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Abstract

Existing auto-regressive large language mod-
els (LLMs) are primarily trained using docu-
ments from general domains. In the biomedical
domain, continual pre-training is a prevalent
method for domain adaptation to inject pro-
fessional knowledge into powerful LLMs that
have been pre-trained in general domains. Pre-
vious studies typically conduct standard pre-
training by randomly packing multiple docu-
ments into a long pre-training sequence. Re-
cently, some existing works suggest that en-
hancing the relatedness of documents within
the same pre-training sequence may be advanta-
geous. However, these studies primarily focus
on general domains, which cannot be readily
applied in the biomedical domain where the
distinction of fine-grained topics is harder. Is
it possible to further improve the pre-training
for biomedical language models (LMs) using
exactly the same corpus? In this paper, we
explore an improved approach to continual pre-
training, which is a prevalent method for do-
main adaptation, by utilizing information from
the citation network in this challenging sce-
nario. Empirical studies demonstrate that our
proposed LinkLM data improves both the intra-
sample and inter-sample referring abilities of
auto-regressive LMs in the biomedical domain,
encouraging more profound consideration of
task-specific pre-training sequence design for
continual pre-training.1

1 Introduction

Pre-trained language models (PLMs) benefit from
large-scale, readily accessible, unsupervised texts.
Particularly in the biomedical domain, numerous
studies conducted pre-training on academic pa-
pers and abstracts to enhance representations and
professional knowledge (Gu et al., 2021; Beltagy
et al., 2019; Bolton et al., 2024). Most of them

1Our codes are publicly available in https://github.
com/Coldog2333/BioLinkLM.

# PubMedQA
Abstract: 
To examine patterns of knowledge and attitudes among 
adults aged>65 years unvaccinated for influenza. […]
Question: 
Do patterns of knowledge and attitudes exist among 
unvaccinated seniors?
Answer: yes

# MedMCQA
Question: 
In a 6-month-old child, thick curd like white patch 
appears on the buccal mucosa. On rubbing it leaves an 
erythematous patch. Most likely diagnosis is: 
A. Tuberculosis
B. Lichen planus
C. Lupus erythematous
D. Candidiasis
Answer: Candidiasis

Figure 1: Examples of PubMedQA and MedMCQA
datasets. PubMedQA requires intra-sample referring
ability, whereas MedMCQA mainly measures acquired
knowledge from the LM itself or needs to refer to few-
shot examples (inter-sample referring).

are encoder-based language models (Ho et al.,
2024). With the development of auto-regressive
language models (LMs), numerous studies have
demonstrated their superior generalization ability
and performance compared to encoder-based PLMs
when the models are sufficiently large (Brown et al.,
2020; Ouyang et al., 2022; Taylor et al., 2022).
They can not only understand instructions or back-
ground information provided in the context, which
can be considered as the intra-sample referring
ability (as shown in Figure 1), but also adapt to
new tasks by referring several provided demonstra-
tions, which can be regarded as the inter-sample
referring ability. Moreover, with the advent of
remarkable open-sourced large language models
(LLMs), such as the Llama family (Touvron et al.,
2023a,b), researchers turn to explore the possibil-
ity of conducting continual pre-training to develop
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LLMs tailored for specific-domains (Chen et al.,
2023; Huang et al., 2023; Wu et al., 2024).

Several pre-training methods have been pro-
posed for encoder-based models, including masked
language modeling, next sentence prediction (De-
vlin et al., 2019), document relation prediction (Ya-
sunaga et al., 2022), translation language modeling
(CONNEAU and Lample, 2019). These methods
have effectively helped in learning specific knowl-
edge and significantly promoted the development
of encoder-based LMs. However, to the best of
our knowledge, most auto-regressive LMs adhere
to a conventional method for preparing input se-
quences for pre-training or continual pre-training,
which involves first shuffling the corpora, followed
by the random packing (concatenation) of docu-
ments until the concatenated sequence reaches the
prescribed maximum input length (Radford et al.,
2019; Brown et al., 2020; Touvron et al., 2023a;
Chen et al., 2023).

Recently, some studies demonstrate that the stan-
dard pre-training method for auto-regressive LMs
can be further improved by designing appropriate
pre-training sequences (Levine et al., 2021; Gu
et al., 2023; Shi et al., 2023; Zhao et al., 2024),
such as incorporating relevant texts into the pre-
ceding context. LinkBERT (Yasunaga et al., 2022)
constructs three types of segment pairs based on
a citation network to classify whether they are
continuous, linked, or random, motivating mod-
els to capture the citing relationship between two
text segments. Considering its success, we con-
sider whether this methodology can be extended
to auto-regressive LMs, helping them learn to cap-
ture relationships between multiple text segments
and improving their referring ability. Therefore,
in this paper, we explore the linking information
from the citation network to construct sequences
for training an auto-regressive LM, which we call it
as LinkLM. Specifically, we design the pre-training
sequences by organizing the documents based on
their citing relationships. When optimizing the
language modeling objective, auto-regressive LMs
can learn to refer to possible information from the
previous context. As illustrated in Figure 2, when
predicting the tokens in the abstract D1

1 (<PMID
37893869>), models can access information from
its citing papers, learning from the findings about
other detection tools (e.g., ENFEN Battery in D1

2)
and different aspects (e.g., neurobiology in D2

2).
Furthermore, by referring D1

2, D1
3, and D1

4, we can
understand Attention Deficit Hyperactivity Disor-

der (ADHD) with a series of related works along
the science history. Therefore, training with Lin-
kLM data encourages LMs to refer to necessary
information from the previous context, and there-
fore enhances models’ referring ability, which can
be used in tasks such as open-book question an-
swering (Mihaylov et al., 2018; Jin et al., 2019)
and the In-Context Learning (ICL) setting (Dong
et al., 2022).

Though the success of constructing appropriate
pre-training sequences has been revealed by some
previous works (Gu et al., 2023; Shi et al., 2023;
Zhao et al., 2024), they primarily focus on gen-
eral domains where the distinction of topics is less
challenging than that in the biomedical domain.
Additionally, they only trained their models from
scratch. However, after pre-training with large-
scale, randomly concatenated documents, LMs
may tend to avoid breaking document boundaries
(i.e., [EOS] token) to refer to adjacent concate-
nated documents. Whether the conclusion still
holds under the continual pre-training scenario is
not clear. Since continual pre-training is a preva-
lent practice for developing biomedical LLMs, we
focus on this setting in our experiments.

In summary, our contributions are threefold:

• We propose a novel algorithm for pre-training
sequence design exploiting citation informa-
tion from a citation network to improve refer-
ring ability for biomedical language models.

• Our empirical studies fill the gaps in previ-
ous research, demonstrating that construct-
ing appropriate pre-training sequences is also
promising under the continual pre-training
setting. And it improves both intra-sample
and inter-sample referring ability of auto-
regressive language models.

• Our experiments on one-shot evaluation
with retrieved demonstrations show that our
method can further boost performance in this
scenario, emphasizing the potential of design-
ing task-specific pre-training sequences.

2 Related Work

2.1 Domain Adaptation

Among domain-specific LMs, there are three
dominant architectures: encoder-only, encoder-
decoder, and decoder-only Transformer (Ho et al.,
2024). For encoder-only models, BioLinkBERT
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[Cognitive-behavioural guidance interventions in adolescents with attention deficit 
hyperactivity disorder] … In 50-70% of children diagnosed with the disorder …

!!": <PMID 25726815>

Emotion Regulation in Participants Diagnosed With Attention Deficit Hyperactivity 
Disorder, Before and After an Emotion Regulation Intervention … there was a 
significant decrease in scores associated with emotional regulation …

!#": <PMID 31178779>

Detection of Executive Performance Profiles Using the ENFEN Battery in Children
Diagnosed With Attention-Deficit Hyperactivity Disorder … 

!$": <PMID 33364993>

The Poten]al of Digital Screening Tools for Childhood ADHD in School 
Environments: A Preliminary Study … Electronic health (e-health) systems offer 
promising possibili]es to enhance the diagnos]c process for ADHD, par]cularly 
concerning the execu]ve func]ons (EFs) that play a direct role.

!"": <PMID 37893869>

Neurobiology of ADHD … There is evidence of a genetic basis for ADHD … 
reinforcement may play a central role in the symptoms of ADHD …

!$$: <PMID 19627998>

……

Input Order

Data Construction Order

(Anchor)

Figure 2: Example of LinkLM data construction. The detailed process is described in Algorithm 1. In this example,
the pre-training sequence contains a series of works discussing Attention Deficit Hyperactivity Disorder (ADHD).
Training with LinkLM data, models can not only learn to predict an anchor abstract by referring to its citing
references, but also benefit from the multi-hop references, which are not linked directly.

(Yasunaga et al., 2022) introduced a pre-training
objective, document relation prediction (DRP), to
identify whether a pair of segments is contiguous,
linked, or random. For encoder-decoder models,
BioT5 (Pei et al., 2023) constructed various tasks
by incorporating molecule and protein representa-
tions into pure texts, learning the relation between
biochemistry representations and their surround-
ing contexts. For decoder-only models, Galactica
(Taylor et al., 2022) and Meditron (Chen et al.,
2023) carefully processed input texts by inserting
the title of the cited paper when the input texts
contain citation annotations. This series of work
shows that careful design of pre-training input se-
quences can indeed improve LMs beyond the stan-
dard pre-training. However, most of them require
fine-grained annotations, which are expensive to
collect. Although BioLinkBERT exploited the ci-
tation network, it remains unclear whether it is
still available and how it can be applied to auto-
regressive LMs.

2.2 Pre-training Sequence Design
Recently, in the general domain, some researchers
have shown that even without fine-grained anno-
tations, we can still construct meaningful and use-
ful input sequences for pre-training. Levine et al.
(2021) proved that by pre-pending semantically re-
lated texts measured by RoBERTa (Liu et al., 2019)
sentence embeddings, sentence representations and
open-domain question-answering abilities of auto-
regressive LMs can be improved. Zhou et al. (2022)
constructed hyperlink-induced question-passage

pairs based on the hyperlink networks to enhance
dense passage retriever (DPR). Gu et al. (2023)
trained a task-specific classifier to identify the in-
trinsic tasks within the pre-training texts and clus-
tered those whose intrinsic tasks are the same into
the same context, improving the in-context learning
ability of LMs. Shi et al. (2023) retrieved similar
texts using Contriever (Izacard et al., 2022) and
concatenated them one by one to form long in-
put sequences. Zhao et al. (2024) showed that
packing documents from a single source could
be more effective than packing documents sam-
pled randomly from the entire pre-training cor-
pora. In the scientific domain, SPECTER (Cohan
et al., 2020) constructed contrastive pre-training
samples to enhance the document-level represen-
tations. However, it introduced extra classifiers
during pre-training and may not be applicable for
auto-regressive LMs.

In this paper, we explore a more challenging
case, where all documents discuss a similar topic.
Even the standard way can provide pre-training
sequences with relevant context (belonging to the
biomedical-related topics). Therefore, this leads
to a research question: Is it possible to further
improve the pre-training for biomedical language
models using exactly the same corpus?

Additionally, existing studies primarily explore
training models from scratch (Gu et al., 2023; Shi
et al., 2023; Zhao et al., 2024). However, it is
unclear whether this conclusion still holds in con-
tinual pre-training, which is a prevalent method
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in domain adaptation. Levine et al. (2021) inte-
grated similar texts selected via K-Nearest Neigh-
bor (KNN) into the context after several steps of
warming up, which could be considered as an at-
tempt at continual pre-training. However, the LMs
they used were relatively small, containing only
345M parameters. In this paper, we focus on this
continual pre-training setting to improve the refer-
ring ability of biomedical language models.

3 Preliminary Experiment

All references of a given paper can serve as back-
ground information, but their importance towards
the given paper is different. Therefore, it is neces-
sary to rank them based on their significance. A
natural solution is using retrievers. As one of our
preliminary experiments, we realize that retriev-
ers are not as reliable as we expect in identifying
the most appropriate reference for a given abstract.
Before using the retriever to select references that
provide sufficient background information for the
following anchor abstract, we should first under-
stand how well a retriever can find out the reference
that provides the most information for predicting
a given abstract. We know the information that a
reference provides can be measured by

I(ref ; anchor) = P (anchor)− P (anchor|ref)
(1)

where P (anchor) is the perplexity of an anchor
abstract, and P (anchor|ref) is the perplexity of
the anchor abstract when the reference is provided
in the context. For each reference, P (anchor) is
constant, so we can measure the information and
rank references directly by P (anchor|ref).

To the best of our knowledge, Meditron (Chen
et al., 2023) is currently the best open-sourced
biomedical LM because it is continually pre-trained
with biomedical texts on the top of the powerful
LLM, Llama-2 (Touvron et al., 2023b), so that it
can provide a relatively accurate measurement for
conditional perplexity. Therefore, we use Meditron-
7B to compute the ranking of references as the
ground truth. Subsequently, we use some popular
models including the Contriever2 to rank the refer-
ences of a given abstract. We selected 1,000 anchor
abstracts for this analysis. Results are summarized
in Table 1. Kendall’s Tau measures the correspon-
dence between two rankings, while HitN@Top5
represents the proportion that one of the top-N

2We use facebook/contriever-msmarco checkpoint (su-
pervised version) from Hugging Face.

predictions exists in top-5 references ranked by
Meditron-7B.

Model Params Kendall’s Tau Hit1@Top5 Hit3@Top5

GPT-2 0.1B 0.087 43.4% 69.0%
GPT-2 medium 0.3B 0.665 69.5% 88.5%
GPT-2 large 0.6B 0.664 70.3% 88.3%
BioMedLM 2.7B 0.590 66.0% 86.8%

Llama-2-7B 7B 0.882 89.7% 98.5%

Contriever 0.1B 0.098 48.6% 71.4%

Meditron-7B 7B 1.000 100% 100%

Table 1: Ranking performance of models. HitN@Top5
represents the proportion that one of the top-N predic-
tions exists in top-5 references ranked by Meditron-7B.

Considering Kendall’s Tau and HitN@Top5, we
realize that Contriever cannot accurately provide
the most appropriate reference for the given ab-
stract, despite its widespread usage in information
retrieval. Specifically, only 48.6% of the top-1
retrieved reference falls in the top-5 references
ranked by Meditron-7B. And the proportion of
the cases where at least one of the top-3 retrieved
references falls in the top-5 references ranked by
Meditron-7B is 71.4%. Compared to GPT-2 (Rad-
ford et al., 2019) which has a similar number of
parameters, Contriever does not show a superior
performance. However, we should point out that
the dense passage retriever (DPR) is more computa-
tionally efficient than auto-regressive LMs because
it decouples the encoding of a pair of texts. Nev-
ertheless, it is still a good choice in the field of
information retrieval. Therefore, as a trade-off, us-
ing DPR necessitates retrieving multiple references
simultaneously to ensure that the selected refer-
ences can provide sufficient information to predict
the following anchor abstract.

4 Methodology

In the scenario of pre-training biomedical LMs,
we usually collect abstracts or full papers as the
pre-training corpus. The key of our methodology
is to construct a long input sequence containing
relevant information in the context. Scientific re-
searchers typically cite pertinent papers to support
their conclusions and these citing papers are often
previous stages of their research. Based on this, we
construct the pre-training input sequence with the
help of the citation network, which is easy to obtain
in the biomedical domain. Algorithm 1 shows the
procedure of our methodology.

To develop biomedical LMs, we use one of the
most commonly used data sources, PubMed Ab-
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Algorithm 1 LinkLM Sequence Construction

Require: G = (D,L): Citation network
Require: R(d): Return the citing references
Require: Retriever

1: P ← [], Q← []
2: while |D| > 0 do
3: Randomly select di from D
4: Q.append(di)
5: D.remove(di)
6: whileR(di) ∩ D ≠ ∅ do
7: K ← Poisson(3)
8: D̄ ← TopK(R(di)∩D, Retriever,K)
9: dj ← argmaxd∈D̄ indegree(d)

10: Q.extend(D̄\dj)
11: Q.append(dj)
12: D.remove(D̄)
13: di ← dj
14: end while
15: P.append(Q[:: −1])
16: Q← []
17: end while
18: Shuffle P
19: return P : List of abstracts

stract3. After pre-processing the raw data, we ex-
tract both textual and citing information, forming
a citation network G. We begin with a randomly
selected abstract as the anchor (e.g., D1

1 in Fig-
ure 2). Unlike previous works (Shi et al., 2023;
Zhao et al., 2024), we select multiple relevant ref-
erences at the same time to increase the hit rate
of selected references. This approach addresses
the limitations of retrievers, which do not always
retrieve the most relevant reference from the given
candidates, as discussed in Section 3. To increase
the diversity of our LinkLM data, we randomly
sample the number of selected references, K, fol-
lowing a Poisson distribution. According to Table
1, setting λ = 3 allows a relatively high proportion
(71.4%) of cases where retrieved references can
provide enough information for the anchor abstract,
whereas when λ is larger, it will increase the risk
of introducing less relevant references in the con-
text. Therefore, we adopt a Poisson distribution
with an expected value of three. With the help of
a given retriever, we select the top-K relevant ref-
erences (e.g., D1

2, D2
2, and D3

2 in Figure 2) from
all references. To increase the possibility of con-
structing longer sequences, we select the reference

3https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/

with the largest in-degree among these K selected
references. Assuming that D1

2 has the largest in-
degree, we continue the construction with D1

2 until
none of the references have any citing papers (e.g.,
D1

4 in Figure 2 has no citing papers). The rest of
the relevant references are ordered randomly in the
queue Q. After the construction, we reverse the
constructed sequence so that the later documents
are supported by the earlier ones.

At the beginning of the data construction, we
easily obtain multi-hop long sequences. However,
since we delete nodes once they are visited to pre-
vent duplication of pre-training samples, the origi-
nal citation graph becomes sparse gradually. Many
sequences will be composed by a single document
at the end of the process. Therefore, after con-
structing all sequences, we perform sequence-wise
shuffling so that the sequences comprising a single
document will be distributed uniformly alongside
other longer sequences. In this way, each batch
contains linked long sequences, making full use of
the constructed LinkLM data.

5 Experiments

5.1 Datasets

In the continual pre-training stage, we download
the raw data from the PubMed 2024 Annual base-
line4 updated until December 14, 2023. We use
PubMed parser (Achakulvisut et al., 2020) to ex-
tract necessary information including the title, ab-
stract, and citations. We exclude isolated data
points that are not cited by any paper and their
citations are missing. We also exclude data points
without any title or abstract. After preprocessing,
we obtain approximately 25 million samples as the
source for pre-training.

For evaluation, we use four widely used biomed-
ical multi-choice question-answering (MCQA)
datasets, as listed below.

• MedMCQA (Pal et al., 2022) is a large-scale
MCQA dataset collected from the AIIMS &
NEET PG entrance exam, containing more
than 194k QA pairs. In the default evaluation
setting, LMs can only access the question and
four candidate options. Therefore, it is usu-
ally used to assess the biomedical knowledge
memorized by models. Since the testing set
does not provide the ground-truth answers, we
use its validation set for evaluation.

4https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/
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Train Evaluation #Choice #Token/Sample w/ ContextAver Max

MedMCQA 182,822 4,183 4 61.5 573 ✗
MMLU-Medical 45 1,871 4 124.1 1,192 ✗
USMLE-QA 10,178 1,273 4 251.8 1,152 ✗
PubMedQA 211,269 1,000 3 437.1 1,909 ✓

Table 2: Statistics of four biomedical MCQA datasets. Different from the other three MCQA datasets, an extra
abstract is provided for each question in the PubMedQA dataset.

• MMLU-medical is a subset derived from
MMLU (Hendrycks et al., 2020), containing
57 tasks across various fields. We select the
QA pairs if they belong to one of the following
topics: high school biology, college biology,
college medicine, professional medicine, med-
ical genetics, virology, clinical knowledge, nu-
trition, and anatomy. MMLU-medical is also
a four-choice MCQA task and it is mainly de-
signed to measure knowledge acquired during
pre-training. We adhere to the official setting
using development set for few-shot learning.

• USMLE-QA (Zhang et al., 2018) is an
MCQA task based on United States Medi-
cal License Exams (USMLE), which requires
a certain piece of knowledge or an answer
based on a patient’s condition description. We
use the English four-choice version subset for
evaluation.

• PubMedQA (Jin et al., 2019) is a three-choice
MCQA task (yes/no/maybe). For each ques-
tion, a related abstract from PubMed is pro-
vided, making it suitable for evaluating the
intra-sample referring ability of LMs.

Table 2 summarizes their statistics. We compute
the probability of generating each option and se-
lect the one with the lowest perplexity as the final
prediction. We report model accuracy and calcu-
late micro-average accuracy since different datasets
have different numbers of testing samples.

5.2 Experimental Settings
Due to the limitation of our computation resources,
we chose TinyLlama-1.1B5 as our experimental
subject, which was pre-trained sufficiently using
3T tokens (Zhang et al., 2024). After tokenization,
we obtained approximately 8B tokens for contin-
ual pre-training. We followed most of the original

5We used TinyLlama/TinyLlama-1.
1B-intermediate-step-1431k-3T checkpoint from
Hugging Face.

hyperparameters of pre-training TinyLlama with a
context length of 2048 tokens. Further details are
provided in Appendix C.1. In the following com-
parisons, ‘Vanilla’ denotes the original TinyLlama.
‘Standard’ and ‘LinkLM’ represent the continually
pre-trained TinyLlama with randomly packed doc-
uments and LinkLM data, respectively.

5.3 Intra-Sample Referring Ability

As discussed in Section 5.1, among these four med-
ical MCQA tasks, PubMedQA requires LMs to
answer questions by referring to the given related
abstract. Therefore, we perform a zero-shot evalu-
ation on PubMedQA to evaluate the intra-sample
referring ability of LMs. We observe fluctuations
across different checkpoints. To better visualize
their differences, we smooth the average accuracy
with windows of size three. Figure 3 illustrates
the zero-shot performance on PubMedQA. We find
that after training approximately 3B tokens, the
LM pre-trained with LinkLM data consistently and
significantly outperforms standard pre-training, in-
dicating the effectiveness of our proposed method.
Additionally, Table 3 shows the quantitative per-
formances of four biomedical MCQA datasets.
Compared to the vanilla TinyLlama, continual
pre-training enriches the biomedical knowledge
of LMs, leading to a 10.3% relative improvement
(from 29.59 to 32.63) from vanilla TinyLlama to
continual pre-trained TinyLlama. However, with
our designed LinkLM data, though it can also
achieve a 9.4% relative improvement compared
to the vanilla TinyLlama, performances on some
datasets (e.g., MedMCQA, MMLU-Medical, etc.)
slightly drop compared to standard pre-training.
This observation indicates that while using Lin-
kLM data encourages LMs to refer to previous
contexts, it may also weaken memorization during
pre-training.

5.4 Inter-sample Referring Ability

Auto-regressive biomedical LMs are usually em-
ployed under the in-context learning scenario,
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Accuracy (%) MedMCQA MMLU-Medical USMLE-QA PubMedQA Average (Micro)

Vanilla (0 shot) 25.34 24.91 26.47 60.10 29.59
Standard (0 shot) 29.55 25.98 28.83 62.80 32.63
LinkLM (0 shot) 28.97 25.44 27.26 66.00 32.36

Vanilla (3 shot, Random) 22.96±0.52 26.03±0.32 25.56±0.37 64.80±1.40 29.05
Standard (3 shot, Random) 25.78±0.61 26.53±0.94 26.34±1.20 63.73±0.53 30.59
LinkLM (3 shot, Random) 27.13±0.28 25.24±1.26 27.36±0.84 65.67±0.87 31.37

Vanilla (1 shot, KNN) 30.10 26.94 26.55 62.30 32.69
Standard (1 shot, KNN) 36.96 25.98 30.32 64.20 36.75
LinkLM (1 shot, KNN) 38.47 25.01 30.48 64.10 37.30

Table 3: Quantitative performances of the vanilla TinyLlama and final checkpoints that are continually pre-trained
in the standard way or with our LinkLM data on four biomedical MCQA datasets. The best and second-best
performances are highlighted in bold and underlined, respectively. For standard few-shot evaluation, we run multiple
times with three different random seeds to reduce the variant of the results.
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Figure 3: Comparison between different pre-training
strategies on PubMedQA (Smoothing window size=3).
The full and dotted lines represent the exact and
smoothed values of performances, respectively. The
colored area represents the standard deviation within a
smoothing window.

learning from the input-label mapping in previous
demonstrations, which can be considered as the
inter-sample referring ability. Therefore, we per-
form a few-shot evaluation on these four datasets,
specifically conducting a three-shot evaluation.
Figure 4a illustrates that pre-training with Lin-
kLM data significantly outperforms the standard
pre-training under few-shot evaluation. Remark-
ably, 90.48% of the checkpoints have better aver-
age accuracy across the four datasets than stan-
dard pre-training, which confirms again the ef-
fectiveness of LinkLM data under continual pre-
training. However, compared to zero-shot perfor-
mance, TinyLlama-1.1B does not consistently ben-
efit from the provided demonstrations in standard
few-shot settings, as evidenced by its performance

on MedMCQA and USMLE-QA. The average per-
formances even drop slightly for TinyLlama pre-
trained in the standard way (about 6.3% relative
degradation) and TinyLlama pre-trained with Lin-
kLM data (about 3.1% relative degradation). We
hypothesize that it is due to the quality of randomly
sampled demonstrations that fail to provide useful
information and may even disrupt LM predictions.

Inspired by KATE (Liu et al., 2022), which re-
trieves similar demonstrations to boost few-shot
performance, we use Contriever to retrieve the
top-K similar demonstrations from each training
set. Contrary to the findings reported in Min et al.
(2022), our results suggest that it is possible to
retrieve helpful demonstrations from the training
set, whose input-label mapping can benefit the pre-
diction of the query. We perform a one-shot eval-
uation here since adding more retrieved demon-
strations does not improve the performance in our
case. Figure 4b shows the comparison between our
method and standard pre-training. Under this exper-
imental setting, we observe obvious improvements
over standard few-shot evaluation, highlighting the
importance of high-quality demonstrations in the
ICL scenario. Although the LM trained with Lin-
kLM data only slightly outperforms standard pre-
training at the end of continual pre-training, there
are 71.43% of checkpoints that have better aver-
age accuracy across four datasets than the standard
pre-training. After pre-training for several steps,
the LM pre-trained with LinkLM data can achieve
good performance under this setting, indicating that
LinkLM data can activate their potential on inter-
sample referring ability when the demonstrations
are closely related to the following query.

Table 3 demonstrates that using retrieved demon-
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Figure 4: Comparison between different pre-training strategies under few-shot evaluation. The full and dotted lines
represent the exact and smoothed values of performances, respectively. The colored area represents the standard
deviation within a smoothing window.

strations instead of using randomly sampled ones
as in standard ICL can significantly boost few-shot
performance. With appropriate demonstrations,
LMs perform significantly better than those un-
der the zero-shot setting. Compared to zero-shot
performance, LMs continually pre-trained in the
standard way and with our designed LinkLM data
achieve 12.4% and 15.3% of relative improvement,
respectively. We believe the reason is that in the
standard ICL setting, the sampled demonstrations
may not be strongly related to the current question,
so they can only provide shallow information like
task format (Min et al., 2022). Sometimes, they
even distract the LMs. However, when using re-
trieved demonstrations, current questions can not
only understand the task format but also learn from
the input-label mapping and knowledge shown in
the demonstrations. LMs trained with LinkLM data
can further improve inter-sample referring ability
during the continual pre-training stage, thus achiev-
ing larger improvement in few-shot evaluation.

Especially, on MedMCQA, LM trained with Lin-
kLM data significantly outperforms LM trained
in a standard way, no matter whether the demon-
strations are randomly sampled or retrieved. By
conducting a case study on MedMCQA, shown
in Figure 5, we find that retrieved demonstrations
from the training set are highly related to the follow-
ing question and usually provide pertinent knowl-
edge. Since TinyLlama pre-trained with LinkLM
data can memorize knowledge and learn to refer to

necessary information across different documents
meanwhile during continual pre-training, it is also
encouraged to refer to some information from previ-
ous contexts in downstream tasks after pre-training.
There is an exception on MMLU-medical, where
we find no significant improvement even when few-
shot demonstrations are given. We attribute it to the
insufficient number of candidate demonstrations
since there are only 45 samples in the training set6

as shown in Table 2, so that the randomly sampled
or retrieved demonstrations could be less relevant
to the testing sample, leading to no remarkable
improvement over zero-shot evaluation.

One-shot example (with retrieved demonstration) for MedMCQA
Question: A 60 year old male presents with a creamy curd 
like white patch on the tongue. The probable diagnosis is -
A. Candidiasis
B. Histoplasmosis
C. Lichen planus
D. Aspergillosis
Answer: Candidiasis

Question: In a 6-month-old child, thick curd like white 
patch appears on the buccal mucosa. On rubbing it leaves an 
erythematous patch. Most likely diagnosis is:
A. Tuberculosis
B. Lichen planus
C. Lupus erythematous
D. Candidiasis
Answer:

Prediction: Candidiasis

Figure 5: Example of one-shot ICL with the retrieved
demonstration on the MedMCQA dataset

Note that in domain adaptation, we usually use

6More precisely, the ‘training set’ is the validation set of
MMLU according to the official setting of the original paper.
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documents in a single focused domain, and there-
fore even the standard approach concatenates doc-
uments with similar topics within the context, help-
ing LMs to refer to necessary information across
document boundaries (i.e., [EOS] token). In our
method, we explicitly arrange the related refer-
ences in the context, improving the inter-sample
referring ability further. From another aspect, our
pre-training method narrows the gap between pre-
training phases and ICL with retrieved demonstra-
tions. Therefore, we can expect that the inter-
sample referring ability will be improved further
and more robust if we construct more LinkLM data
for further training.

6 Conclusions

In this paper, we propose a pre-training sequence
construction method for improving the referring
ability of biomedical language models. Previous
studies mostly focus on general domains and they
train the LMs from scratch with designed pre-
training sequences. In contrast, we explore this
topic in a more challenging scenario, where the
distinction of fine-grained topics is more difficult
in the biomedical domain. Moreover, we explore it
under the continual pre-training setting, since it is
a prevalent method for developing domain-specific
LMs now, filling the gap in this series of work. In
this paper, we construct pre-training sequences by
concatenating relevant references into the previous
context using linking information from a citation
network. Empirical studies show that compared to
the standard pre-training (i.e., randomly packing
documents), our method significantly improves the
intra-sample referring ability and the inter-sample
referring ability on biomedical MCQA tasks, which
answers our research question: by carefully design-
ing pre-training sequences, we can still improve the
pre-training for biomedical language models by re-
ordering the pre-training documents (using exactly
the same corpus). Especially, pre-training using
LinkLM data can further improve the performance
when using retrieved demonstrations, revealing the
future potential of our proposed methodology.

Limitations

Owing to limited computation resources, we only
conducted experiments on a language model with
1.1B parameters (TinyLlama-1.1B) using up to 8B
tokens, which may not be sufficient for biomedical
LLM applications. Experiments on larger models

with larger amounts of biomedical pre-training data
are needed in the future. However, according to
the current trend shown in our experiments, after
training with more LinkLM data, the improvement
compared to the standard pre-training would be
larger.

Another limitation is that our methodology re-
quires a citation network, restricting its applicabil-
ity to other scientific domains where it is not easy
to build the citation network. To address this, we
believe that training a classifier for link prediction
may be a possible solution. Besides, in other do-
mains, the citation network can also be replaced by
hyperlink networks or paragraph structures of long
documents. However, due to the constraints of this
paper’s length, we will not explore this direction in
depth.

Besides, full papers from PubMed Central7 are
also commonly used for pre-training biomedical
LMs. However, most of the full papers exceed the
maximum input length of existing foundation LMs.
Although these full papers are also linked to the
citation network, how to construct LinkLM data for
them remains a challenge. Future efforts will con-
sider separating full papers into several paragraphs
and constructing better pre-training sequences to
improve the referring ability of biomedical LLMs.

Ethics Statement

Though using LinkLM data can improve the refer-
ring ability for biomedical language models, par-
ticularly in retrieval-augmented tasks (e.g., Pub-
MedQA) and in-context learning scenarios, some
potential issues for biomedical LMs may also ap-
ply to our case, such as generating inappropriate
clinical suggestions accompanied by hallucinations.
We strongly recommend conducting a thorough as-
sessment and careful alignment (e.g., employing
RLHF (Ouyang et al., 2022)) before deployment to
the real world.

The involved pre-trained language model, TinyL-
lama, is licensed under Apache License 2.08. We
adhere strictly to this license during our experi-
ments. Regarding the involved dataset, PubMed
Abstract, we collected the raw data following in-
structions on the official website9, ensuring not to
violate their terms.

7https://www.ncbi.nlm.nih.gov/pmc
8http://www.apache.org/licenses/LICENSE-2.0
9https://pubmed.ncbi.nlm.nih.gov/download/
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A Perplexity Evaluation

In addition to evaluating on downstream tasks, we
also tracked the loss on the evaluation set. We
sampled 10,000 abstracts from the excluded iso-
lated data points to serve as the evaluation set for
perplexity evaluation. As shown in Table 4, no

significant difference was observed between the
standard pre-training and pre-training with our Lin-
kLM data, which is consistent with the findings
of Liu et al. (2023) stating that LMs with simi-
lar pre-training losses may perform differently on
downstream tasks.

Strategy Eval Loss Eval PPL

Standard 1.871 6.49
LinkLM 1.874 6.51

Table 4: Loss and perplexity on evaluation set.

B Evaluation in Other Tasks

In addition to evaluating our method on question-
answering tasks, we also conducted evaluation in
other tasks, including clinical natural language in-
ference (NLI) and clinical fact verification tasks
to further verify the effectiveness of our method.
These two tasks require models to understand the
relationship between two given sentences or doc-
uments so that they can be used to evaluate the
referring ability of LMs. We used the mediqa-RQE
dataset (Ben Abacha et al., 2019) as a representa-
tive dataset in NLI task, and the HealthVer dataset
(Sarrouti et al., 2021) as a representative dataset in
clinical fact verification task. Table 5 shows that
no matter under zero-shot or few-shot settings, the
LM continually pre-trained with our LinkLM data
can perform better than that continually pre-trained
in a standard way. Therefore, we can also conclude
again the effectiveness of our proposed LinkLM
method.

Accuracy (%) mediqa-RQE HealthVer

Standard (0 shot) 47.39 39.42
LinkLM (0 shot) 49.13 41.20

Standard (3 shot, Random) 51.45 35.03
LinkLM (3 shot, Random) 52.75 35.51

Table 5: Quantitative performances of the final check-
points that are continually pre-trained in the standard
way or with our LinkLM data on the mediqa-RQE and
HealthVer datasets. The best performances are high-
lighted in bold. For standard few-shot evaluation, we
run multiple times with three different random seeds to
reduce the variant of the results.
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C Experimental Details

C.1 Implementation Details
We chose TinyLlama-1.1B10 as our experimental
subject, which had been pre-trained sufficiently
using 3T tokens (Zhang et al., 2024). After tok-
enization, we obtain approximately 8B tokens for
continual pre-training. We follow most of the orig-
inal hyperparameters for pre-training TinyLlama,
using a context length of 2048 tokens. The global
batch size we use is 0.5M tokens. According to
the conclusions from Goyal et al. (2017), we use a
smaller learning rate of 1e-4.

We used PyTorch (Paszke et al., 2019) and trans-
formers library (Wolf et al., 2020) for implemen-
tation. Pre-trained checkpoints were downloaded
from Hugging Face11. We also adopted Deepspeed
Zero3 (Rajbhandari et al., 2020), flash-attention
(Dao et al., 2022; Dao, 2024), and checkpointing
techniques to speed up training. All experiments
were conducted on 8 NVIDIA A100 (40GB) GPUs.
Continual pre-training TinyLlama-1.1B with ap-
proximately 8B tokens cost approximately 24 hours
on these 8 NVIDIA A100 GPUs.

C.2 Prompt Engineering
In our zero-shot and few-shot evaluation, we used
the prompts following Gao et al. (2023) to com-
plete the multi-choice question-answering tasks as
shown in Table 6. And Table 7 shows an exam-
ple for MedMCQA under the few-shot evaluation
(#Shot=3). With the help of a retriever, we can
retrieve relevant demonstrations from the training
set to assist the prediction of the following queries,
as shown in Figure 5, where we also find that the
retrieved demonstrations actually provide not only
the task format but also relevant knowledge, and
therefore benefits the in-context learning.

10We used TinyLlama/TinyLlama-1.
1B-intermediate-step-1431k-3T checkpoint from
Hugging Face.

11https://huggingface.co/models
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Prompt template for MedMCQA, USMLE-QA, and MMLU-Medical

Question: {question}
A. {option_a}
B. {option_b}
C. {option_c}
D. {option_d}
Answer:

Prompt template for PubMedQA

Abstract: {context}
Question: {question}
Answer:

Table 6: Prompt templates for MCQA tasks.

Three-shot example for MedMCQA

Question: Claw sign on x-ray is seen in?
A. Ischemic colitis
B. Intussusception
C. Sigmoid volvulus
D. Crohn’s disease
Answer: Intussusception

Question: All of the following are microsomal enzyme inhibitors except
A. Glucocoicoids
B. Cimetidine
C. Ciprofloxacin
D. INH
Answer: Glucocoicoids

Question: A young female presents with a history of dyspnoea on exertion. On
examination, she has wide, fixed split S2 with ejection systolic murmur (III/VI)
in left second intercostal space. Her ECG shows left axis deviation. The most
probable diagnosis is –
A. Total anomalous pulmonary venous drainge.
B. Tricuspid atresia.
C. Ostium primum atrial septal defect.
D. Ventricular septal defect with pulmonary arterial hypertension.
Answer: Ostium primum atrial septal defect.

Question: Which of the following is not true for myelinated nerve fibers:
A. Impulse through myelinated fibers is slower than non-myelinated fibers
B. Membrane currents are generated at nodes of Ranvier
C. Saltatory conduction of impulses is seen
D. Local anesthesia is effective only when the nerve is not covered by myelin
sheath
Answer:

Table 7: An example of three-shot in-context learning for MedMCQA.
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