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Abstract

Despite advancements in text-to-image mod-
els, generating images that precisely align with
textual descriptions remains challenging due
to misalignment in training data. In this paper,
we analyze the critical role of caption precision
and recall in text-to-image model training. Our
analysis of human-annotated captions shows
that both precision and recall are important for
text-image alignment, but precision has a more
significant impact. Leveraging these insights,
we utilize Large Vision Language Models to
generate synthetic captions for training. Mod-
els trained with these synthetic captions show
similar behavior to those trained on human-
annotated captions, underscores the potential
for synthetic data in text-to-image training.1

1 Introduction

Recent advancements in diffusion models such as
Stable Diffusion (Rombach et al., 2022), DallE
3 (Betker et al., 2023), Emu (Dai et al., 2023), and
Imagen (Saharia et al., 2022), have demonstrated
remarkable capabilities in image synthesis. Despite
these achievements, challenges persist in generat-
ing images that accurately align with the given text
inputs (Huang et al., 2023). One issue is the mis-
alignment between training captions and images,
where captions either describe only a portion of
the image or fail to describe the image content ac-
curately. Recent research efforts have focused on
enhancing caption quality using Large Language
Models (LLM) (Fan et al., 2024) or Large Vision
Language Models (LVLM) (Lai et al., 2023; Chen
et al., 2024). Nevertheless, there is a scarcity of
in-depth analysis on how specific factors influence
the efficacy of text-to-image model training.

In this paper, we evaluate captions based on two
metrics: precision and recall. We train the text-
to-image (T2I) model using human-annotated cap-

1The data and code is available at https://github.com/
shengcheng/Captions4T2I.
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Figure 1: The result of the compositional capabilities
across various combinations of precision and recall on
human-annotated captions. Positive sentences indicate
the precision of the captions, while the number of sub-
masks represents the comprehensiveness of the captions.

tions that vary in levels of precision and recall. We
then assess the model’s capability for text-image
alignment, specifically focusing on compositional
ability. As illustrated in Figure 1, our findings in-
dicate that while combinations of high precision
and high recall yield the best results, generating
captions with high precision is generally more ben-
eficial. However, if the model is prone to hallucina-
tion, adding more diverse details can also enhance
performance.

Building on these insights as shown in Fgiure 1,
we explore whether the same observation hold
when using LVLMs to generate synthetic captions
for T2I training. Given the variability across differ-
ent LVLMs, some models may emphasize diversity
at the expense of precision, leading to increased
hallucination, while others may prioritize precision
but sacrifice diversity. We evaluate the precision
and recall of captions generated by various LVLMs
and then use them to train T2I models. Our findings
confirm that the compositional capabilities of the
T2I models are consistent with our previous con-
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clusions, underscoring the critical role of precision
in caption generation.

The major contributions of this paper are:

• We systematically evaluate the impact of pre-
cision and recall on T2I model training, estab-
lishing that while both metrics are important,
precision has a more significant influence on
the model’s performance.

• We extend our analysis by employing several
LVLMs to generate synthetic captions. Our
experiments show that the performance of T2I
models trained with these synthetic captions is
consistent with insights derived from human-
annotated captions.

2 Related Work

Text-to-image diffusion model Given an input
image x, it is paired with a corresponding cap-
tion c, which is segmented into multiple sentences
c0, c1, ..., cN . The sentence c0 typically provides a
general description of the image, while c1, ..., cN
detail the characteristics of specific subregions
within the image. Current state-of-the-art text-
to-image generation model is the latent diffusion
model (Ho et al., 2020; Sohl-Dickstein et al., 2015;
Nichol and Dhariwal, 2021; Rombach et al., 2022;
Peebles and Xie, 2023). This model can be formu-
lated as

L := Eε(x),c,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, τθ(c))∥22

]
,

where ϵ is the noise, t denotes the denoising
timestep, θ represents the parameters of the dif-
fusion model, ε and τ are image and text encoder.

Improving captions for text-to-image model
training Models such as Pixart-α (Chen et al.,
2024), DallE 3 (Betker et al., 2023), and Stable
Diffusion 3 (Esser et al., 2024) emphasize the crit-
ical role of high-quality captions in their training.
These systems incorporate captions synthesized
by LVLMs (Wang et al., 2023; Liu et al., 2024;
202, 2023) into their training processes to enhance
T2I generation capabilities. In particular, (Betker
et al., 2023) investigates how synthetic captions
contribute to improved T2I generation. However,
these models do not specifically examine how cap-
tion quality impact the effectiveness of their train-
ing processes.

3 Analysis of Image captions for T2I
training

Dataset Construction Our study utilizes the
Dense Caption Dataset (Urbanek et al., 2023)2,
which comprises 8,012 images and 99,445 sub-
masks derived from the SAM dataset (Kirillov
et al., 2023). Each image in the dataset is seg-
mented into multiple submasks, and both the main
image and its corresponding submask images,
known as subimages, are each paired with at least
one detailed, human-annotated caption. We refer
to the captions associated with the main image as
the main captions and those linked to the subim-
ages as subcaptions. These captions have been
condensed to summarized versions of no more than
77 tokens using the LLAMA2-70B model (Tou-
vron et al., 2023). To create negative captions, the
LLAMA2-70B model modifies these sentences by
altering their structure, editing content, or reshuf-
fling words to form new sentences with the original
vocabulary.

Our dataset is constructed based on these ele-
ments. In our study, we focus solely on how cap-
tions, including those for specific subregions within
images, align with the overall image. Therefore, we
do not use the subimages derived from submasks;
instead, our dataset is built around the subcaptions
associated with these submasks. To control the re-
call of the caption, each image is described not just
by a basic caption that outlines the overall scene,
but also by multiple subcaptions that provide de-
tailed descriptions of specific regions, as shown
in Table 1. We also manage the accuracy of our
dataset by selectively including a certain proportion
of negative captions or negative subcaptions.

# of submasks 0 1 2 3

Avg. nouns 12.3 20.5 28.0 35.2
Avg. tokens 54.8 91.0 125.1 157.8

Table 1: Data constructed analysis. The more submasks
indicates more comprehensive description. The number
of nouns is computed by Spacy (Honnibal and Mon-
tani, 2017). The number of tokens is computed by tok-
inzer (Raffel et al., 2020)

Training and Evaluation The family of Stable
Diffusion models (v1.4, 1.5, and 2.1) (Rombach
et al., 2022) integrates the CLIP (Radford et al.,
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Positive Num of Attribute Binding Object Relationship Average
Sentences Submasks Color ↑ Shape ↑ Texture ↑ Spatial ↑ Non-Spatial ↑ Result

0% 0 0.1842 0.3079 0.3125 0.0884 0.2954 0.2377
0% 1 0.2322 0.3382 0.3389 0.1380 0.3031 0.2701
0% 2 0.2610 0.3340 0.3620 0.1446 0.3052 0.2814
0% 3 0.2870 0.3496 0.3840 0.1727 0.3066 0.3000
25% 0 0.2277 0.3042 0.3282 0.1230 0.2995 0.2565
25% 1 0.2801 0.3346 0.3620 0.1357 0.3047 0.2834
25% 2 0.2881 0.3356 0.3819 0.1529 0.3051 0.2927
25% 3 0.3203 0.3515 0.4193 0.1700 0.3078 0.3138
50% 0 0.2855 0.3271 0.3740 0.1243 0.3020 0.2826
50% 1 0.3250 0.3583 0.4180 0.1611 0.3062 0.3137
50% 2 0.3244 0.3529 0.4256 0.1727 0.3078 0.3167
50% 3 0.3358 0.3607 0.4291 0.1850 0.3082 0.3237
75% 0 0.3186 0.3402 0.3939 0.1350 0.3057 0.2987
75% 1 0.3387 0.3586 0.4443 0.1760 0.3078 0.3251
75% 2 0.3454 0.3679 0.4401 0.1784 0.3089 0.3281
75% 3 0.3581 0.3710 0.4503 0.1917 0.3095 0.3361

100% 0 0.3437 0.3599 0.4351 0.1507 0.3086 0.3196
100% 1 0.3500 0.3865 0.4695 0.1745 0.3091 0.3379
100% 2 0.3567 0.3872 0.4676 0.1832 0.3094 0.3408
100% 3 0.3717 0.3892 0.4662 0.1986 0.3100 0.3471

Table 2: The result of the compositional capabilities across various combinations of precision and recall on human-
annotated captions. It contains five categories: color, shape, texture, spatial, and non-spatial. Positive sentences
indicate the precision of the captions, ranging from 0% to 100%, while the number of submasks represents the
comprehensiveness of the captions, ranging from 0 to 3.

2021) text encoder, which is limited to process-
ing 77 tokens. To overcome this limitation, we
employed the Pixart-α model (Chen et al., 2024),
which utilizes the T5 (Raffel et al., 2020) text en-
coder capable of handling up to 512 tokens. We
fine-tuned the model using LoRA (Hu et al., 2022)
over 10 epochs, with batch size of 32 and learning
rate of 1e-4. All experiments are run on an A100
GPU.

To validate the model’s ability to generate im-
ages accurately aligned with the provided text,
we use the T2I-Compbench (Huang et al., 2023),
which includes five tasks. The first three tasks eval-
uate the model’s capacity to accurately generate
multiple objects in terms of correct color, shape,
and texture. These tasks convert the text prompts
into questions, which are tested using the BLIP2
model (Li et al., 2023). The spatial task examines
the model’s understanding of spatial directives like
‘left’ and ‘right’ using an object detection algo-
rithm (Zhou et al., 2022). The non-spatial task fo-
cuses on object interactions and employs the CLIP
model (Radford et al., 2021) to evaluate alignment.

Results Our results are shown in Table 2. We
quantify the precision of the captions by the per-
centage of positive sentences and assess their recall
through the number of submasks. It is important to
clarify that a negative sentence does not necessarily
indicate complete irrelevance to the associated im-
age. Typically, such a sentence is mostly accurate
but includes a few incorrect elements.

Our experiments confirm that both precision and
recall influence the compositional capabilities of
the model. However, our findings indicate a more
significant impact of precision on performance as
compared to recall. Notably, models trained with
0% positive sentences and three additional subcap-
tions underperform significantly relative to those
trained with 100% positive sentences, even in the
absence of any subcaptions, which contain approx-
imately four times less information. At lower pre-
cision levels, increasing recall significantly boosts
performance. For example, improving recall with
captions that have 0% precision results in a 6.3%
gain in performance. However, as the precision of
captions improves, the benefits of increasing recall
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Caption T2I Attribute Binding Object Relationship Average
Method Model Color ↑ Shape ↑ Texture ↑ Spatial ↑ Non-Spatial ↑ Result

LLAVA SD2.1 0.5406 0.4310 0.4941 0.1370 0.3165 0.3838
uform SD2.1 0.5246 0.3878 0.5015 0.1250 0.3163 0.3710
BLIP SD2.1 0.4962 0.4189 0.5087 0.1457 0.3156 0.3770

LLAVA SDXL 0.4942 0.3942 0.4782 0.1452 0.3143 0.3652
uform SDXL 0.4496 0.3458 0.4130 0.1185 0.3116 0.3277
BLIP SDXL 0.4426 0.3652 0.4307 0.1395 0.3115 0.3379

Table 3: The result of the compositional capabilities on synthetic captions generated through different LVLMs.

decrease. When captions are 100% precise, the
additional performance gain from increased recall
is just 2.8%.

4 Insight for Synthetic captions for T2I
training

Building on the findings from our previous analy-
sis, this section investigates whether the observed
impacts of precision and recall on performance also
apply to synthetic captions.

We conducted experiments using synthetic
captions generated by three different LVLMs:
LLAVA (Liu et al., 2024), BLIP2 (Li et al., 2023),
and uform3. Each model was given the instruc-
tions: “Describe the image concisely,” with a limit
of fewer than 77 tokens per caption. The im-
ages for training are sourced from the MSCOCO
dataset (Lin et al., 2014), which includes 118k im-
ages. We fine-tuned the Stable Diffusion v2.1 and
Stable Diffusion XL base 1.0 (Podell et al., 2023)4

model using these captions for 100,000 iterations
with a batch size of 8 and a learning rate of 1e-4.

Due to the high cost of human verification for
the precision and recall of synthetic captions, we
use a modified version of the Faithscore (Jing
et al., 2023) for evaluation. Initially, we filter
out the descriptive content of the captions. Then,
adapting from the original method in (Jing et al.,
2023), which decomposes captions into ENTITY,
COUNT, COLOR, RELATION, and OTHER, we
refine our decomposition to better fit the composi-
tional evaluation metric by using ENTITY, SHAPE,
COLOR, TEXTURE, SPATIAL, NON-SPATIAL,
and OTHER. Each sentence within these categories
is then assessed for correctness. For the first two
steps, we utilize the GPT-3.5 API (Brown et al.,

3https://huggingface.co/unum-cloud/uform-gen2-qwen-
500m

4https://huggingface.co/stabilityai/stable-diffusion-xl-
base-1.0

Method LLAVA BLIP uform

# of Entites 4.90 2.12 6.52
Faithscore 0.911 0.931 0.831

Table 4: The number of entities and modified faith-
score of synthetic captions generated from three differ-
ent LVLMs model.

2020), and for the final step of evaluation, we use
the LLAVA1.5-13B model, following the approach
detailed in (Jing et al., 2023). Due to the costs of
the API usage, we randomly select 1000 samples
to probe the quality of the captions. The result
is presented in Table 4, including the number of
entities per caption, which represents the recall of
the captions, and their corresponding faithscore,
which indicates the precision of the captions. It re-
veals that the BLIP model generates captions with
less information but achieves high precision. Con-
versely, uform provides more diverse information
but with relatively lower precision. Meanwhile, the
LLAVA model not only maintains high precision
but also exhibits better comprehensiveness com-
pared to BLIP.

The results of the compositional capabilities of
T2I models trained with synthetic captions are
shown in Table 3. The findings reveal that the
LLAVA model, which has relatively high precision
and recall, outperforms the other two models. De-
spite containing three times less information than
uform, the BLIP model’s high precision enables it
to perform better than the uform model. This obser-
vation aligns with insights from human-annotated
captions, affirming that high precision is more cru-
cial than high recall.

5 Conclusion

In this study, we investigated how caption quality
affects T2I model training. We found that while

3706



both precision and recall are important, precision is
more crucial for effective training. These findings
are confirmed using both human-annotated and syn-
thetic captions from LVLMs. This insight could
help improve the creation of synthetic captions for
future T2I training.

Limitation

A key limitation of our study is the use of the
LLAVA1.5-13B model in the Faithscore evalua-
tion to determine the correctness of each entity in
the image. Since synthetic captions are also gener-
ated with the LLAVA model, our evaluation might
inherently favor captions generated by it. How-
ever, the LLAVA model remains one of the most
advanced open-source Vision-Language Models
available. Additionally, the cost of using human an-
notation for evaluation would be significantly high.
In future work, we plan to explore using GPT-4 for
evaluation to reduce this bias potentially.
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A Visualization of Human-annotated
captions

We show sample that contain all positive sentences
with 3 submasks (All-pos) and all negative sen-
tences with 3 submasks (All-neg).

Figure 2: One sample from the DAC dataset, used for
analysis of human-annotated captions.

All-pos: A white double-decker bus and truck
are parked at an intersection, with a urban sky-
line in the background. The bus has a Tissot logo
and watch, while the truck has Chinese writing
and phone numbers. The intersection has traffic
lights, pedestrian crossing button, and yellow tac-
tile paving for visually impaired people. A white
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Isuzu truck is parked on the right side, with a red
166PS logo on the roof and a driver visible through
the right side door. There are four lines of Chinese
words in red, blue, and green on the trunk, and
three phone numbers at the bottom. Overcast sky
with a darker gloom on the left. A white double-
decker bus with a Tissot logo and watch picture
under the windshield, an actress in red clothing,
and a driver in blue uniform. The bus has 17 writ-
ten on top and bottom, and people can be seen
sitting and standing inside through the windows.

All-neg: A sleek black double-decker bus and
a rusty old truck are parked at a bustling round-
about, with a picturesque countryside landscape
in the background. The bus features a large ad-
vertisement for a luxury fashion brand, while the
truck is covered in colorful graffiti. The round-
about has a central fountain, lined with benches
and surrounded by vibrant flower beds. A white
Isuzu truck with a red logo on the roof has a driver
visible through the right side door. The trunk fea-
tures a colorful design with four lines of words,
while three phone numbers are displayed at the
bottom. The engine rumbles, indicating a powerful
166PS output. A blue sky with a hint of clouds.
A white double-decker bus with a Tissot logo, an
actress in yellow, and a driver in navy. The bus has
19 written on it and people are partying inside with
streamers and balloons.

B Visualization of Synthetic captions

We show sample that contain the synthetic captions
from LLAVA, BLIP, and uform.

LLAVA: The image features a tall clock tower
with a blue and gold design. The tower is adorned
with a cross on top, adding a religious touch to
the structure. The clock is positioned towards the
center of the tower, making it a prominent feature.
The tower stands out against a blue sky.

BLIP: a clock tower on a building with a clock
on top.

uform: A majestic brick clock tower with a blue
and white tiled roof stands tall against a clear blue
sky, featuring a cross at the top and a bell at the
bottom. The tower is surrounded by other buildings,
creating a serene urban landscape.

Figure 3: One sample from MSCOCO, used for gener-
ating synthetic captions by LVLM.
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