a prototype learning method
integrating the supervised and pseudo signals
from IND and OOD samples. In addition, our
method has been proven effective in two dif-
ferent settings of discovering new intents. Ex-
periments on three benchmark datasets and two
task settings demonstrate the effectiveness of
our approach.1

1 Introduction

Task-oriented conversational systems are typically
designed to assist users in completing specific tasks
by leveraging predefined ontologies (e.g., intents,
slots and values), which face limitations in dy-
namic environments where novel ontology cate-
gories may emerge (Liang et al., 2024a; Mou et al.,
2022a; Wu et al., 2024, 2022c; Zhang et al., 2021b).
New intent discovery, which aims to uncover and
categorize out-of-domain intents absent from the

∗ Co-first authors with equal contribution.
† Corresponding authors.

1The codes and datasets are available at
https://github.com/dymanne123/PLPCL

Figure 1: Two basic task settings for uniformed intent
discovery. Open-setting: Partially labeled IND data is
used for training, and the test data includes both IND
and OOD categories. OOD-setting: Fully labeled IND
data is used for training, while the test data contains
only OOD categories.

training data, has received increasing attention due
to its crucial role in dialogue systems (Min et al.,
2021; Vedula et al., 2019). Initially, researchers
focused on exploring unsupervised clustering meth-
ods (Hakkani-Tür et al., 2015; Liu et al., 2021b;
Shi et al., 2018). However, real-world scenarios of-
ten involve limited labeled data, prompting a shift
toward semi-supervised approaches, notably OOD
and open intent discovery (Liang and Liao, 2023;
Liang et al., 2024b; Lin et al., 2020; Mou et al.,
2022a,c; Shen et al., 2021; Zhang et al., 2021b,
2022). OOD intent discovery involves clustering
unlabeled OOD intents by utilizing labeled IND
data, focusing solely on identifying novel cate-
gories absent in the training set. In contrast, open
intent discovery seeks to simultaneously recognize
both known and new categories from unlabeled
data, allowing for a more comprehensive under-
standing of both in-domain and out-of-domain in-
tents (see Figure 1).

The existing approaches for new intent discov-
ery typically use a two-stage contrastive clustering
approach, involving IND pre-training and OOD
clustering. For open intent discovery, researchers
focus on effectively utilizing the small amount
of labeled data for weakly supervised (Lin et al.,
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2020) or semi-supervised clustering methods (Shen
et al., 2021; Zhang et al., 2021b). For OOD in-
tent discovery, previous works commonly employ
a contrastive clustering framework (Li et al., 2021)
with approaches such as multi-head contrast learn-
ing (Mou et al., 2022c) or neighbor-enhanced con-
trastive strategies (Mou et al., 2022a).

Although previous methods in intent discovery
have achieved notable success, several challenges
in the field remain unexplored. (1) One key chal-
lenge is efficiently integrating labeled and unla-
beled data for joint representation learning and
clustering. While some methods focus on con-
trastive clustering for joint learning (Mou et al.,
2022c), they often overlook critical supervised sig-
nals from IND samples during the clustering stage.
Leveraging labeled information for this process re-
mains underexplored, particularly given the limited
availability of labeled data and the risk of overfit-
ting. (2) Another critical issue is devising effective
transfer learning mechanisms between IND and
OOD data while preventing catastrophic forgetting.
Existing methods often discard classifiers trained
on prior knowledge, retaining only feature extrac-
tion during clustering with OOD samples (Zhang
et al., 2021b). This requires additional alignment
strategies, potentially introducing noise if subopti-
mal. There’s an urgent need for methods preserving
prior knowledge while adapting better to new intent
data, ensuring seamless transfer learning. (3) More-
over, the predominant focus of prior research has
been either on open intent discovery or OOD intent
discovery individually, disregarding the practical
need for a unified method capable of handling both
scenarios (Mou et al., 2022c; Zhang et al., 2021b).
Real-world dialogue systems often encounter situa-
tions requiring updates or migration, underscoring
the need for a uniform intent discovery approach
that can adapt to various system changes.

To address these limitations, we propose a
Pseudo-Label enhanced Protypical Contrastive
Learning (PLPCL) model which is built upon con-
trastive clustering for joint representation learn-
ing and clustering. Our approach begins by pre-
training the contrastive clustering model using la-
beled IND data. To effectively harness labeled
information, we integrate IND samples with unla-
beled data using a semi-supervised clustering strat-
egy, employing distinct contrastive learning strate-
gies for labeled and unlabeled data. To prevent
overfitting and maximize the utilization of unla-
beled data, we iteratively select reliable unlabeled

samples with confident pseudo-labels. These reli-
able samples serve as potential positive/negative
samples during contrastive learning, enhancing the
overall contrastive clustering process.

To bridge the gap between IND and OOD data,
we introduce a prototype learning strategy. It main-
tains the prototype matrix by integrating instance
and cluster features from both the IND and reliable
unlabeled samples. Our method integrates con-
trastive clustering and prototypical learning, elimi-
nating the need for an extra aligning module. This
integration facilitates improved knowledge trans-
fer from IND to OOD without discarding label
information from IND samples. Furthermore, our
framework is purposefully designed for uniform in-
tent discovery, demonstrating effectiveness in both
open-setting and OOD-setting scenarios.

The contribution of our work is threefold: (1)
We introduce a novel method that leverages both
labeled and unlabeled data through pseudo-label en-
hanced semi-supervised contrastive learning. This
approach facilitates joint representation learning
and clustering by effectively leveraging the whole
data. (2) We propose a prototypical contrastive
learning model for uniformed intent discovery inte-
grating prototypical learning and contrastive clus-
tering to bridge the gap between IND prior knowl-
edge and OOD categories. (3) We conduct exten-
sive experiments on both OOD and open intent
discovery scenarios and the results demonstrate the
effectiveness of our proposed method.

2 Related Work

2.1 Intent Discovery

Recent research for intent discovery can be broadly
categorized into OOD-setting and open-setting. As
shown in Figure 1, open intent discovery involves
clustering both IND and OOD intents with IND pri-
ori knowledge. Samples with IND intents are not
all labeled. Whereas OOD intent discovery focuses
on accurately handling OOD intents and assumes
that the intents of labeled and unlabeled data do
not overlap, which means all IND samples are la-
beled. Lin et al. (2020) proposed a self-supervised
clustering method that utilizes limited labeled data.
Zhang et al. (2021b) proposed a k-means-based
semi-supervised clustering method that can effec-
tively use prior knowledge in intent discovery. Mou
et al. (2022c) proposed a disentangled contrastive
learning framework that mainly focuses on OOD
intent clustering and decouples instance and cluster-
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Joint representation and cluster Prior knowledge retention Reuse of labeled data OOD setting Open setting
CDAC+ (Lin et al., 2020) ✓ pair-wise similarity ✓ × ✓
DeepAligned (Zhang et al., 2021b) × representation × × ✓
DKT (Mou et al., 2022c) ✓ representation × ✓ ×
DPN (An et al., 2023) × prototype ✓ × ✓
PLPCL (Ours) ✓ representation, prototype, classifier ✓ ✓ ✓

Table 1: The differences between our method and prior works

level features to disentangle the knowledge of IND
and OOD samples. Han et al. (2019) extended deep
embedded clustering to transfer learning setting, in-
corporating prior knowledge for OOD clustering.

2.2 Contrastive Clustering

Contrastive clustering has been widely used in var-
ious clustering scenarios, such as unsupervised se-
mantic segmentation (Hamilton et al., 2022) and
generalized self-supervised contrastive learning
(Hu et al., 2023). It has also been applied in OOD
intent detection and discovery tasks (Kumar et al.,
2022; Mou et al., 2022a,c). Li et al. (2021) pro-
posed a contrastive clustering framework with two
contrastive learning heads. It provided objective
guidance for clustering, avoiding interference from
prior knowledge. Mou et al. (2022c) extended con-
trast clustering to the semi-supervised scenario and
designed a two-stage contrastive learning process
that includes both supervised pre-training and un-
supervised clustering. It achieved state-of-the-art
results for OOD intent discovery.

2.3 Prototype Learning.

Prototype learning methods are widely used in clus-
tering analysis and classification problems. In semi-
supervised clustering scenarios, coarsely assigned
pseudo-labels may result in mismatches between
instances and prototypes, introducing noise that sig-
nificantly affects the clustering performance (An
et al., 2023; Huang et al., 2022; Wu et al., 2022b).
An et al. (2023) used weighted pseudo-labels to
reduce the effect of mismatched prototypes. Huang
et al. (2022) proposed the approach of prototype
scattering, which enhances the variance between
the clusters by maximizing the distances between
prototype features, to obtain well-separated clus-
ters. The prototype learning method is robust to
noise and outliers. Compared to other clustering
methods, it is an intuitive and interpretable ap-
proach that can provide references for the entire
cluster based on representative examples.

2.4 Novelty Analysis of Our Method

We summarize the differences between our method
and prior works and highlight the motivations and
advantages of our method in terms of joint repre-
sentation and clustering, prior knowledge retention,
reuse of labeled data, and handling of OOD and
open settings in Table 1.

3 Preliminaries

3.1 Problem Statement

Uniformed intent discovery includes both OOD
intent discovery and open intent discovery. OOD
intent discovery assumes we have a set of labeled
IND data DIND and unlabeled OOD data DOOD,
with the goal of clustering OOD intents. Notably,
there is no overlap between the IND and OOD data.
Open intent discovery involves an intent analysis
dataset {Dl, Du}, where Dl = {(xl, yl)|yl ∈ Yk}
represents labeled data for known intents, and
Du = {(xu, yu)|yu ∈ Yk,Yuk} includes both
known (Yk) and unknown intents (Yuk). In the
extreme case, all samples of the known categories
in the training set are labeled, and Du contains
only data with unknown intents, making the prior
labeling information same with OOD classification.
Since we do not have a priori assumptions that
yl ∩ yu = ∅, this setting differs from the general-
ized intent discovery (Mou et al., 2022b).

3.2 Contrastive Clustering

Our model is based on a contrastive cluster-
ing framework. It performs instance-level and
cluster-level contrastive learning. Specifically, pos-
itive/negative instance pairs are formed via data
augmentation, followed by their projection into a
feature space. Instance-level and cluster-level con-
trastive learning are performed in the row space
and column space, respectively.

Unsupervised instance-level contrastive learning
(ILCL) is performed on unlabeled data, where the
augmented sample of each sample is considered as
a positive sample and other samples are considered
as negative samples. fi,fj refer to the augmented
samples that are generated from the same samples
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Figure 2: The overall architecture of the proposed PLPCL. (a) Intent representation is achieved based on disentangled
instance-level and cluster-level heads. (b) Stage 1 involves supervised contrastive learning on instance-level
representation and classification on cluster-level representation. (c) Stage 2 starts from pseudo-label selecting for
unlabeled data followed by semi-supervised and prototypical contrastive learning in an iterative manner.

after passing through the dropout layer.

ℓinsi,j = −log
exp (sim(fi, fj)/τ)∑2N

k=1 1i ̸=k exp (sim(fi, fk)/τ)

(1)

On the cluster-level contrastive learning head g, it
performs cluster-level contrastive learning (CLCL).
The cluster representation of the augment sample
is considered as a positive sample, and the other
cluster representations are considered as negative
samples. yi refers to the representations of the clus-
ters, which are columns in the cluster-level feature
matrix. yj are the dropout-augment representations
for the cluster level.

ℓclui,j = −log
exp (sim(yi, yj)/τ)∑2N

k=1 1i ̸=k exp (sim(yi, yk)/τ)

(2)

4 Methods

The overall framework of PLPCL is illustrated
in Figure 2. Our framework follows a two-stage
pipeline. In the pre-train stage, IND-labeled sam-
ples are utilized for supervised multi-head con-
trastive learning to acquire prior knowledge. This
model is adapted from contrastive clustering and
includes intent representation alongside two inde-
pendent heads. These heads are instrumental in

decoupling the representation into instance-level
and cluster-level spaces, facilitating joint represen-
tation learning and clustering.

After pretraining, the prototypes of known cate-
gories are obtained, serving as a foundation for effi-
cient knowledge transfer across IND and OOD data.
In the second stage, the multi-head contrastive
model is further trained on the entire dataset includ-
ing IND and OOD samples. Specifically, this stage
comprises three iterative steps: pseudo-label se-
lecting, semi-supervised contrastive learning, and
prototypical contrastive learning. These steps col-
lectively aim to transfer prior knowledge to new
categories and enhance the model’s adaptability.

4.1 Intent Representation

To facilitate effective knowledge transfer between
IND and OOD samples, we aim to achieve joint
intent representation and clustering by learning
instance-level and cluster-level representations.

Drawing inspiration from (Mou et al., 2022c),
we first extract the intent representation using a
pre-trained BERT model and a pooling layer to
extract text representation. Then we utilize two
independent MLPs to map the intent representation
zi into two disentangled latent vectors: fi = f(zi)
and gi = g(zi).
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4.2 Supervised Pre-training

To familiarize the model with the prior knowledge
obtained from labeled IND samples and to establish
initial cluster prototypes, we conduct pre-training
on IND samples. Based on the multi-level intent
representation, we conduct two-level pre-training.

For instance-level representation, we adopt su-
pervised contrastive learning (SCL) to maximize
inter-class variance and minimize intra-class vari-
ance within the IND samples.

Formally, for a sample xi in a mini-batch of
size N , the samples within N sharing the same
label are considered as positive samples, while the
remainder is treated as negative samples. The SCL
loss is computed as follows:

LSCL =

N∑

i=1

− 1

|Nyi − 1|
N∑

j=1

1i ̸=j1yi=yj

log
exp (fi · fj/τ)∑N

k=1 1i ̸=k exp (fi · fk/τ)

(3)

where yi, yj are the labels of samples xi, xj and 1
is an indicator function. Nyi denotes the number
of samples in N with the label yi. fi, fj indicate
the instance-level representation of xi, xj . τ is the
temperature parameter for contrastive learning.

For the cluster-level representation, we apply
cross-entropy loss (CE) to learn cluster-friendly
features. Note that we use a classifier with both
IND and OOD classes for open-setting to better
reserve the priori knowledge extracted at this stage,
allowing our model to better retain the prior knowl-
edge acquired during the pre-training stage com-
pared to previous works.

4.3 Semi-supervised Training

After pretraining with labeled data, we achieve a
good initialization of representation learning and
clustering. The challenge now lies in transferring
the prior knowledge to new intents. There are two
critical problems to be addressed: (1) Effectively
utilizing both labeled and unlabeled data to enhance
the joint representation and clustering process; (2)
Transferring learned knowledge from IND to OOD
data while continually refining representation learn-
ing to enhance cluster-friendly features without en-
countering catastrophic forgetting. To tackle these
challenges, we introduce a pseudo-label enhanced
contrastive learning scheme tailored for iterative
clustering and updating. This scheme starts from re-
liable pseudo-label filtering for unlabeled samples,

followed by semi-supervised contrastive learning
and prototypical contrastive learning.

4.3.1 Pseudo-label Selecting
It’s important to note that the multi-level intent rep-
resentation heads are pre-trained on limited labeled
data. To fully leverage the valuable information em-
bedded within unlabeled data, we employ pseudo-
labeling techniques to iteratively select unlabeled
samples as weak supervised signals for subsequent
contrastive learning processes.

For semi-supervised contrastive learning (4.3.2),
reliable pseudo-labeled data are amalgamated with
labeled data, augmenting potential contrastive sam-
ples. Regarding prototypical contrastive learning
(4.3.3), pseudo-labels are employed to enrich the
learning process of the prototype matrix. Further-
more, the integration of pseudo-labeled data intro-
duces supplementary constraints to mitigate over-
fitting and enhance the model’s generalization per-
formance to novel unseen categories.

However, it’s important to note that the quality
of pseudo-labels is crucial, as noisy or incorrect
pseudo-labels can degrade model performance. It
is crucial to ensure the accuracy and reliability of
pseudo-labels to maintain the effectiveness of the
model’s training. We treat pseudo-labels with prob-
abilities greater than a confidence threshold as true
labels and use them as supervised signals to guide
model training:

p(k|x) > σ (4)

where p(k|x) denotes the probability that x be-
longs to class k, σ represents confidence proba-
bility. When a certain probability is greater than
the confidence threshold, we have enough confi-
dence to consider it as belonging to this category.
The choice of confidence probability will impact
the strength of the supervised signal and the intro-
duced noise. A high confidence probability will re-
sult in inadequate supervised information, whereas
a low confidence probability will introduce erro-
neous pseudo-labels.

4.3.2 Semi-supervised Contrastive Learning
We utilize distinct contrastive learning strategies
for IND labeled data and OOD unlabeled data. We
compare confidence probabilities of pseudo-labels
with a predefined confidence threshold, and if they
are greater than this threshold, we consider them as
reliable pseudo-labels. Unlabeled samples with re-
liable pseudo-labels are considered as labeled data.
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Dataset Classes Classes-IND Classes-OOD Training Validation Test
BANKING 77 54 23 9003 1000 3080

STACKOVERFLOW 20 14 6 12000 2000 6000
CLINC 150 105 45 18000 2250 2250

Table 2: Statistics of BANKING, STACKOVERFLOW and CLINC datasets.

SCL is applied on the instance-level contrastive
learning head f for labeled data, while unsuper-
vised instance-level contrastive learning (ILCL) is
performed on unlabeled data.

On the cluster-level contrastive learning head g,
we perform cross-entropy loss for labeled data and
perform cluster-level contrastive learning (CLCL)
for OOD classes (OOD-setting) or all classes (open-
setting). During the training process, the number
of unlabeled samples with reliable pseudo-labels
will gradually increase.

4.3.3 Prototypical Contrastive Learning
Decoupling knowledge from different levels is ben-
eficial for separating the features of the source do-
main and target domain, thereby improving the
efficiency of transfer learning and reducing over-
fitting. However, previous work only disentangled
the instance-level and cluster-level features and ap-
plied constraints on them independently, without
considering the inherent connection between the
two levels of features. Each sample potentially be-
longs to a cluster, and each cluster consists of a
certain number of samples. In order to extract the
relationship between instance features and cluster
features and enhance the discrimination between
clusters, we propose to maintain a cluster proto-
type matrix, which is of size k ∗m and stores the
prototype features of each cluster.

For each batch, the output of f is an n ∗m ma-
trix containing the feature vectors of each sam-
ple, n is the batch size and m is the feature vec-
tor dimension. The output of g is an n ∗ k ma-
trix, with each row corresponding to the proba-
bility that a sentence belongs to each class, i.e.,
p(k|x), and each column corresponds to the rep-
resentation of a cluster. The cluster prototype ma-
trix is computed by averaging the instance-level
representations over all samples belonging to the
class. For labeled data and unlabeled data with re-
liable pseudo-label, we use ground truth or pseudo-
label, referred to as hard label constraint feature
combination; for other unlabeled data, we perform
probability-weighted calculations, known as soft
semantic weighted feature combination. As shown
in the equation, G is the cluster-level feature matrix

[g1; g2; · · · ; gm; 1ym+1 , 1ym+2 , · · · , 1yN ], F is the
instance-level feature matrix [f1; f2; · · · ; fN ], m
is the number of labeled data in this batch. G′ and
F ′ are the cluster-level and instance-level feature
matrix of the augmented samples, respectively.

Mc = GTF (5)

The cluster prototype matrix Mc is a k ∗m ma-
trix consisting of the features of each clustering
center and can be written as [m1,m2, · · · ,mK ].
The obtained vector mi is normalized and used as
the clustering center zi as shown in the equation.

zc, i =
mi

∥mi∥2
(6)

After explicitly decoupling the cluster prototype
vector zi, the augmented features of each cluster
prototype are used as positive samples, and the rest
of the features are used as negative samples for con-
trastive learning at the cluster prototype level, as
shown in the equation. Optimization of prototype
contrastive loss (PCL) enables pulling apart differ-
ent clusters and thus enhancing the discrimination
between categories.

ℓpcli,j = −log
exp (sim(zc,i, zc,j)/τ)∑2N

k=1 1i ̸=k exp (sim(zc,i, zc,k)/τ)

(7)

The final loss in the training process is obtained
by combining SCL, ILCL, CE, CLCL and PCL.2

5 Experiments

5.1 Datasets

We conduct experiments on three public datasets
BANKING (Casanueva et al., 2020a), STACK-
OVERFLOW (Xu et al., 2015a) and CLINC (Lar-
son et al., 2019a). BANKING consists of 13,083
queries covering 77 intents in the banking domain,
and STACKOVERFLOW dataset contains 20 in-
tents related to the programming domain. CLINC

2We simply set the weight coefficients of each loss to 1.
We compared the effects of different weights for supervised
losses in appendix A.1.
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Method
BANKING-OOD Stackoverflow-OOD CLINC-OOD

ACC ARI NMI ACC ARI NMI ACC ARI NMI
DTC_BERT (Hsu et al., 2017) 45.76 42.88 69.12 57.83 32.31 37.29 51.56 48.33 84.64
KCL_BERT (Han et al., 2019) 47.61 36.5 64.51 41.33 28.74 34.42 57.33 49.45 80.35
MCL_BERT (Hsu et al., 2019) 45.87 34.85 62.83 42.39 27.04 33.71 51.7 43.77 77.69
CDAC+ (Lin et al., 2020) 59.78 44.58 69.19 61.56 28.22 52.76 73.04 64.44 87.90
DeepAligned (Zhang et al., 2021b) 63.86 52.84 73.66 79.68 63.18 65.52 91.56 86.58 94.91
DSSCC (Kumar et al., 2022) 64.67 51.38 71.25 84.28 65.94 64.75 80.89 73.55 89.40
DKT (Mou et al., 2022c) 66.50 52.07 72.22 82.22 61.53 67.05 94.96 90.25 95.94
DPN (An et al., 2023) 68.15 49.72 74.76 78.9 66.49 66.85 87.33 82.94 95.95
Llama2 (Touvron et al., 2023) 27.82 45.26 3.25 71.24 67.62 48.63 26.37 4.19 56.98
PLPCL 68.37 53.19 72.04 86.28 69.64 66.95 95.11 90.71 96.15

Table 3: The OOD-setting results on three datasets. Overall 1st/2nd in bold/underline. We randomly sample 30%
of all classes as OOD intents for both datasets. Results are averaged over three random runs. (p < 0.05 under t-test)

Method
BANKING-Open Stackoverflow-Open CLINC-Open

ACC ARI NMI ACC ARI NMI ACC ARI NMI
DTC_BERT (Hsu et al., 2017) 42.56 31.72 69.12 52.7 35.19 49.3 50.22 39.72 79.51
KCL_BERT (Han et al., 2019) 64.87 54.52 80.07 63.43 50.42 61.83 69.02 62.98 88.77
MCL_BERT (Hsu et al., 2019) 65.39 55.21 79.53 63.55 47.51 57.18 68.4 60.68 87.78
CDAC+ (Lin et al., 2020) 45.00 33.10 69.49 67.05 48.66 66.03 51.64 35.89 79.96
DeepAligned (Zhang et al., 2021b) 74.84 64.37 84.86 76.77 59.42 71.97 88.57 83.71 95.51
DSSCC (Kumar et al., 2022) 69.55 63.13 85.37 70.55 56.89 68.92 83.51 79.81 94.91
DKT (Mou et al., 2022c) 70.38 61.16 83.71 72.57 58.6 69.12 75.44 71.20 92.69
DPN (An et al., 2023) 70.23 60.44 85.7 71.45 62.61 77.86 82.76 79.43 95.4
Llama2 (Touvron et al., 2023) 25.13 43.21 2.06 69.26 66.00 40.64 26.49 1.79 52.21
PLPCL 76.50 67.13 85.99 77.63 63.58 72.2 86.38 81.65 95.02

Table 4: The open-setting results on three datasets. Overall 1st/2nd in bold/underline. We randomly sample 30% of
all classes as OOD intents for both datasets. Results are averaged over three random runs. (p < 0.05 under t-test)

is a cross-domain intent dataset covering 150 in-
tents across 10 domains. Detailed statistics are
shown in Table 2, the division of the training set,
validation set and test set remains consistent with
previous works. We take 30% categories as un-
known categories in both datasets, and all data with
known intent is labeled.

5.2 Baselines

We employ a series of semi-supervised methods
as baselines for comparing OOD intent discov-
ery and open intent discovery: DTC_BERT (Hsu
et al., 2017), KCL_BERT (Han et al., 2019),
MCL_BERT (Hsu et al., 2019), CDAC+ (Lin et al.,
2020), DeepAligned (Zhang et al., 2021b), DSSCC
(Kumar et al., 2022), DKT (Mou et al., 2022c),DPN
(An et al., 2023). We also evaluate the classifica-
tion ability of large language models with Llama2
(Touvron et al., 2023). To ensure lightweight im-
plementation and reduce reliance on external data,
we excluded MTP-CLNN (Zhang et al., 2022), as
it requires extensive use of externally labeled data
during the pre-training phase. All baselines use the

same BERT backbone to ensure a fair comparison.

5.3 Evaluation Matrics

We use three cluster evaluation metrics ACC, ARI,
and NMI to evaluate the model effect, followed by
DeepAligned (Zhang et al., 2021b). To obtain the
results of ACC, we use the Hungarian algorithm to
map prediction categories to ground-truth.

5.4 Implementation Details

We use the pre-trained bert-base-uncased model as
the backbone consistent with the previous work,
and pooling the context embeddings for each to-
ken using GRU and dense layers. The feature vec-
tor dimension is 768, the dropout probability is
0.1, and the GRU layer number is 1. In OOD
discovery, the batch size of IND pre-training is
128, in the OOD clustering stage, the batch size of
STACKOVERFLOW-OOD and BANKING-OOD
are both 400, and the batch size of CLINC-OOD
is 512. For open intent discovery, the batch_size
is 128 for each dataset for the pre-training and
training stages. As with DKT, the learning rate of
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the pre-training process is set to 5e-5 of the train-
ing process is set to 0.0003, and the instance-level
feature dimension is 128. Therefore, the cluster
prototype feature dimension is also 128. The train-
ing epochs for training stage are 100. The experi-
ment was conducted on an RTX 2080Ti GPU, and
the running process takes 4 hours. We set k = 2
for pseudo-label threshold selection and we also
analyze the performance of different confidence
thresholds. We reproduce DSSCC (Kumar et al.,
2022) and DPN (An et al., 2023) under the settings
outlined in the original papers. For BANKING-
OOD and CLINC-OOD, the results of CDAC+,
DeepAligned and DKT are obtained from (Mou
et al., 2022c), and others are obtained from the
text open intent recognition platform (Zhang et al.,
2021a). For open-setting, the results of baselines
except DKT, DSSCC and DPN are obtained from
(Zhang et al., 2021a).

5.5 Main Results

Table 3 and 4 show the performance of different
models under the two task settings of three datasets.
Our method outperformed previous approaches,
especially on the BANKING and STACKOVER-
FLOW datasets, indicating its strong adaptability
to single-domain intent classification tasks and su-
perior discriminability for professional intents with
semantically similar meanings. For the CLINC
dataset, which is a cross-domain dataset with signif-
icant differentiation between categories, previous
methods also exhibit strong clustering capabilities.

5.6 Comparison with Large Language Model

In the penultimate row of the experiment results Ta-
ble 3 and 4, we compared our results with Llama2-
13B model (Touvron et al., 2023). Taking into
account the input tokens’ limitations and their rel-
atively weaker clustering abilities, we employed
large models for classification tasks with the provi-
sion of category names. The example of a prompt
template is shown in Appendix A.3. The results
indicate that the performance of LLM is inferior to
our method in both settings of the three datasets.
On the STACKOVERFLOW dataset with few cate-
gories, LLM outperforms some previous methods.
However, on the BANKING and CLINC datasets
with a larger number of categories, LLM clustering
shows poor performance.

ACC ARI NMI
ILCL,CLCL 46.07 36.79 37.00

+SCL,CE 70.38 61.16 83.71
+PCL 74.29 65.90 85.36

+PL 76.50 67.13 85.99
Table 5: Ablation study of different training objectives
on BANKING-open.

σ ACC ARI NMI
1 74.29 65.90 85.36
0.99 76.50 67.13 85.99
0.9 76.43 66.25 86.16
0.8 74.38 65.25 85.48
0.7 73.18 64.75 85.35
0.5 70.78 62.39 84.19
0 66.17 17.66 80.72

Table 6: Results under different confidence thresholds
on BANKING-open.

5.7 Ablation Study and Further Analysis

Table 5 shows the effects of each module in our
model, experimenting on BANKING-open. The
results show that including SCL and CE during
training helps to fully utilize the supervised signal.
The absence of the supervised signal will result in
a partial loss of pre-training information and a sig-
nificant decrease in effectiveness. The addition of
PCL improves the model’s performance by 3.91%
(ACC), 4.74% (ARI), and 1.65% (NMI), indicating
that explicitly decoupling and separating the cluster
centers is beneficial for distinguishing and separat-
ing different category features in the feature space.
The addition of confident pseudo-labels (PL) im-
proved the model’s performance by 2.21% (ACC),
1.23% (ARI), and 0.63% (NMI), indicating that
gradually including samples with sufficiently high
confidence in the supervised signal during model it-
eration is beneficial for obtaining prior information,
compensating for the limitations of simple sample
scattering in unsupervised contrastive learning.

Table 6 shows the effect of different confidence
thresholds on the effectiveness of the model on
BANKING-open. When the threshold is 1, no
pseudo-labels are used. When the threshold is 0,
pseudo-labels are used for all samples. The confi-
dence threshold analysis of on other datasets and
settings can be found in Appendix A.1.

Figure 3 illustrates the clustering performance
(ACC) of various models at different labeled ratios
for IND intents while maintaining an IND category
ratio of 70%. The results demonstrate the robust
performance of our models across different labeling
ratios. More results showing the effects of labeled
ratio and known cluster ratio can be checked in
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Method
BANKING-Open Stackoverflow-Open CLINC-Open

ACC ARI NMI ACC ARI NMI ACC ARI NMI
DeepAligned (Zhang et al., 2021b) 66.79 55.58 82.17 60.48 42.09 67.04 75.96 72.92 93.33
DPN (An et al., 2023) 69.77 62.22 86.38 65.6 45.91 66.85 78.36 75.14 94.53
Ours 71.17 63.58 84.74 69.27 55.96 68.30 80.58 74.56 94.16

Table 7: Clustering performance with predicted K

Appendix A.1.

Figure 3: Influence of the labeled ratio on BANKING-
open.

5.8 K-estimate Experiments

In real-world scenarios, it is difficult to determine
the number of clusters K in advance. Therefore, we
conduct K-estimation experiments by evaluating
both the accuracy of the predicted K value and the
performance using the predicted K following the
approach in DeepAligned (Zhang et al., 2021b).

We compared the performance of our method
with the DeepAligned and DPN (An et al., 2023)
algorithms and show the results in Table 8. Our pre-
dicted K values are closer to the ground truth com-
pared to those of DeepAligned and DPN, demon-
strating that the features extracted by our PLPCL
model are more clustering-friendly, resulting in
a more accurate estimation of the number of in-
tents. Based on our predicted K, we conducted

K BANKING Stackoverflow CLINC
Ground Truth 77 20 150
DeepAligned 66 15 130
DPN 67 18 137
Ours 68 19 138

Table 8: Estimation of the number of categories.

experiments on three datasets to evaluate the im-
pact of discrepancies between the estimated and
actual number of unknown intents on clustering
performance. The experimental results presented
in Table 7 indicate that our approach outperforms
the baseline methods when the number of clusters
is unknown.

6 Conclusion

In this paper, we propose a pseudo-label enhanced
prototypical contrastive learning approach for both
open intent discovery and OOD intent discovery.
The pseudo-label filtering strategy enhances super-
vised signal during the training process, while the
prototypical contrastive learning module addresses
the isolation issue between two independent con-
trastive learning heads. Experiments on two task
settings and three benchmark datasets demonstrate
the effectiveness of our proposed method. We hope
to explore more self-supervised methods for OOD
and open intent discovery in the future.

Limitations

In this work, we employ BERT-style models as our
backbone, while the disadvantage lies in lacking
the ability to generate coherent and contextually
relevant text. While they can handle known intents
well, BERT-style models may struggle with com-
pletely novel or OOD intents as they rely heavily on
patterns seen during training. The generative LLMs
are excellent at generating human-like text, making
them suitable for creating responses and discov-
ering new intents in open-ended queries. These
models can adapt to new or unseen intents more
effectively by generating diverse responses based
on the input context, which is valuable for open
intent discovery. To leverage the strengths of both
BERT-style models and generative LLMs, some
hybrid approaches can be employed in the future.
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A Appendix

A.1 Further Analysis of loss weights and
settings

Figure 4: Influence of the supervisory loss weight on
BANKING dataset
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Figure 4 demonstrates the performance of our
model on the BANKING dataset under different
weights of supervised contrastive loss, showing that
our model is insensitive to loss weights. Figure 5
illustrates the impact of different labeled ratios and
known cluster ratios on the model performance.

σ ACC ARI NMI
1 74.33 60.66 70.92
0.99 77.63 63.58 72.2
0.9 71.08 57.74 68.38
0.8 69.37 56.76 68.8
0.7 66.93 54.24 67.64
0.5 66.9 57.15 70.18
0 66.8 37.73 72.7

Table 9: Results under different confidence thresholds
on STACKOVERFLOW-open.

σ ACC ARI NMI
1 67.52 55.05 69.27
0.99 68.37 53.19 72.04
0.9 63.09 49.68 70.19
0.8 53.26 38.04 62.4
0.7 47.93 36.88 63.02
0.5 34.24 21.7 49.64

Table 10: Results under different confidence thresholds
on BANKING-OOD.

σ ACC ARI NMI
1 85.17 67.58 65.73
0.99 86.28 69.64 66.95
0.9 71 53.67 56.12
0.8 71.67 43.63 49.54
0.7 53.39 25.06 41.03
0.5 61.72 43.61 51.77

Table 11: Results under different confidence thresholds
on STACKOVERFLOW-OOD.

Table 9 ,10, 11 shows the impact of different
confidence thresholds on the model’s effectiveness
across various datasets and task settings. The ex-
periments show that selecting an appropriate con-
fidence threshold is crucial for optimizing model
performance across different datasets and tasks.
Higher confidence thresholds generally lead to bet-
ter classification results, indicating that the model
can more accurately identify and leverage high-
confidence samples for effective learning. This
effect is even more pronounced in the OOD setting,
where a low threshold can significantly degrade per-
formance, emphasizing the need for careful thresh-
old selection.

A.2 Visualization
Figure 6 shows the visualization results of the
confusion matrix for DKT and our model on

BANKING-open, with a total of 77 categories in
the test set, and we show the first 20 categories. It
can be found that the DKT model may completely
confuse two certain categories, i.e. the samples of
two certain categories are grouped into the same
cluster. However, our model avoids this problem
well, and rarely there is no correct sample in a
certain category. Figure 7 shows the clustering
visualization results of DKT and our model on
BANKING-open and BANKING-OOD. For fair
comparison, we use the same representation after
the pooling layer. We can find that after adding con-
trastive learning for prototype and reliable pseudo
label, while keeping the samples of the same clus-
ter compact, the distance between different clusters
is widened, and the different clusters become scat-
tered on the whole feature space.Unlike scattering
of unlabeled samples, the premise for contrastive
learning in cluster prototype is that each cluster has
its own unique features, and cluster center scatter-
ing aims to separate these features.

A.3 Prompt Template of LLM
The prompt template is shown in Table12.

Below is an instruction that describe a task. Write a response
that appropriately completes the request.
###instruction:
Please give the intent label for the following sentences.
Select one label in the set {...}
For example:
Input:
Can I exchange currencies with this app? .
Output:
{ intent_label:"exchange_via_app"}
###question:
Input:
{data sample}
Provide intent label in JSON format with the following keys: intent_label
###Response:

Table 12: An example of the prompt templates we used.
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Figure 5: Influence of the labeled ratio and known cluster ratio on BANKING-open.

(a) DKT (b) Ours
Figure 6: Confusion matrix visualization of different models. We use the same test set of BANKING-open.

(a) DKT_OOD (b) Ours_OOD

(c) DKT_open (d) Ours_open
Figure 7: Cluster visualization of different models. We use the same test set of BANKING.
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