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Abstract

Data contamination in model evaluation has be-
come increasingly prevalent with the growing
popularity of large language models. It allows
models to "cheat" via memorisation instead of
displaying true capabilities. Therefore, con-
tamination analysis has become a crucial part
of reliable model evaluation to validate results.
However, existing contamination analysis is
usually conducted internally by large language
model developers and often lacks transparency
and completeness. This paper introduces an
efficient and affordable method to identify po-
tential data contamination in LLM benchmarks.
We also present an extensive data contamina-
tion report for over 15 popular large language
models across six widely used multiple-choice
QA benchmarks. Our experiments reveal vary-
ing contamination levels ranging from 1% to
45% across benchmarks, with the contamina-
tion degree increasing rapidly over time. Per-
formance analysis of large language models
indicates that data contamination can have sig-
nificant impact on model metrics: inflated ac-
curacy of up to 14% and 7% are observed on
contaminated C-Eval and HellaSwag bench-
marks, and a small increase is identified on
contaminated MMLU. We also find that data
contamination has grown rapidly from 2020 to
2023 and that larger models benefit more from
contaminated test sets.

1 Introduction

Recent years have seen remarkable progress in
large language models (LLMs) pre-trained on mas-
sive text corpora scraped from the web. However,
many widely used evaluation benchmarks are also
constructed from similar web sources, leading to a
concerning issue of data contamination where ex-
amples from test sets are unintentionally included
in training data. Contamination enables models to
"cheat" via memorisation of test data rather than
displaying true generalisation (Marie, 2023), which
creates an illusion of progress, distorts model com-

parisons, and undermines the utility of benchmarks
(Jacovi et al., 2023; Sainz et al., 2023).

Contamination analysis therefore becomes a cru-
cial part of reliable LLM evaluation to validate the
results. However, as the training data of LLMs
is often not openly accessible, existing contami-
nation analysis is mostly conducted internally by
LLM developers and thus often lacks transparency
and completeness. For instance, OpenAI’s con-
tamination study for GPT-4 (OpenAI, 2023) only
covered the pre-training data and omitted later fine-
tuning stages. Llama 2 (Touvron et al., 2023b)
only reported contamination statistics for two of
the 20+ benchmarks used in their evaluation. In
addition, the implementation details of their con-
tamination identification remain unclear. Overall,
existing internal contamination studies tend to lack
sufficient transparency, with minimal sharing of
contamination measurements across all evaluation
benchmarks, as well as training data details and
code to reproduce the results. This prevents the
wider research community from fully auditing the
credibility of reported metrics and model capabili-
ties.

This paper introduce a practically applicable
pipeline that enables the community to identify po-
tential data contamination from their benchmarks.
Specifically, our method uses search engines and
Common Crawl as a proxy for contamination iden-
tification, i.e, if a test example is found verbatim in
search engine and Common Crawl, we consider it
a "contaminated" sample. This is based on the ob-
servation that modern LLMs’ pre-training data rely
heavily on online resources and Common Crawl
(Touvron et al., 2023a). Our method provides a
practical and affordable solution for contamination
detection that avoids the need for LLMs’ training
data (inaccessible in most cases) and avoids the
expensive local indexing of huge corpora that often
requires multi-petabyte storage (details in §4).

With this method, we present an open contam-
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ination analysis for over 15 popular large lan-
guage models on six common multiple-choice NLP
benchmarks, to provide comprehensive measure-
ments of benchmark contamination and its im-
pact on model evaluation. The analysis includes
a range of foundation models such as LLaMA
(Touvron et al., 2023a), Llama-2, Yi (Yi, 2023),
Mistral (Jiang et al., 2023), Baichuan (Yang et al.,
2023), and Qwen (Bai et al., 2023) across multiple
model sizes (7B, 13B, 30B, 34B, 65B, 70B pa-
rameters) as well as instruct-tuned models built on
these foundations like Llama-2 Chat and Mistral-
Instruct. Six widely used multi-choice benchmarks
are assessed: Winogrande (Sakaguchi et al., 2021),
AI2_ARC (Clark et al., 2018), CommonsenseQA
(Talmor et al., 2018), HellaSwag (Zellers et al.,
2019), MMLU (Hendrycks et al., 2021a), and C-
Eval (Huang et al., 2023).

Our analysis reveals the following key findings:
1) we detect varying levels of data contamination
across benchmarks, with 1% to 45.8% of examples
showing verbatim overlap with Common Crawl;
2) by comparing the contamination degree between
Common Crawl Dec 2020 to Oct 2023, we find data
contamination grows rapidly through time; 3) data
contamination can significantly inflate model per-
formance: accuracy increases of 14% and 7% were
found on C-Eval and HellaSwag, and a slight in-
crease was found on MMLU; 4) we find larger
models tend to benefit more from data contami-
nation than smaller models, perhaps due to their
more powerful memorisation capacities; 5) finally,
we show our results align well with Llama’s orig-
inal contamination reports, demonstrating the ef-
fectiveness of our method. Our data and code can
be found in https://github.com/liyucheng09/
Contamination_Detector.

2 Data Contamination

What is data contamination? Data contamina-
tion refers to the phenomenon that examples from
the test set are also found in the training data. This
might lead to the evaluation failing to accurately
reflect models’ capabilities, as models can cheat
by memorising instead of learning to generalise.
There are two primary types of data contamina-
tion (Dodge et al., 2021): input-only contamination
refers to cases where only the input appearing in
the pretraining corpus, and input-and-label contam-
ination occurs when both inputs and their labels are
present. The latter is generally more problematic,

as models can directly memorise input-output pairs.
But the first may still cause issues as models may
learn from the context.

How common is data contamination? Data con-
tamination appears to be quite widespread across
commonly used NLP benchmark datasets based on
findings from recent studies. Dodge et al. (2021)
and Elazar et al. (2023) audited well-known big
language corpora such as C4, The Pile, and RedPa-
jama, revealing contamination rates ranging from
0% to over 50% on GLUE and SuperGLUE bench-
marks. The GPT-3 study (Brown et al., 2020)
found over 90% of examples in Quac, SQuADv2,
and DROP were flagged as contaminated. FLAN
(Wei et al., 2021) evaluations identified 7 out of 26
datasets exhibiting a serious contamination ratio
of 50% and over. Llama-2 (Touvron et al., 2023a)
reported over 16% of MMLU examples are contam-
inated and about 11% are seriously contaminated
(more than 80% token leakage). GPT-4 (OpenAI,
2023) uses academic exams and NLP benchmarks
for model evaluation. While 4 out of 34 exams
were found to have zero contamination (e.g., Leet-
code and Bar Exam), 9 out of 34 showed over 20%
of instances marked as dirty examples. Sainz et al.
(2024) provide a comprehensive collection of evi-
dence of data contamination in NLP datasets and
models, where data contamination is found in hun-
dreds of widely-used datasets, popular pre-training
corpora, and state-of-the-art LLMs.

How to identify data contamination? Dodge
et al. (2021) take a straightforward approach to de-
tect exact matches between test set examples and
the pretraining data after normalising for capitali-
sation and punctuation. Exact match here means
the entire input of an evaluation text is found in
the training data. The GPT-3 paper (Brown et al.,
2020) uses n-gram overlap to identify contami-
nation, treating any examples with 13-gram co-
occurrence in both test sets and training data as
dirty examples. Llama-2 matches on verbalised
and tokenized input to allow a token-level approach
to identify contamination. It also involves a "skip-
gram budget" to allow slight variants in overlap-
ping. Overall, existing approaches usually use
substring matching between evaluation examples
and training data to identify data contamination.
However, if we have no access to the training data,
which is often the case for most recent closed mod-
els, it is extremely difficult to reveal contamina-
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tion by observing models themselves. Pioneering
studies propose to identify data contamination by
measuring perplexity of test examples (Li, 2023),
asking models to reconstruct test examples verba-
tim (Golchin and Surdeanu, 2023), or examining
models’ preference on test sample ordering (Oren
et al., 2023). In this paper, we use Common Crawl
as a proxy for the training data of LLMs, as it often
constitutes a significant part of it, thereby avoiding
the need to access the full training dataset.

To what extent does data contamination affect
model evaluation? While contaminated data can
potentially inflate scores, models do not necessarily
perform worse on clean subsets or better on dirty
subsets across all datasets. The degree of impact
likely depends on many factors like the dataset
characteristics, model scale, and nature of the pre-
training data. For instance, GPT-3 (Brown et al.,
2020) showed a marginal 1-2% performance drop
on clean subsets for PIQA and ReCoRD, compared
to a significant 6% drop on clean set of SQuAD
as 94% of its test examples were contaminated.
Roberts et al. (2023) found a significant association
between a code problem’s presence on GitHub and
GPT-4’s pass rate for that problem. But on other
academic tests, GPT-4 showed little performance
difference on the clean and contaminated test sets
(OpenAI, 2023). Touvron et al. (2023b) reported a
15.3 point and a 9.8 point gap from Llama-2 70B
by comparing the its performance on the clean and
dirty sets of HellaSwag and MMLU-Humanities.

Mitigating Data Contamination. There exist
many efforts to address the issue of data contamina-
tion in the evaluation of LLMs. One recent promis-
ing attempt is to collect the most up-to-date data
from the Internet1 and dynamically update existing
benchmarks or build novel benchmarks automati-
cally with this latest information, e.g., recent news,
academic papers, etc (Li et al., 2024b; White et al.,
2024; Zhu et al., 2023). By leveraging the most
recent information to construct the test set, it not
only addresses data contamination, but also avoids
potential cheating methods on leaderboards, such
as training-on-test-set. In addition, recent stud-
ies were proposed to assess LLMs without relying
on any specific benchmarks by pair-wise model
comparison using crowd-sourcing platforms, e.g.,
ChatArena2, or evaluating LLMs with data com-

1https://huggingface.co/RealTimeData
2https://lmarena.ai/

pression (Li et al., 2024c).

3 Benchmarks for Language Models

Clean and robust benchmarks are important to
guide further progress of various models in NLP.
Popular benchmarks used to evaluate large lan-
guage models include:

Comprehensive: MMLU, Big Bench
(Srivastava and et al., 2023), AGI Eval
(Zhong et al., 2023), C-Eval

Commonsense reasoning: PIQA (Bisk
et al., 2019), SIQA (Sap et al., 2019),
HellaSwag, WinoGrande, ARC, Open-
BookQA (Mihaylov et al., 2018), Com-
monsenseQA

World knowledge: NaturalQuestions
(Kwiatkowski et al., 2019), TriviaQA
(Joshi et al., 2017)

Reading comprehension: SQuAD (Ra-
jpurkar et al., 2018), QuAC (Choi et al.,
2018), BoolQ (Clark et al., 2019)

Math: GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021b)

Code: HumanEval (Chen et al., 2021),
MBPP (Austin et al., 2021)

The construction of many of these relies heavily on
online materials, therefore they are highly prone
to data contamination as their source spreads on
the Internet. Here we analyse six representative
multi-choice QA benchmarks: MMLU, C-Eval,
Winogrande, CommonsenseQA, ARC, and Hel-
laSwag. These benchmarks have been selected due
to their varied sources and potential susceptibil-
ity to data contamination. MMLU, ARC, and C-
Eval, which are academic test-based benchmarks,
were compiled from online .docx/.pdf files us-
ing techniques like OCR, typically assumed to be
less affected by data contamination as such files
are often not indexed by online crawlers. However,
C-Eval stands out as it is a non-English (Chinese)
benchmark, offering an opportunity to assess the
impact of non-English benchmarks on language
models. Winogrande, uniquely human-authored
from scratch, allows examination of whether man-
ually created benchmarks are less prone to data
contamination. CommonsenseQA and HellaSwag,
both Internet-sourced, differ in their source pop-
ularity; while CommonsenseQA is built upon the

530

https://huggingface.co/RealTimeData
https://lmarena.ai/


less influential ConceptNet, HellaSwag is sourced
from the more popular WikiHow. This selection
of benchmarks provides a comprehensive overview
of how different sourcing and construction meth-
ods might influence the presence and extent of data
contamination in language model evaluations.

4 Our Approach

The central goal of data contamination analysis is
to categorise test samples as either clean or con-
taminated and then evaluate models separately on
the clean and contaminated samples to assess the
impact of contamination on the performance met-
rics. In this section, we describe our methodology
to identify contaminated test samples. The basic
idea is to check whether test examples appear ver-
batim in both search engine and Common Crawl.
We use search engine and Common Crawl because
they are accessible, affordable and often comprise
the majority of pre-training data for large language
models, e.g., Common Crawl constitutes over 80%
in GPT-3 and LLaMA training data (Brown et al.,
2020; Touvron et al., 2023a) and the remainder
of pre-training data also relies heavily on online
resources.

We identify data contamination in two steps.
First, 1) we use the Bing Search API to check if test
examples appear verbatim online, which indicates
their potential inclusion in LLMs’ pre-training data.
Second, 2) we verify if the page containing verba-
tim test examples we found in step 1) were also
indexed in Common Crawl. Here we check the
presence of test examples in both search engine
and Common Crawl to address a possible false
positive issue. And since the second step only in-
volves URL search within Common Crawl instead
of string retrieval, it avoids the expensive local in-
dexing of the entire Common Crawl. The search
window of our contamination detection starts from
2017 and ends at the knowledge cutoff with respect
to different LLMs. This is realised via adjusting the
freshness parameter in the Bing API and using the
appropriate indexes of Common Crawl during the
identification. Note that we use the release date as
the end of the search window for LLMs for which
we are not aware of their knowledge cutoff.

To construct the search queries, we verbalise
examples accordingly and make sure the question
and the correct answer are involved in the queries.
For example:

Question: The flaw in Anderson’s ACT

theory was that some considered it ____.

Choices:

A: ’Only applicable to a motor system’,

B: ’Untestable and thus, of uncertain sci-
entific value’,

C: ’Lacking in definition for its ele-
ments’,

D: ’Overly complex in explaining the
operation of cognition’,

Answer: B

Verbalised Query: The flaw in Ander-
son’s ACT theory was that some consid-
ered it untestable and thus, of uncertain
scientific value.

We verbalise this multi-choice question to a query
by filling the correct answer in the blank. We do
not include other options in the query, because,
as discussed in Section 2, the presence of other
options does not matter. The question and answer
are the key for identifying data contamination. If
there is no blank in the question, we simply append
the answer after the question to form the query.

To identify overlap between test samples and
training data, existing methods often rely on exact
string matches. For example, Brown et al. (2020)
use N-gram overlap ranging from 8-grams to max-
imum 13-grams for all evaluation tasks. GPT-4’s
criterion for contamination is sub-string matching
with at least 50 characters (OpenAI, 2023). How-
ever, according to our manual analysis, we find
the approach of exact string matches often leads
to false negative in our pipeline. Touvron et al.
(2023b) propose a more fine-grained method that
assesses contamination in the token-level and in-
volves a small "skipgram budget" to accommodate
slight variations of sequences. However, their ex-
act implementation details remain unclear. We in-
stead simply compute the METEOR (Banerjee and
Lavie, 2005) score between matched pages and the
queries to quantify the extent of overlap. We con-
sider examples with a METEOR recall score over
0.75 as contaminated cases. This method tolerates
minor inserted phrases and word form variations,
which greatly mitigates the false negative issue that
strict string matching would miss. To avoid po-
tential false positives, we configure our method
with two key settings: 1) an order penalty (gamma
of 0.8) for METEOR ensures matches respect se-
quence; 2) matching is constrained to a window
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Figure 1: The categorisation of contaminated test samples.

Dataset Split #Total #Online #Total
Contamination

#Input-only
Contamination

#Input-and-label
Contamination

ARC_c Test 1172 372 336 (28.7%) 53 (4.5%) 283 (24.1%)
CommonsenseQA Dev 1221 44 20 (1.6%) 3 (0.2%) 17 (1.4%)
Winogrande Dev 1267 54 14 (1.1%) 0 (0.0%) 14 (1.1%)
C-Eval Dev 1346 618 616 (45.8%) 69 (5.1%) 547 (40.6%)
HellaSwag Dev 10042 1690 1247 (12.4%) 46 (0.4%) 1201 (12.0%)
MMLU Test 13987 4285 4077 (29.1%) 678 (4.8%) 3399 (24.3%)

Table 1: Data contamination statistics for multi-choice QA benchmarks. Search window: 2020.10-2023.10.

up to 2× the query length, preventing partial or
out-of-context matches. We compare our approach
with Llama-2’s and other contamination detection
approaches in Section 7.2.

According to Section 2, here we distinguish two
types of data contamination: 1) input-only con-
tamination where only question is presented in the
matched pages but not answer; 2) input-and-label
contamination where both question and answer oc-
cur in the matched pages. In the upcoming sections,
these two types of data contamination are compared
and analysed separately.

5 Contamination Statistics for
Multi-Choice Benchmarks

Our analysis reveals varying levels of data contam-
ination across six multi-choice QA benchmarks, as
shown in Table 1. According to the table, we have
the following key findings. First, Academic test-
based benchmarks like MMLU and C-Eval, despite
being collected through methods like OCR, exhibit
the highest levels of contamination (29.1% and
45.8%, respectively). This high rate is attributed to
the widespread distribution and communication of
academic test examples, making them more prone
to sharing and discussion. In contrast, benchmarks

manually created from scratch like Winogrande
demonstrate minimal contamination (1.1%), as
they avoided using Internet resources in their bench-
mark construction. Third, we find significant dif-
ferences among Internet-sourced benchmarks. For
example, CommonsenseQA has low contamina-
tion (1.6%) but HellaSwag is much higher (12.4%).
This variation might stem from different popularity
of the sources: ConceptNet, the source of Common-
senseQA is less popular than WikiHow, the source
of HellaSwag. Finally, we find most contamination
belongs to input-and-label contamination, indicat-
ing that models often find the answer alongside the
question for contaminated test samples.

We also illustrate how data contamination in-
creases over time, as shown in Figure 2. In the
figure, benchmarks such as CommonsenseQA and
Winogrande maintain very low rates of contami-
nated data, with increases of just 0.3% and 0.2%
over the past three years. However, benchmarks
collected from academic tests like ARC, MMLU,
and C-Eval have experienced a substantial increase
in contamination, with up to 21% of examples
flagged as contaminated during the same period.
This shows how test content in academic bench-
marks can easily propagate across the Internet,
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Figure 2: Increase in Data Contamination from the pe-
riod of 2017-2020 to 2020-2023. CSQA stands for
CommonsenseQA.

which can be a serious issue for academic test
based language model benchmarks. We also ob-
serve a moderate 8.3% increase for HellaSwag,
further demonstrating the increasing risk of data
contamination for Internet sourced benchmarks.

In Figure 3, we illustrate where these HellaSwag
contaminated test samples come from. We discover
that data contamination manifests in a centralised
fashion, which means contaminated test samples
are not evenly distributed across domains. Instead,
they are significantly concentrated in specific do-
mains and rare in others. This finding is meaningful
as it reveals the possibility that blocking specific
domains during training data collection might alle-
viate the issue of data contamination. You can find
more domain analysis and contamination examples
in Appendix A.

6 Impact of Contamination on Model
Performance

To assess how data contamination impacts model
evaluation, we test popular large language models
on contaminated and clean splits of each bench-
mark. As shown in the previous section, we cate-
gorise benchmarks into four subsets: 1) the clean
set; 2) not clean set; 3) input-only contaminated set;
and 4) input-and-label contaminated set. Note that
‘not clean’ = input-only + input-and-label contami-
nation. Since CommonsenseQA and Winogrande
are shown to be just marginally contaminated, we
focus on MMLU, C-Eval, HellaSwag and ARC in
these experiments. We only report input-only con-
taminated performance for MMLU, as the other
benchmarks have too few samples of this type to
yield robust results. Following previous implemen-
tations (Touvron et al., 2023b; OpenAI, 2023), we

Figure 3: Domain analysis for data contamination in
HellaSwag.

use a zero-shot setting for HellaSwag and ARC
where only the questions and choices are given
in the input, and a 5-shot setting for MMLU and
C-Eval where 5 demonstrations are given in the
prompts. We employ the third party LLMs evalua-
tion platform OpenCompass (OpenCompass, 2023)
in our experiments to provide in-context demon-
strations, prompts, and metrics computing. We use
perplexity to obtain the inference result, i.e., taking
the choice with the lowest perplexity as the pre-
dicted answer. The results are presented in Table 2.
We report model accuracy on the clean set, and the
performance difference for not clean, and contami-
nated sets when they are compared to the clean set.
We use ↑ to indicate an advantage against the clean
set, and ↓ to indicate an accuracy decrease. For
Llama-1,2 series models, we use the search window
of 2017-2020 according to their reported training
data collection period. For all other models we use
an estimated search window of 2017.01-2023.10
as their exact training data collection periods are
unknown.
English Benchmarks. Based on the table, we
find data contamination does not always improve
model performance. Instead, the impact depends
on both the specific benchmark and model scale.
On HellaSwag and ARC benchmarks, many mod-
els achieve better metrics on contaminated subsets.
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MMLU Hellaswag ARC Average

Clean Not Clean I-O Con. I-L Con. Clean Not Clean I-L Con. Clean Not Clean I-L Con. Clean Not Clean

LLaMA 7B .3427 ↓ .0180 ↓ .0060 ↓ .0204 .6394 ↑ .0302 ↑ .0333 .3627 ↓ .0179 ↓ .0460 .4483 ↓ .0019
LLaMA 13B .4652 ↓ .0145 ↓ .1036 ↑ .0034 .7073 ↑ .0840 ↑ .0836 .3924 ↓ .0361 ↓ .0591 .5216 ↑ .0111
LLaMA 30B .5690 ↓ .0166 ↓ .1127 ↑ .0027 .7412 ↑ .0501 ↑ .0497 .4249 ↑ .0349 ↑ .0418 .5784 ↑ .0228
LLaMA 65B .6364 ↓ .0120 ↓ .1510 ↑ .0160 .7613 ↑ .0474 ↑ .0478 .4276 ↑ .0437 ↑ .0391 .6084 ↑ .0264

Llama-2 7B .4310 ↑ .0076 ↓ .0885 ↑ .0270 .6746 ↑ .0471 ↑ .0436 .3803 ↑ .0565 ↑ .0364 .4953 ↑ .0371
Llama-2 13B .5647 ↓ .0348 ↓ .1026 ↓ .0212 .8254 ↓ .0167 ↓ .0254 .4221 ↑ .0147 ↓ .0054 .6041 ↓ .0123
Llama-2 70B .6884 ↑ .0025 ↓ .1214 ↑ .0275 .7726 ↑ .0622 ↑ .0729 .4555 ↑ .1077 ↑ .1112 .6388 ↑ .0575

Llama-2 Chat 7B .4062 ↓ .0211 ↓ .1248 ↓ .0002 .6760 ↑ .0845 ↑ .0872 .3701 ↑ .0773 ↑ .1299 .4841 ↑ .0469
Llama-2 Chat 13B .5417 ↓ .0319 ↓ .1219 ↓ .0138 .7341 ↑ .0714 ↑ .0759 .4334 ↑ .1192 ↑ .1435 .5697 ↑ .0529
Llama-2 Chat 70B .6324 ↓ .0165 ↓ .1324 ↑ .0068 .7576 ↑ .0997 ↑ .0765 .4343 ↑ .0994 ↑ .0272 .6081 ↑ .0609

Mistral 7B .6501 ↓ .0210 ↓ .1064 ↓ .0038 .8533 ↓ .0246 ↓ .0207 .4720 ↑ .0543 ↑ .1049 .6585 ↑ .0029
Mistral-FT 7B .5576 ↓ .0173 ↓ .1087 ↑ .0011 .7168 ↓ .0477 ↓ .0441 .4426 ↑ .0574 ↑ .1151 .5723 ↓ .0025
Yi 6B .6481 ↓ .0094 ↓ .0912 ↑ .0070 .7628 ↓ .0095 ↓ .0011 .4380 ↑ .0488 ↑ .0620 .6163 ↑ .0100
Qwen 7B .5785 ↓ .0120 ↓ .0917 ↑ .0040 .9153 ↓ .0009 ↑ .0033 .4096 ↑ .0509 ↑ .0327 .6345 ↑ .0127
Baichuan2 7B .5594 ↓ .0274 ↓ .1119 ↓ .0103 .7494 ↓ .0295 ↓ .0254 .3710 ↓ .0552 ↓ .0056 .5599 ↓ .0374

Table 2: Model accuracy on the clean set and accuracy difference on not-clean, input-only contaminated (denoted as
I-O Con.) and input-and-label contaminated (denoted as I-L Con.) sets, when compared to the clean set. Significant
accuracy inflation (more than 5%) is highlighted with underlines.

Clean Not Clean I-L Contam.

Llama-2 7B .3135 .3344 ↑ .3364 ↑
Mistral 7B .4715 .4545 ↓ .4607 ↓
Yi 6B .6718 .8003 ↑ .8117 ↑
Qwen 7B .5619 .6169 ↑ .6289 ↑
Baichuan2 7B .5508 .5649 ↑ .5887 ↑
Average .4582 .4912 ↑ .5012 ↑

Table 3: Data contamination analysis on C-Eval. I-L
Contam. indicates input-and-label contamination.

However, on MMLU tasks we observe no consis-
tent enhancement across models. We also find that
larger language models appear more capable of
exploiting data contamination to achieve better per-
formance. For instance, LLaMA-2 70B displays
increased metrics on most contaminated subsets.
In contrast, the 13B LLaMA-2 only outperforms
on contaminated ARC. In addition, LLaMA-2 70B
achieves a larger advantage on contaminated sets
(5%) compared to 3% inflation of the 7B variant.
This could be due to the more powerful memori-
sation capacity in larger language models (Carlini
et al., 2022). Finally, we find that input-only con-
tamination does not lead to inflation of metrics.
This suggests that contamination has little effect
when it does not give away the answer. Surpris-
ingly, we also observe that models demonstrate
significantly worse performance on the input-only
contaminated set. This may be because the absence
of their labels online suggests that no one has pro-
vided a solution for these test samples, because they
are inherently more challenging. Input-and-label
contamination, on the contrary, often leads to more

notable accuracy increases, making it the key issue
to address for data contamination.

Non-English Benchmark. In Table 3, we
present contamination analysis on the non-English
benchmark C-Eval. Among the tested models,
Llama and Mistral are considered pure English
models, while Yi, Qwen, and Baichuan are pre-
trained as multilingual language models. We find
the pure English models, Llama and Mistral, do not
exhibit notable performance increases on C-Eval’s
contaminated subsets. However, the multilingual
large language models all demonstrate significant
performance advantages on dirty subsets. Yi 6B
even achieves a 14% higher accuracy score on the
input-and-label contaminated set, proving the po-
tential for serious distortion of evaluation results.

What is the threshold of overlap for a test ex-
ample to affect model prediction? We illustrate
how the METEOR score, which measures sentence
similarity, correlates with model performance on
test samples. The METEOR metric measures the
similarity between two sentences. For instance,
a test sample with a METEOR score of 0.8 in-
dicates high equivalence between that test case
and sentences in training data. In Figure 4, we
group test samples by METEOR score and present
the accuracy achieved on those groups by Llama-
2 70B across four benchmarks. On ARC, Hel-
laSwag, and C-Eval, a general upwards accuracy
trend emerges as METEOR rises, indicating that
models attain higher metrics when more verbatim
overlapping samples exist in the training data. In
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Figure 4: Accuracy of Llama-2 70B for test examples
with different METEOR score.

essence, substantial text duplication enables ex-
ploitation through memorisation, inflating model
scores.

7 Discussion

7.1 Existing Methods to Mitigate Data
Contamination

Several techniques have previously been proposed
to mitigate the data contamination issue in language
model evaluation. Our findings provide some novel
insights on the effectiveness of these approaches.
Blocklisting benchmark sources. Blocking
sources of benchmarks in training data collection
is a common way to avoid data contamination. In
our paper, we further demonstrate the feasibility of
this method. As shown in Figure 3, the distribution
of data contamination is very centralised, so block-
ing only a small set of domains can significantly
alleviate the issue of data contamination. However,
we also find blocklisted links quickly expire but
content spreads, making the blocklist ineffective
over time. For instance, we test the contamination
blocklist in the first release of MMLU3, and we
found the given blocklist only avoids 1.5% of con-
taminated cases we detected in §5. If we adopt a
more aggressive method that skips all domains in
the blocklist, it still just avoids 21% of contami-
nated cases. This suggests content used in MMLU
spreads rapidly, which emphasises the necessity to
update the blocklists regularly.
Avoid using data that appears with its solution
on the Internet (Jacovi et al., 2023). According
to our results, avoiding the presence of answers
is a feasible method and can indeed prevent mem-
orising exact answers. As shown in Table 2, we
found input-only contamination typically does not

3https://people.eecs.berkeley.edu/~hendrycks/
data.tar

Method Contam. (%) Acc. Inflation (%)

HellaSwag

Ground Truth 8.4% 7.42%
Ours 8.3% 7.29%
minK-20% not-applicable 14.29%

MMLU

Ground Truth 11% 2.00%
Ours 9.7% 2.75%
minK-20% not-applicable 11.54%

Table 4: Comparison against to ground truth (Touvron
et al., 2023b) and minK-20% (Shi et al., 2023)

lead to metrics inflation compared to input-and-
label contamination. This suggests that as long as
the contamination does not reveal the answer, it is
unlikely that the model can achieve an unfair advan-
tage. A better solution is to completely avoid using
online resources in benchmark construction. Wino-
grande is a good example that is barely affected
by data contamination since its test examples were
developed with fresh, human-authored content.
Protecting test data from automatic crawlers via
encryption and forbidding further distribution
(Jacovi et al., 2023). Forbidding further distribution
of benchmarks can indeed prevent data contamina-
tion to some extent. This was proven in our Figure
3, where some contaminated cases are from hug-
gingface.co, a dataset sharing platform. However,
forbidding further distribution of the test data also
significantly limits the popularity of benchmarks.
For example, benchmarks such as HellaSwag and
C-Eval make their test sets nonpublic to avoid po-
tential data contamination issues. However, this
also makes popular third party model evaluation
platforms turn to using their validation sets instead
of the test sets, as the platform hosts can access
the answers in the validation sets to conduct the as-
sessment (OpenCompass, 2023). Actually, most re-
searchers tend to evaluate their models on publicly
available splits rather than restricted ones, even if
the latter have lower contamination risk. Therefore,
benchmarks should consider balancing robustness
against ease of adoption by the community.

7.2 Comparison to Ground Truth and Other
Methods

The data contamination analysis in the original
Llama-2 paper is quite incomplete, presenting re-
sults for only HellaSwag and MMLU benchmarks.
However, we can still compare our results to theirs
(considered as ground truth) to show the effective-
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ness of our method. We also include minK (Shi
et al., 2023), a recent SOTA approach for data con-
tamination detection, in our comparison. The opti-
mal setting reported in Shi et al. (2023) was used
here, that considers top 20% probability in their
detection process (thus minK-20%). As shown
in Table 4, our method exhibits accuracy in con-
tamination identification and achieves results very
similar to the ground truth. Specifically, our results
show less than 1% error on accuracy and less than
2% error in the percentage of contamination com-
pared to the ground truth. Compared to minK, our
method not only achieves a more accurate result
in accuracy inflation, but can also provide the per-
centage of contamination for a given benchmark,
which is not applicable to the minK approach.

8 Conclusion

This paper conducted an extensive data contami-
nation analysis for popular large language models
on six multi-choice QA benchmarks. We identified
varying levels of test set contamination, ranging
from 1% to 47% across benchmarks. We also found
that data contamination can lead to increased met-
rics: data contamination in ARC and HellaSwag
generally allows models to achieve significantly
higher accuracy, but contamination in MMLU has
less of an impact on model’s performance, although
it did increase performance on a specific sub-set
of MMLU. Our findings offer a transparent per-
spective on data contamination, emphasising its
significance as an urgent issue within the evalua-
tion community.

9 Limitation

The use of search APIs in our method will cost
around $10 per 1,000 queries with Bing. We spent
about $110 in total for querying the entire MMLU.
But this number includes trying different settings.
So one can expect to spend much less in their own
experiments. Nevertheless, the cost of search APIs
is still much more affordable compared to hosting
the entire Common Crawl locally, which would re-
quire dealing with multi-petabyte data. Another
possible limitation is the restriction on lengthy
queries by search engines, which prevents the anal-
ysis of benchmarks with long input passages, such
as reading comprehension. Finally, LLM devel-
opers may use training data that does not appear
on the Internet, such as user-generated data, which
is out of the scope of our method. However, we

argue that this would hardly lead to new data con-
tamination, as it is unlikely that users include NLP
benchmark examples in their generated data.

Future attempts will include scanning lengthy
input examples via sequence chunking, and devel-
oping perplexity-based approaches to detect con-
taminated examples without requiring full passage
matching.
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A More Information about
Contamination in Multi-Choice QA
Benchmarks

To provide a straightforward impression, we pro-
vide some example of data contamination from the
MMLU benchmark as shown in Figure 7. In Figure
7 (a), the METEOR recall score between the test

question and matched example was 0.9275, well
above the 0.8 contamination threshold, indicating
a clear leakage of this test example in the training
data of Llama models. While minor formatting
differences exist, the near-complete overlap con-
stitutes concerning input-and-label contamination
that allows models to memorise rather than gener-
alise. However, in Figure 7 (b) we find no answer
choices and the correct answer in that page, which
makes it a input-only contamination case. While
input-only contamination poses a lower risk for
direct label leakage, it can still allow models un-
fair advantage if exposed to the questions during
training.

We also present the domain visualisation for con-
taminated test sample in ARC (see Figure 5) and
MMLU (see Figure 6).

B More Results

In Table 5, we present more detailed statistics
of Llama models’ performance on different cat-
egorises of MMLU benchmark.
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Model MMLU MMLU-Humanities MMLU-STEM MMLU-Social-Science MMLU-Other

Clean I-O Con. I-L Con. Clean I-O Con. I-L Con. Clean I-O Con. I-L Con. Clean I-O Con. I-L Con. Clean I-O Con. I-L Con.

Llama 7B 34.27 33.67 32.23 33.69 25.76 34.22 30.79 33.04 30.67 37.40 38.10 31.59 35.64 35.23 33.60
Llama 13B 46.52 36.15 46.86 43.79 43.94 53.38 37.78 27.73 37.37 55.55 49.52 51.33 50.31 41.48 49.53
Llama 30B 56.90 45.63 57.17 55.02 59.09 64.36 46.10 36.28 47.84 65.91 58.10 63.18 61.84 51.14 57.09
Llama 65B 63.64 48.54 65.25 63.71 56.06 74.73 52.58 41.59 54.09 72.08 59.05 74.17 67.30 52.84 62.21
Llama 2 7B 43.10 34.26 45.80 41.90 45.45 55.57 34.38 26.55 36.82 49.74 45.71 49.20 47.30 38.07 46.29
Llama 2 13B 56.47 46.21 54.35 55.73 59.09 60.91 44.27 37.17 44.17 64.22 60.95 61.69 62.64 50.00 54.39
Llama 2 70B 68.84 56.71 71.59 65.78 74.24 79.28 57.18 45.43 61.52 81.12 67.62 80.15 73.13 65.34 68.96

Table 5: Llama series models’ performance (accuracy) across different categories of MMLU. I-O Con. and I-L Con.
indicate input-only contamination and input-and-label contamination respectively.

Figure 7: An example of input-and-label (a) and input-only (b) contamination from MMLU.
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Figure 5: Domain analysis for data contamination in
ARC.

Figure 6: Domain analysis for data contamination in
MMLU.
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