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Abstract

Multi-label text classification (MLTC) is an
important task in the field of natural language
processing. Most existing models rely on high-
quality text representations provided by pre-
trained language models (PLMs). They hence
face the challenge of input length limitation
caused by PLMs, when dealing with long texts.
In light of this, we introduce a comprehensive
approach to multi-label long text classification.
We propose a text segmentation algorithm,
which guarantees to produce the optimal seg-
mentation, to address the issue of input length
limitation caused by PLMs. We incorporate
external knowledge, labels’ co-occurrence
relations, and attention mechanisms in repre-
sentation learning to enhance both text and
label representations. Our method’s effective-
ness is validated through extensive experiments
on various MLTC datasets, unraveling the
intricate correlations between texts and labels.

1 Introduction

Multi-label text classification (MLTC) aims to as-
sign multiple relevant labels to a given text. It
plays a crucial role in various applications such as
content recommendation (Wu et al., 2023), senti-
ment analysis (Sentiment, 2020), and information
retrieval (Henzinger et al., 2023).

The pre-trained language models (PLMs), e.g.,
BERT (Devlin et al., 2018) and Roberta (Liu
et al., 2019) significantly improve the performance
of various natural language processing tasks
including MLTC. However, PLMs have an inherent
limitation in handling long texts due to their
maximum input sequence length of 512 tokens.
This limitation could lead to information missing
when dealing with long texts. More than this,
text representations directly obtained from PLMs
should be enhanced further, by incorporating e.g.,
domain knowledge (Liu et al., 2023). Another
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difficulty for MLTC arises from intricate label-
label and word-label relations. These complicated
relations, if effectively captured, are expected to
improve prediction performance.

To overcome the input length limitation of
PLMs, investigators have proposed a series of
techniques that are based on e.g., text truncation
(Park et al., 2022), sparse attention mechanism
(Zaheer et al., 2020; Beltagy et al., 2020), and
text segmentation (Ding et al., 2020; Jaiswal and
Milios, 2023). Specifically, Park et al. (2022) pro-
poses two methods Bert+Rank and Bert+Random.
Bert+Rank concatenates the first 512 tokens of a
text representation with the representations of the
top-ranked sentences (up to 512 tokens). Unlike
Bert+Rank, Bert+Random concatenates the first
512 tokens of a text representation with at most
512 tokens randomly selected from the text corpus.
These methods often perform poorly due to the
loss of text information. The reason why PLMs
limit the input length is that they incorporate a
self-attention mechanism, whose computational
complexity is in quadratic time of the input
length. Therefore, Bigbird (Zaheer et al., 2020)
and Longformer (Beltagy et al., 2020) utilize
the sparse self-attention mechanism to handle
longer input sequences. Nevertheless, they haven’t
fundamentally solved the issue and can not process
sequences of arbitrary length. Ding et al. (2020)
proposes a dynamic programming method, named
CogLTX, for text segmentation. Jaiswal and Milios
(2023) splits a long text into fixed-length chunks,
encodes these chunks by BERT, and concatenates
the representations of chunks as the representation
of the long text. However, the methods above do
not take into consideration the semantic change
before and after segmentation, hence may damage
the semantic coherence of a text.

The above methods mainly focus on the content
of texts alone, ignore the integration of external
knowledge. As pointed out by Liu et al. (2023),
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the utilization of high-quality external knowledge
can enhance text representations, and then improve
prediction accuracy. However, to incorporate ex-
ternal knowledge, two crucial questions have to
be answered: (a) how to establish the connection
between texts and external knowledge? (b) how to
develop a model to produce text-related knowledge
representations? If the above issues were not effec-
tively resolved, external knowledge would become
noise and may worsen prediction performance.

Label correlations have been explored in MLTC.
A typical model is LDGN Ma et al. (2021). The
model first captures labels’ co-occurrence relation
and then employs the Graph Convolutional Net-
work (GCN) to update label representations based
on the co-occurrence relation. However, LDGN ini-
tializes label representations randomly without con-
sidering the labels’ semantic information. Indeed,
when the semantic information is incorporated, not
only label representations can be improved, but also
the importance of words to labels can be captured.

To tackle the issues above, we propose a model
(SKFRL) that integrates dynamic Segmentation,
Knowledge Fusion, and Representation Learning
for multi-label long text classification. SKFRL
is equipped with a text segmentation method to
partition a long text into sub-texts. It also fuses
text representations with external knowledge as
enhanced text representations. It further enhances
both text and label representations by capturing
intricate label-label and word-label relations.

In summary, our contributions are as follows:

• We propose a text segmentation method,
named as TXTSEG to address the input length
limitation of PLMs. TXTSEG measures the
cost of a segmentation on a long text by tak-
ing context information of each cut point into
consideration, and moves towards the optimal
solution via dynamic programming.

• We introduce a knowledge fusing method that
fuses text representations from PLMs with
concept representations from external knowl-
edge, to obtain updated text representations.

• We achieve enhanced label and text represen-
tations learning by integrating external knowl-
edge, label co-occurrence relation and max
attention schema.

• We conduct extensive experiments on bench-
mark datasets to validate the superiority of

our model SKFRL compared with other base-
line models. The source code of SKFRL is
available on GitHub1.

2 Related Work

Multi-Label Text Classification. MLTC involves
assigning multiple relevant labels to a single text,
which is more complex than single-label classifi-
cation. Traditional deep learning methods such as
Convolutional Neural Networks (CNNs) (Liu et al.,
2017) and Recurrent Neural Networks (RNNs)
(Nam et al., 2017) are widely used in MLTC. How-
ever, the methods above often overlook the correla-
tion between texts and labels. To address this issue,
a method named CORE is introduced by Zhang
et al. (2021). CORE takes a text and all the labels as
input simultaneously, hence obtains the representa-
tions of the text and all the labels in the same space.
However, CORE struggles with long texts or large-
scale label datasets. Zhang et al. (2023) introduces
a two-stage label reduction method that reduces
the number of labels through association rules and
label merging. The label reduction method heav-
ily depends on the distribution of high-frequency
labels in a dataset despite its effectiveness. You
et al. (2019) and Xiao et al. (2019) utilize attention
mechanisms to construct label-specific text repre-
sentations, which capture the importance of each
word to each label. The correlation among labels
is also crucial and plays a key role in MLTC (Yang
et al., 2018; Ma et al., 2021). Yang et al. (2018) ex-
plores the label-label correlations by treating labels
as a sequence and then using the sequence genera-
tion model to effectively capture high-order corre-
lations among labels. However, label sequence that
is derived from an unordered set, inevitably influ-
ences the model’s performance. Although LDGN
Ma et al. (2021) captures the co-occurrence rela-
tion among labels in prediction, it overlooks labels’
semantic information but simply initializes label
representations with a randomized strategy.
Extensions on PLMs. Pre-trained language
models like BERT (Devlin et al., 2018), Roberta
(Liu et al., 2019) significantly advance the field of
natural language process. However, one limitation
of PLMs is their fixed input sequence length,
typically capped at 512 tokens. This limitation
causes a significant challenge when dealing with
long texts. Sun et al. (2019) directly truncates a text
and discards the remaining part. Pappagari et al.

1https://github.com/Coder-Jeffrey/SKFRL
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Figure 1: The Architecture of SKFRL. SKFRL consists of four parts. (a) Long text segmentation (TXTSEG):
TXTSEG splits the long text Ti into several sub-texts x1

i , x
m
i , xn

i by dynamic programming. (Wi contains the words
of sub-texts.) (b) External knowledge fusion: External knowledge Eg

i is incorporated into text representation H
(w)
i ,

resulting in the fused text representation H
(w)′

i . (c) Enhanced label representation: Similar to (b), the external
knowledge of label El is incorporated into label representation hl and obtains the fused label representation Hl.
GCN is employed to obtain the enhanced label representation H′

l. (d) MAXATT for words and labels: A max
attention mechanism (MAXATT) is used to calculate the importance of each word to each label. In addition, H(w)′′

i

is the label-weighted text representation obtained through (d), H(cls)
i is the representation of the special token [CLS].

(2019); Jin et al. (2021) simply split a long text into
small segments to meet the input length of PLMs.
Ding et al. (2020) proposes an objective function,
that measures the goodness of a segmentation
purely by cut points, and cuts a long text into
sub-texts via optimizing the objective function.
Jaiswal and Milios (2023) splits a long text into
fixed-length chunks and processes these chunks by
BERT independently. However, the segmentation
of the above methods does not consider the
semantic information and the coherence of a text,
hence may damage the semantic information of the
original text. Chen et al. (2022) proposes a digest
algorithm to extract more important sentences at
the beginning and end of a text. Recently, extended
transformer architectures enable PLMs to handle
longer sequences by introducing sparse attention
mechanisms. Typical works include Transformer-
XL (Dai et al., 2019), Reformer (Kitaev et al.,
2020), Longformer (Beltagy et al., 2020), and
BigBird (Zaheer et al., 2020). Specifically, Dai
et al. (2019) develops a segment-level recurrence
mechanism along with a novel positional encoding
scheme. Kitaev et al. (2020) replaces the dot-

product attention by one that uses locality-sensitive
hashing, to reduce computational complexity.
Longformer (Beltagy et al., 2020) combines local
windowed attention with a task motivated global
attention. BigBird (Zaheer et al., 2020) designs a
sparse attention mechanism to reduce the quadratic
dependency to linear. Though they attempt to
reduce complexity by introducing various attention
mechanisms, they still face challenges in balancing
computational efficiency and model performance.

Our goal is threefold. (1) We develop a text seg-
mentation method that segments a long text by con-
sidering semantic coherence, to address the input
length constraints of PLMs. (2) We incorporate ex-
ternal knowledge to enrich both text and label rep-
resentations. (3) We leverage label-label and word-
label relations to further enhance text and label
representations. By doing so, we aim to obtain a ro-
bust model for multi-label long text classification.

3 Method

In this section, we introduce an approach to ad-
dressing the issue of MLTC on long texts. As
shown in Figure 1, our approach consists of four
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parts, i.e., Long text segmentation, External knowl-
edge fusion, Enhanced label representation learn-
ing, and Representation enhancing with attention
(MAXATT for words and labels). Overall, given a
long text, SKFRL first cuts it into several sub-texts
with the text segmentation algorithm TXTSEG. Af-
ter segmentation, all the sub-texts can be encoded
via BERT directly, thereby addressing the issue
of input length limit. SKFRL then introduces ex-
ternal knowledge to enhance the representation of
each sub-text. Meanwhile, SKFRL processes the
labels along the similar line as that on texts and
gains the fused label representations. It then up-
dates the fused label representations through GCN
and obtains the enhanced label representations. Fi-
nally, to capture the importance of words to dif-
ferent labels, SKFRL utilizes the max attention
mechanism (MAXATT) to obtain the label-weight
text representations. We next elaborate on each of
them, starting from the problem formulation.

Problem Formulation: Let D = {(Ti, Yi)}Ni=1

be the given training text set containing total N
texts with corresponding labels. Here Ti refers
to the i-th text in D, Yi = {l1i , · · · , lLi } is the
corresponding label set of 0,1 for Ti, and L denotes
the total number of labels. The goal is to train a
classifier, which predicts the most relevant labels
for a given text, which might be quite long and
exceeds the input length limit of a PLM.

3.1 Long text segmentation

To overcome the input length limitation of PLMs,
we develop an algorithm TXTSEG, for long text
segmentation. The pseudo-code of TXTSEG is
shown in Algorithm 1. Its core idea is as follows.

Core idea. TXTSEG works in two steps. It first
identifies a set of cut points, along with their costs,
and maintains them in poses. Based on poses, it
finds the set of cut points that has the least total
cost, by following dynamic programming.

Algorithm. We start from the cost metric, followed
by the algorithm details.

Cost metric. Specifically, for each character s in a
text sequence T , we define a metric ν(s) to evaluate
its cost when s is chosen as a cut point.

ν(s) = pc(s) + sc(s) (1)

Here, function pc(s) sets a value for a character
s based on the type of s; in this work, period, ques-
tion mark, and exclamation mark have a cost of 1,

Algorithm 1 TXTSEG

Input: Long text T , maximum length max
Output: List segments containing the cut points

1: Initialize poses
2: Initialize arrays dp, split; a list segments
3: dp[0]← 0
4: for i← 1 to len(poses)− 1 do
5: for j ← 0 to i− 1 do
6: if poses[i][0]−poses[j][0] ≤ max then
7: cost← dp[j] + poses[i][1]
8: if cost < dp[i] then
9: dp[i]← cost

10: split[i]← j
11: end if
12: end if
13: end for
14: end for
15: i← len(poses)− 1
16: while i > 0 do
17: segments.append(poses[i][0])
18: i← split[i]
19: end while
20: segments.reverse()
21: return segments

comma has a cost of 2, and the cost of other char-
acters is set as 8, by following Ding et al. (2020).
Function sc(s) is defined as a⃗·⃗b

|⃗a||⃗b| , where a⃗, b⃗ are
the vectors including 20 tokens before and after s
in T , respectively.

Given a long text T and the maximum length
max (set as 511), TXTSEG first identifies all the
punctuation as cut points. For each pair of consecu-
tive cut points cps, cpe, if the length of the sub-text
T (cps, cpe) exceeds max, TXTSEG repeatedly per-
forms the following task to identify more cut points.
That is, it identifies a new cut point cpn, that is max
distance away from cps within T (cps, cpe), and up-
dates T (cps, cpe) with T (cpn, cpe). When all the
cut points are recognized, TXTSEG calculates their
costs by following Eq. (1) and maintains cut points
and their costs in array poses (line 1). The i-th en-
try in poses is a pair of position and cost. TXTSEG

also initializes two arrays dp and split (line 2). The
array dp keeps track of the minimum cost from the
first cut point to the current cut point; while the ar-
ray split is used to store the index of the previous
best cut point for the current cut point. Afterwards,
TXTSEG identifies the best set of cut points by fol-
lowing dynamic programming (lines 3-14). Specifi-

6867



G
C

N

PPMI Matrix Concept Graph Enhanced Concept Graph

Figure 2: The working flow of enhancing the concept
representation. Each item PPMI(wi, wj) in the PPMI
Matrix denotes the PPMI value of words wi and wj

in the dataset. k is the concept node, and n1, n2, n3

are the first-order neighbors of concept k. k′ is
the enhanced concept node, and n′

1, n
′
2, n

′
3 are the

enhanced first-order neighbors of concept k′.

cally, for the i-th (i ∈ [1, len(poses)−1]) cut point
poses[i][0], TXTSEG iterates through all previous
cut points poses[j][0] and evaluates the cost of the
j-th and the i-th cut points. If the length of the sub-
text does not exceed max, TXTSEG calculates the
cost and updates dp and split accordingly. After
completion of the above process, TXTSEG back-
tracks to reconstruct the cut points (lines 16-19).
Finally, TXTSEG returns segments that store the
best cut points (line 21).

Using TXTSEG, a long text Ti can
be divided into several sub-texts, i.e.,
Ti = {x1i , ..., xmi , ..., xni }, where n denotes
the number of sub-texts, which will be used for
subsequent operations e.g., external knowledge
fusion, and MAXATT calculation of words and
labels. Hence, we illustrate subsequent operations
on sub-texts, for the sake of brevity.

3.2 External knowledge fusion

To enhance the text representation, we fuse it with
external knowledge. In this work, a publicly avail-
able knowledge graph CONCEPTNET (Speer et al.,
2017) that is composed of a large number of triples
like ‘entity-relationship-entity’ is applied.

Given a sub-text xmi = {w1
i , ..., w

j
i , ..., w

Q
i }

with Q words, we match each word in xmi with the
corresponding concept in ConceptNet and obtain
the concept sequence Ki = {k1i , ..., kji , ..., k

Q
i }. If

no concept corresponding to wj
i is found, kji is set

as [PAD].
After recognizing all the concepts in a sub-

text, we identify the first-order neighbors from
CONCEPTNET and construct a concept graph Gj

i

based on the first-order neighbors for each concept
kji . Later on, TRANSE (Bordes et al., 2013) is
employed to train these concept graphs, and the
representation of each concept graph is used as
the external knowledge representation Et

i, where

Et
i = {e(t,1)i , ..., e

(t,j)
i , ..., e

(t,Q)
i } ∈ RQ×D, e(t,j)i

is the representation of the concept kji , and D
denotes the dimension of word embedding.

We next incorporate the co-occurrence relation-
ship of text words into the external knowledge rep-
resentation, to further enhance their representation.
The process is shown in Figure 2.

Specifically, we first construct the positive point-
wise mutual information (PPMI) of the text words
with the following formulas:

PMI(wi, wj) = log

(
P (wi, wj)

P (wi)P (wj)

)
(2)

PPMI(wi, wj) = max(PMI(wi, wj), 0) (3)

where P (wi) and P (wj) are the probabilities
that words wi and wj appear in the training set,
respectively; P (wi, wj) is the co-occurrence
probability that words wi and wj appear together
in a sliding window of size 20 of a text. The
size of the sliding window is suggested by Lin
et al. (2021). We then assign edge weights to
concept graphs as follows: for each edge (va, vb)
in a concept graph Gj

i , we update its weight
w(va, vb) with PPMI(wa, wb) if (wa, wb) is in the
matrix, otherwise, we set w(va, vb) as 0. Here,
wa (resp. wb) is the corresponding word of va
(resp. vb). After updating the edge weights, we
obtain a normalized adjacency matrix Â of each
concept graph, with Eq. (5) (will be given in
Section 3.3). Lastly, we employ GCN to update
the representation of a concept graph Gj

i with its
corresponding Â, extract the representation of each
concept e(g,j)i from Gj

i and obtain an enhanced
representation Eg

i = {e(g,1)i , ..., e
(g,j)
i , ..., e

(g,Q)
i }

∈ RQ×D as the enhanced representation of Ki.
In addition, we encode the sub-text xmi via a

PLM and obtain two representations. One is the
output of the sequence of the last hidden layer
H

(w)
i = {h(w1)

i , ..., h
(wj)
i , ..., h

(wQ)
i } ∈ RQ×D

and the other one is the output of [CLS] token
H

(cls)
i ∈ R1×D, which will be used later. We

incorporate H
(w)
i with external knowledge rep-

resentation Eg
i with Eq. (4) and obtains the final

representation of xmi .

H
(w)′

i = H
(w)
i +Eg

i (4)

where H
(w)′

i ∈ RQ×D is the fused text representa-
tion.
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3.3 Enhanced label representation

In MLTC, a label, e.g., ‘international affairs’,
often carries semantic information. The application
of semantic information has been proven effective
in improving classification performance. Hence,
we first encode all the labels in a dataset through a
PLM and obtain their initial representations. Along
the similar line to the knowledge fusion on texts,
we also fuse the label representations with external
knowledge. In contrast to the fusion operation on
texts, we use GraphSAGE (Hamilton et al., 2017)
instead of GCN to update label representations,
since label words are much less than text words.
After fusion, we obtain the label representations
Hl ∈ RL×D, where L is the number of labels.

Prior works show that the co-occurrence relation
among labels is useful in classification. To this
end, we further enhance the label representations
by incorporating the co-occurrence relation of
labels. Specifically, we first construct a label
co-occurrence graph, where each node represents
a label and each edge indicates the label co-
occurrence between two labels, from the training
set. We next obtain the adjacency matrix A from
the label co-occurrence graph and normalize it as
Â with Eq. (5):

Â = D− 1
2AD− 1

2 (5)

where D ∈ RL×L is a diagnal degree matrix.
We finally feed the label representations Hl and

Â into GCN and obtain the enhanced label repre-
sentations (Eq. (6)):

H′
l = LeakyReLU(ÂHlW1) (6)

where W1 ∈ RD×D is a learnable transformation
matrix, and H′

l ∈ RL×D is the label represen-
tations with the labels’ co-occurrence relation
incorporated.

3.4 Enhancing text representation with max
attention mechanism

In MLTC, the importance of each word in a text
is different for labels. Taking “The football
club’s stock soared after signing a major
sponsorship deal with a top bank” as an
example, it is clear that the word ‘football’ is
the most important word for the label ‘sports’.
It is hence necessary to capture the importance of
a word to a label and enhance text representation
with the attention. To this end, we introduce an

Algorithm 2 MAXATT

Input: Text and label representations H(w)′

i , H′
l.

Output: Updated label representation.
/*calculate the importance of word-to-label */

1: M← H
(w)′

i ·H′T
l

2: Ma ← {tanh(max(M[i])) | i ∈ [1 : Q]}
3: m⃗← SOFTMAX(Ma)

/* compute the label-weighted text representation */

4: H
(w)′′

i ← mean(m⃗ ·H(w)′

i )
/* obtain the final text representation */

5: return H
(w)′′

i

attention mechanism, which is named MAXATT

and works as Algorithm 2.
Taking a text representation H

(w)′

i and a label
representation H′

l as input, MAXATT first obtains
a word-to-label weight matrix M by multiplying
H

(w)′

i with H′
l (line 1). MAXATT then performs

max pooling and nonlinear transformation on each
row of M, to obtain the max attention vector m⃗ of
the text (lines 2-3). Next, MAXATT multiplies m⃗
by H

(w)′

i and applies average pooling to obtain the
label-weighted text representation H

(w)′′

i (line 4).

Model learning & testing. Given a label-weighted
representation H

(w)′′

i , SKFRL concatenates it with
H

(cls)
i to obtain the final text representation H

(w,f)
i ,

and feeds H(w,f)
i into a fully connected layer to pro-

duce the predicted results. To train the model, we
select the Binary Cross-Entropy (BCE), which is
commonly used in MLTC task, as the loss func-
tion (Ma et al., 2021; Xiao et al., 2019).

Lijbce = −(y
j
i log(ŷ

j
i )+ (1− yji ) log(1− ŷji )) (7)

Lbce = −
1

N

N∑

i=1

L∑

j=1

Lijbce (8)

where N and L denote the total number of texts
and labels, respectively; yji and ŷji represent the
ground truth (0 or 1) and the prediction result of
the j-th label for the i-th text, respectively.

To predict the labels of a text Ti, SKFRL first
outputs predicted results {ŷ1i , ..., ŷmi , ..., ŷni } for
each of its sub-text, performs max pooling (Eq. (9))
over the results of sub-texts, and picks labels whose
predicted values ŷmi (m ∈ [1, n]) are above a
threshold (0.5 in this work).

ŷi = max(ŷ1i , ..., ŷ
m
i , ..., ŷni ) (9)
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where ŷi is a vector of dimension L that serves as
the label prediction result of the text Ti.

4 Experiment

4.1 Experimental Setup

Datasets. To ensure a fair comparison with the
baseline, we select four MLTC benchmark datasets.
Table 1 shows the details of the four datasets. CMU
Book Summary is an MLTC dataset containing
12788 samples (texts) with multiple labels (up to
227). Pairs of book summaries are created by com-
bining text pairs from the CMU Book Summary
dataset. EURLEX-57K is a large-scale MLTC
dataset containing 57,000 European Union legal
texts with labels (up to 4271). Inverted EURLEX-
57K is a modified version of the EURLEX-57K
dataset in which the order of chapters is reversed
to ensure that the key information focuses on the
end of the text.
Baselines. The following baselines are compared
with our proposed method.

• Bert (Devlin et al., 2018) is adopted by (Park
et al., 2022) to conduct MLTC, which achieves
a good result.

• Bert+TextRank (Park et al., 2022) obtains
the features of MLTC by concatenating the
representation of the first 512 tokens of the
sentence with the representation of the top-
ranked sentences.

• Bert+Random (Park et al., 2022) concate-
nates the representation of the first 512 text to-
kens with the other 512 text tokens randomly
selected from the text to conduct MLTC.

• Longformer (Beltagy et al., 2020) utilizes
a sparse attention mechanism that scales lin-
early with sequence length, to make it easy to
process more tokens (up to 4,096 tokens).

• ToBERT (Pappagari et al., 2019) adopts a
hierarchical approach to processing long texts
for the MLTC task.

• CogLTX (Ding et al., 2020) splits long text
into chunks by dynamic programming. The
chunks with high scores are used for MLTC.

• ChunkBERT (Jaiswal and Milios, 2023)
splits a long text into chunks with fixed-length.
The concatenated chunk representation is
used for MLTC.

Parameter setting. We implement our model in
PyTorch and train it with 1 NVIDIA 4090. BERT
is used for the PLM. The maximum text length and
batch size are set to 512 (including the [CLS] token)
and 2 respectively. The learning rate is 3e-5 for EU-
RLEX and Paired Summary, 5e-5 for Inverted EU-
RLEX, and 7e-6 for Book Summary. We train our
model for 20 epochs. The checkpoint with the best
performance is used to test our proposed model.
Evaluation metrics. We use Micro-F1 (%) as the
evaluation metric.

4.2 Results and Analysis
Our proposed SKFRL is evaluated with various
baseline methods across four benchmark datasets.
To evaluate the performance of SKFRL on long
text, the texts (tokens exceeding 512) of four bench-
mark datasets are picked out as a new test set. In
addition, the results on the full test set (i.e., long
texts are not picked out) are given in the Appendix
(see the Appendix A.1 for details).

Table 2 shows the results on long texts. Our
proposed SKFRL achieves the state-of-the-art
performance on 4 datasets. Specifically, SKFRL
improves the previous best results from 67.03,
64.31, 62.34, 58.55 to 67.12 (+0.09), 66.04
(+1.73), 62.47 (+0.13), 62.92 (+4.37) respectively.
In addition, the simple method, i.e., Bert, performs
well on the first three datasets, except for the Paired
Summary. Compared with Bert, Bert+TextRank
and Bert+Random achieve a better result by en-
hancing the text representation with incorporating
additional information from TextRank or random
tokens. In addition, while the performance of
popular models such as Longformer, ToBERT,
ChunkBERT, and CogLTX achieve encouraging re-
sults, their performance still is limited by long text.
Different from the methods above, our proposed
SKFRL leverages a novel long-text segmentation
method and knowledge fusion strategy to improve
the performance of MLTC on long texts. Exper-
imental results also show that SKFRL achieves
a remarkable improvement on MLTC of long texts.

4.3 Ablation Study
We conduct ablation studies to verify the effective-
ness of the sub-modules in SKFRL. As shown in
Table 3, our observations are as follows: (1) Our
proposed SKFRL outperforms all variants based
on SKFRL. It is shown that each sub-module is
effective on improving the performance. (2) Com-
pared with Variant 1, Variant 2 performs better,
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Dataset #Total #Train #Dev #Test #Labels #BERT Tokens %Long
EURLEX-57K 57000 45000 6000 6000 4271 707.99±538.69 51.3

- Inverted 57000 45000 6000 6000 4271 707.99±538.69 51.3
Book Summary 12788 10230 1279 1279 227 574.31±659.56 38.46

- Paired 6393 5115 639 639 227 1148.62±933.97 75.54

Table 1: Statistical information of the datasets. #BERT Tokens indicates the average token number obtained via the
BERT tokenizer. %Long means the proportion of texts exceeding 512 BERT tokens.

Model EURLEX Inverted
EURLEX

Book
Summary

Paired
Summary

Bert 66.76 62.88 60.56 52.23
Bert+TextRank 66.56 64.22 61.76 56.24
Bert+Random 67.03 64.31 62.34 56.77
Longformer 44.66 47.00 59.66 58.55

ToBERT 61.85 59.50 61.38 58.17
CogLTX 61.95 63.00 60.71 55.74

ChunkBERT 64.94 62.94 57.80 57.73
SKFRL 67.12 66.04 62.47 62.92

Table 2: Model performances on long texts. The highest
and second-highest scores are bolded and underlined.

Variant EKF ELR ATT EURLEX Inverted
EURLEX

Book
Summary

Paired
Summary

1 × × × 65.99 64.76 61.37 61.23
2 ✓ × × 66.21 65.02 61.58 61.53
3 ✓ × ✓ 66.91 65.77 62.10 62.57
4 × ✓ ✓ 66.93 65.85 62.23 62.60

SKFRL ✓ ✓ ✓ 67.12 66.04 62.47 62.92

Table 3: The results of the ablation study. EKF and
ELR denote the external knowledge fusion and en-
hanced label representation learning respectively. ATT
refers to the MAXATT for word and label. ’✓’ (resp.
’×’) denote the Variant with (resp. without) the corre-
sponding operations (i.e., EKF , ATT , and ELR).

which indicates the effectiveness of EKF . (3)
Compared with Variant 2, Variant 3 adds the max
attention mechanism MAXATT. As we mentioned
in Section 3.4, MAXATT can help the model learn
the importance of words for different labels, result-
ing in a great improvement. (4) The performance
of SKFRL is better than Variant 3, verifying the
effectiveness of ELR. ELR enhances the label
representation through GCN, which enables the
model to capture the label semantic information
and the label co-occurrence relation.

In addition, in Section 3.1, different from Ding
et al. (2020), we incorporate text semantic simi-
larity as a cost of segmentation. In Section 3.2,
we introduce PPMI and employ GCN to obtain
the enhanced text external knowledge representa-
tion, which differs from the GraphSAGE method
used by Liu et al. (2023). To verify the effective-
ness of our improved methods, we conduct ablation

Variant EURLEX Inverted
EURLEX

Book
Summary

Paired
Summary

Segp+KGs 66.67 65.56 61.93 62.19
Segp+s+KGs 66.91 65.88 62.36 62.68

Segp+s+KGp (SKFRL) 67.12 66.04 62.47 62.92

Table 4: Ablation study results of long text segmentation
and external knowledge training method. Segp denotes
that the text segmentation is conducted by punctuation.
Segp+s denotes that the text segmentation is performed
by punctuation and text semantic similarity. KGs de-
notes that text representation is enhanced by external
knowledge with GraphSAGE. KGp denotes that the
text representation is enhanced by external knowledge
with PPMI and GCN.

study. The results are shown in Table 4. The ex-
perimental results show that our proposed method
Segp+s+KGp achieves the best performance com-
pared with other variant methods (i.e., Segp+KGs

and Segp+s +KGg). Specifically, the model with
Segp +KGs can achieve good results across the
four datasets. Once the text segmentation method
(i.e., Segp+s +KGs) is applied, the performance
of the model is improved. The performance of
the model is further improved and optimized on
all datasets by introducing the external knowledge
representation with PPMI and GCN method (i.e.,
Segp+s +KGp).

5 Conclusion

In this work, we propose a novel model for multi-
label long text classification. The model achieves
superior text segmentation by following dynamic
programming, thereby addressing the issue of input
length limitation caused by PLMs. The use of exter-
nal knowledge enriches the text representation en-
coded by PLMs effectively. To further enhance the
text representation, GCN and max-attention mech-
anisms are utilized to obtain the label-weighted
text representation. Experimental results show that
our model outperforms baselines, which confirms
the effectiveness of our model in text segmentation
and incorporation of external knowledge.
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Limitations

There are some limitations for our work. Firstly,
due to the limitation of computational resources,
we only verify our method on the BERT-base. Ex-
tending our experiments to larger PLMs would
make our work more convincing. Secondly, the per-
formance of the model could be further improved
by employing the correlation among sub-texts. We
will solve the limitations above in the future.
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A Appendix

A.1 Result on full test sets
Table 5 presents the performance of all methods
on full test sets. Overall, the results are similar
to the trends observed in Table 2. As shown in
Table 5, we can observe that our proposed model
SKFRL outperforms other comparison models on
all datasets. Specifically, SKFRL improves the pre-
vious best result from 73.22, 71.47, 59.36, 57.76

Model EURLEX Inverted
EURLEX

Book
Summary

Paired
Summary

Bert 73.09 70.53 58.18 52.24
Bert+TextRank 72.87 71.30 58.94 55.99
Bert+Random 73.22 71.47 59.36 56.58
Longformer 54.53 56.47 56.53 57.76

ToBERT 67.57 67.31 58.16 57.08
CogLTX 70.13 70.80 58.27 55.91

ChunkBERT 70.92 69.49 54.08 56.42
SKFRL 73.36 72.75 59.77 61.71

Table 5: Experimental results on the full test set. The
highest score in each column is bolded, while the
second-highest score is underlined.

to 73.36 (+0.14), 72.75 (+1.28), 59.77 (+0.41),
61.71 (+3.95). These simple modes such as Bert,
Bert+TextRank, and Bert+Random show compet-
itive performance, outperforming the majority of
popular models(i.e., CogLTX, and ChunkBERT).
In addition, only Longformer and ToBERT achieve
a good result on Paired Summary. The results indi-
cate that existing models’ performance on MLTC
exactly still are limited by long text.
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